Chiswell Ridge Lingcod ROV Survey with Ancillary Population Estimates of Demersal Shelf Rockfish, 2005

by Mike Byerly, Margaret Spahn, and Kenneth J. Goldman, Ph.D.

August 2015

Alaska Department of Fish and Game

Divisions of Sport Fish and Commercial Fisheries

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

Weights and measures (metric)		General		Mathematics, statistics	
centimeter	cm	Alaska Administrative		all standard mathematical	
deciliter	dL	Code	AAC	signs, symbols and	
gram	g	all commonly accepted		abbreviations	
hectare	ha	abbreviations	e.g., Mr., Mrs.,	alternate hypothesis	H _A
kilogram	kg		AM, PM, etc.	base of natural logarithm	е
kilometer	km	all commonly accepted		catch per unit effort	CPUE
liter	L	professional titles	e.g., Dr., Ph.D.,	coefficient of variation	CV
meter	m		R.N., etc.	common test statistics	$(F, t, \chi^2, etc.)$
milliliter	mL	at	@	confidence interval	CI
millimeter	mm	compass directions:		correlation coefficient	
		east	Е	(multiple)	R
Weights and measures (English)		north	Ν	correlation coefficient	
cubic feet per second	ft ³ /s	south	S	(simple)	r
foot	ft	west	W	covariance	cov
gallon	gal	copyright	©	degree (angular)	0
inch	in	corporate suffixes:		degrees of freedom	df
mile	mi	Company	Co.	expected value	Ε
nautical mile	nmi	Corporation	Corp.	greater than	>
ounce	OZ	Incorporated	Inc.	greater than or equal to	≥
pound	lb	Limited	Ltd.	harvest per unit effort	HPUE
quart	qt	District of Columbia	D.C.	less than	<
vard	vd	et alii (and others)	et al.	less than or equal to	<
5	5	et cetera (and so forth)	etc.	logarithm (natural)	ln
Time and temperature		exempli gratia		logarithm (base 10)	log
day	d	(for example)	e.g.	logarithm (specify base)	\log_2 etc.
degrees Celsius	°C	Federal Information		minute (angular)	
degrees Fahrenheit	°F	Code	FIC	not significant	NS
degrees kelvin	Κ	id est (that is)	i.e.	null hypothesis	Ho
hour	h	latitude or longitude	lat or long	percent	%
minute	min	monetary symbols	Ū.	probability	Р
second	S	(U.S.)	\$, ¢	probability of a type I error	
		months (tables and		(rejection of the null	
Physics and chemistry		figures): first three		hypothesis when true)	α
all atomic symbols		letters	Jan,,Dec	probability of a type II error	
alternating current	AC	registered trademark	®	(acceptance of the null	
ampere	A	trademark	тм	hypothesis when false)	β
calorie	cal	United States		second (angular)	
direct current	DC	(adjective)	U.S.	standard deviation	SD
hertz	Hz	United States of		standard error	SE
horsepower	hp	America (noun)	USA	variance	
hydrogen ion activity	рН	U.S.C.	United States	population	Var
(negative log of)	r		Code	sample	var
parts per million	ppm	U.S. state	use two-letter	1	
parts per thousand	ppt,		abbreviations		
<u>.</u> <u>.</u> .	%		(e.g., AK, WA)		
volts	V				
watts	W				

FISHERY DATA SERIES NO. 15-26

CHISWELL RIDGE LINGCOD ROV SURVEY WITH ANCILLARY POPULATION ESTIMATES OF DEMERSAL SHELF ROCKFISH, 2005

by

Mike Byerly, Margaret Spahn, and Kenneth J. Goldman, Ph.D. Alaska Department of Fish and Game, Division of Commercial Fisheries, Homer

> Alaska Department of Fish and Game Division of Sport Fish, Research and Technical Services 333 Raspberry Road, Anchorage, Alaska, 99518-1565

> > August 2015

This investigation was partially financed by Nearshore Marine Research Grants; series IV (NOAA Cooperative Agreement NA16FN2808) and Series V (NOAA Cooperative Agreement NA03NMF4370202), and a grant from the North Pacific Research Board.

ADF&G Fishery Data Series was established in 1987 for the publication of Division of Sport Fish technically oriented results for a single project or group of closely related projects, and in 2004 became a joint divisional series with the Division of Commercial Fisheries. Fishery Data Series reports are intended for fishery and other technical professionals and are available through the Alaska State Library and on the Internet: http://www.adfg.alaska.gov/sf/publications/. This publication has undergone editorial and peer review.

Mike Byerly, Margaret Spahn, and Kenneth J. Goldman, Ph.D., Alaska Department of Fish and Game, Division of Commercial Fisheries, 3298 Douglas Place, Homer AK 99603, USA

This document should be cited as:

Byerly, M., M. Spahn, and K. J. Goldman. 2015. Chiswell Ridge lingcod ROV survey with ancillary population estimates of demersal shelf rockfish, 2005. Alaska Department of Fish and Game, Fishery Data Series No. 15-26, Anchorage.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write: ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526

U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203

Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers:

(VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact: ADF&G, Division of Sport Fish, Research and Technical Services, 333 Raspberry Rd, Anchorage AK 99518 (907) 267-2375

TABLE OF CONTENTS

Page

LIST OF TABLES	ii
LIST OF FIGURES	ii
LIST OF APPENDICES	ii
ABSTRACT	1
INTRODUCTION	1
OBJECTIVES	2
METHODS	3
Survey Area	3
Habitat Delineation and Survey Design	3
Field Data Collection	5
Video Review	6
Data Processing and Analytical Methods	7
RESULTS	8
DISCUSSION	10
ACKNOWLEDGEMENTS	12
REFERENCES CITED	13
TABLES AND FIGURES	17
APPENDIX A	

LIST OF TABLES

Table		Page
1	Video quality categories.	
2	Meters of transect line run for each stratum.	
3	Fish counts by reaction category	
4	Fish density and abundance estimates for each strata and study area	19

LIST OF FIGURES

Figure

gure	e F	Page
1	Chiswell Ridge and the north gulf coast of the Kenai Peninsula with hillshade of bathymetric grid	21
2	Chiswell Ridge and Granite Island study areas with hillshade of bathymetric grid	22
3	Hillshaded bathymetry with bathymetry source and rocky reef delineations for the Chiswell Ridge and	
	Granite I study areas with hillshade of bathymetric grid.	23
4	Study area boundaries, stratification and transect locations for the Chiswell Ridge and Granite I study	
	areas	24
5	The R/V Pandalus and Deep Ocean Engineering Phantom HD2+2 ROV used for the survey.	25
6	Computer screen shot of Hypack navigation software used for navigating and data acquisition	26
7	Schematic of the ROV deployment method.	27
8	Example of the methods used to segment out portions of transect that fell outside of the rock reef	
	polygons and those that had bad video segments	28
9	Frequency of fish counts for each transect by strata and species	29
10	Distribution of lingcod and quillback rockfish density within the Chiswell Ridge and Granite I study	
	areas	30
11	Distribution of juvenile and adult yelloweye rockfish density within the Chiswell Ridge and Granite I	
	study areas.	31
12	Violin and box plots of fish observations by depth along with the distribution of sampling effort by	
	depth.	32
	•	

LIST OF APPENDICES

Appendix

pper	ndix	Page
A1	Components for the ROV system.	
A2	Habitat classification scheme.	
A3	Meters of transect line run and area sampled by video quality and habitat type	
A4	Species and species groupings for all animals enumerated.	
A5	Distribution of 1000 bootstrap replicates of density estimates by species and strata	40
A6	Species or species group counts by transect for the Chiswell north stratum.	41
A7	Species or species group counts by transect for the Chiswell south stratum	43
A8	Species or species group counts by transect for the Granite I study area.	45

ABSTRACT

Current management of lingcod *Ophiodon elongates* and demersal shelf rockfish (DSR) in the Cook Inlet Management Area is based on guideline harvest levels and season restrictions for the commercial fishery and bag limit, size, and seasonal restrictions for the recreational fishery. These management measures are either based on historical harvest levels or are set with consideration to life history traits and do not rely on abundance. The purpose of this survey was to estimate, for the first time, the abundance of lingcod within a section of the North Gulf District in the Cook Inlet Management Area. Chiswell Ridge was selected for this 2005 survey because it is a historically important recreational and commercial harvest area. Lingcod were the focus of this survey but ancillary estimates for DSR were made because both species occupy similar habitats. A closed population was assumed because the Chiswell Ridge is surrounded by relatively deep waters, extending to the lower limit of typical lingcod depth distribution. A neighboring area was also surveyed to compare and investigate variation in density estimates. Strip transects were conducted with a remotely operated vehicle (ROV) to estimate lingcod and DSR abundance within rocky habitats delineated from multi-beam and side-scan sonar data. Significant differences in lingcod density were detected between study areas. Chiswell Ridge abundance estimates were relatively precise for all species; the coefficient of variation for lingcod was 20%, adult yelloweye rockfish *Sebastes ruberrimus* was 15%, and quillback rockfish *Sebastes maliger* was 18%.

Key words: Lingcod *Ophiodon elongates*, yelloweye rockfish *Sebastes ruberrimus*, demersal shelf rockfish (DSR), remotely operated vehicle ROV, transect, Cook Inlet.

INTRODUCTION

The management of many marine groundfish species is complicated by the lack of quantitative assessment data. This is particularly true for lingcod *Ophiodon elongates* and rockfish (*Sebastes* spp.) in the Cook Inlet Management Area. Many traditional sampling methods used to estimate population size or trends are not practical for these species because of their affinity for rocky habitats, and in the case of rockfish, mark–recapture methods utilizing tagging are problematic because they have a closed swim bladder. The lack of assessment information has hindered development of management objectives and reference points. Rockfish exhibit low reproductive rates and are long lived and slow growing, and therefore particularly vulnerable to overexploitation (Adams 1980). Lingcod are more resistant to fishing pressure because they mature earlier, are shorter lived, and are faster growing. Both species have been overfished in many areas within their range and rebuilding depleted populations has taken years or stocks continue to be depressed (Jagielo et al. 1997; Adams et al. 1999; Parker et al. 2000). These issues underscore the need to develop robust assessment methods for these species.

The Chiswell Islands-Chiswell Ridge area has historically accounted for a large proportion of the recreational (Stock and Meyer 2005) and commercial¹ lingcod and demersal shelf rockfish (DSR) harvest in the Cook Inlet Management Area. High recreational lingcod harvest and lack of biological data prompted the Alaska Department of Fish and Game (ADF&G) Division of Sport Fish to conduct a jigging survey in 1998 of index population abundance (Bethe and Meyer 2002). Survey data provided valuable insights into the general distribution of lingcod along the Chiswell Ridge but because no similar surveys have been conducted since 1998, the status of the lingcod population remains unknown.

The density and distribution of benthic fishes are often strongly correlated with habitat type (Phillips 1959; Smith and Forester 1973; Jagielo 1988; O'Connell 1993). For structure-oriented species descriptions of the quantity and spatial distribution of available habitats are important for

¹ Statewide electronic fish ticket database [Internet]. 1985- . Juneau, AK: Alaska Department of Fish and Game, Division of Commercial Fisheries.

designing surveys, estimating population size, and scaling harvest guidelines based on available habitat. Combining biological data and fish density estimates with the areal extent of available habitat can be an efficient and cost-effective assessment method, and can increase the precision of biomass estimates by focusing sampling effort in a way that minimizes variance within the habitat.

With the knowledge that benthic habitat types can determine groundfish occurrence and distribution, an interest developed in mapping and classifying habitats over broad areas (Able et al. 1987; Yoklavich et al. 2000; Nasby-Lucas et al. 2002). Side-scan and multi-beam sonar have been used extensively to collect the data necessary to characterize mesoscale areas of the seabed. Habitat-based assessments take advantage of the affinity of fishes for particular habitat types by focusing sampling effort in preferred habitats. Habitat-specific density estimates can then be integrated with available habitat area delineated from high-resolution sonar to obtain abundance estimates. This assessment method has become common, especially along the Pacific west coast and in Alaska (O'Connell and Carlile 1993; Fox et al. 2000; Karpov et al. 2001; O'Connell et al. 2003; Yoklavich and O'Connell 2008). Both submersibles and remotely operated vehicles (ROV) have been used to assess rockfish and other groundfish species.

The ADF&G Central Region conducted an ROV pilot survey along Chiswell Ridge in 2004 to develop strip transect sampling methodology and to collect preliminary data on lingcod density and habitat use (Byerly 2005). Based on the results of that survey, an ROV habitat-based survey to assess lingcod abundance was conducted along the Chiswell Ridge in April 2005. Only rocky reef seafloor features were sampled and strip transect density estimates were multiplied by the available rocky habitat to obtain abundance estimates. Dissimilar resolution bathymetry data sets were available for delineating rocky reef features. This influenced both the survey design and postsurvey estimates. The northern half of the ridge had been previously mapped using multibeam sonar by the National Oceanic and Atmospheric Administration (NOAA). Accurate estimates of the areal extent of available rocky substrate were obtained from these data because of the high resolution of the 2 m gridded bathymetry. However, estimates of the extent of rocky substrate along the southern portion of the ridge were based on low-resolution single-beam and lead-line survey data (50 m gridded bathymetry). Due to the lower resolution of these data, it was probable that other rocky reefs either were undetected or the boundaries of identified reefs were not precisely defined. This area was mapped in 2006 using multi-beam and side-scan sonar to more precisely inventory and delineate available rocky reef features (Byerly et al. 2008). Although the 2005 ROV survey was designed and conducted using earlier habitat delineations based on the low resolution sonar data for the southern Chiswell Ridge, density and population estimates for this report were calculated using updated delineations based on the high resolution sonar data collected in 2006.

OBJECTIVES

The primary objective of this study was to estimate lingcod density and abundance along the Chiswell Ridge using an ROV and produce ancillary estimates of yelloweye rockfish *Sebastes ruberrimus* and quillback rockfish *S. maliger* density and abundance. Yelloweye and quillback rockfish are the most harvested DSR for both commercial and recreational fisheries in the area. A secondary objective was to survey a neighboring area to contrast density and variance estimates to Chiswell Ridge. The habitat-based approach required processing existing single-

beam and multi-beam bathymetry data (Byerly 2005, 2007) and was augmented through the collection of new side-scan and multi-beam sonar data (Byerly et al. 2008).

METHODS

SURVEY AREA

Chiswell Ridge is a prominent, relatively shallow seafloor feature in the northern Gulf of Alaska. It is surrounded to the north, east, and west by deep fjords and to the south by the deeper continental shelf (Figure 1). A 100 m contour generally defines the boundary of Chiswell Ridge (Figure 2). Lingcod are typically concentrated in depths less than 100 m. Lingcod in British Columbia are reported to be most common in the upper 50 fathoms (91 m; Hart 1973). A review of area Sport Fish harvest statistics indicated that the majority of the lingcod recreational catch occur in water shallower than 100 m (S. C. Meyer, Sport Fish Biologist, ADF&G, Homer; personal communication). Therefore, the Chiswell Ridge study area boundary was defined by those waters along the ridge within the 100 m contour. No assumptions were made for how DSR were distributed within the study area. Although density and abundance estimates are reported for DSR, their depth distribution may be skewed toward deeper depths than those sampled in this survey.

In addition to Chiswell Ridge, a section of Harris Bay (referred to as Granite I for this report) was surveyed to compare lingcod densities between the 2 areas (Figure 2). Harris Bay lies approximately 15 km west of Chiswell Ridge and is separated by Ailiak Passage at an average depth of 200 m. Granite Island is a prominent feature located in the eastern portion of Harris Bay. Relatively high lingcod densities were observed in the vicinity of Granite I during multiple scuba surveys for black rockfish *S. melanops* from 2001 to 2003. Much of this area had been mapped by NOAA using multi-beam sonar and seafloor features appeared different than those along Chiswell Ridge. These factors combined make this a desirable area to compare lingcod density and variance estimates.

HABITAT DELINEATION AND SURVEY DESIGN

Lingcod abundance and distribution are often correlated with habitat type, with fish occurring most often in rocky substrates (Phillips 1959; Smith and Forester 1973; Jagielo 1988; O'Connell 1993; Byerly 2005). Although lingcod may prefer rocky habitats, they do occur over soft substrates (Jagielo et al. 2003). Anecdotal reports from commercial gillnet and groundfish pot fisheries indicate catches of lingcod occur outside of rocky substrates. Additionally, lingcod trawl fisheries along the Pacific west coast harvest lingcod in habitats that are probably not from higher-relief rocky reef substrates. Nonetheless, only rocky substrates were sampled during this survey with the objective of obtaining higher precision abundance estimates and accepting the bias of not sampling all available habitats. Therefore, the estimates produced here are considered conservative.

In order to delineate rocky substrates, it was necessary to process and analyze many bathymetric data sets. This was done as part of a larger ADF&G Central Region seafloor mapping project. Bathymetry from NOAA hydrographic surveys was the major data source used in this effort. The NOAA Coast Survey has been using multi-beam sonar for charting Alaska waters since 1998. The resolution of these data varies depending on depth, ranging from 2 m horizontal resolution for 100 m of depth to 5 m horizontal resolution for 300 m of depth. In contrast, data collected earlier than 1998 using single-beam sonar or lead-line typically have horizontal resolution

varying from 25 m to 500 m depending on when the data were collected, depth, or other factors, such as obtaining higher resolution data for shallow-water hazards. The northern portion of the Chiswell Ridge was mapped by NOAA using multi-beam sonar in 2000 and 2001, but older single-beam and lead-line data collected between 1928 and 1930 were the most recent data available for the southern portion.

Both the multi-beam and single-beam/lead-line data were processed into raster data sets using ESRI Spatial Analyst². The multi-beam data were gridded at 2 m and the single-beam/lead-line data were gridded at 50 m. An inverse distance weighted interpolation method was used to assign depth values to raster cells between data points to retain evidence of rugosity in the benthic terrain. Hillshades of the raster grids were made to enhance the rugose features. The meso-scale rocky features appeared as rugose outcrops or pinnacles and are referred to as rocky reefs throughout this report. Additionally, steep rugose shorelines were identified as probable rocky features. The rugose features were delineated by manually digitizing polygons in ArcGIS. The resulting digitized rocky reef polygons were then compared to available bottom sample data to confirm the existence of hard bottom types.

There were large differences in the precision of rocky reef delineations between the high- and low-resolution data sets (Figure 3). This prompted us to map the southern half of the Chiswell Ridge study area using a combination of side-scan and multi-beam sonar in 2006 (Byerly et al. 2008). This mapping effort provided much higher resolution data with which to delineate rocky reefs and confirmed the lack of rocky reefs outside of the original delineations (Figure 3). The mapping survey occurred after the 2005 ROV survey, which was conducted using rocky reef delineations based on the low-resolution data. The ROV abundance estimates reported here use the new delineations.

Results from the 1998 ADF&G Division of Sport Fish jig survey indicated lingcod catch per unit effort (CPUE) were higher in the southern Chiswell Ridge (Bethe and Meyer 2002). Lingcod encounter rate showed a similar pattern during the 2004 ROV pilot survey (Byerly 2005). Because there were probably differences in lingcod density between the northern and southern portions of the study area, and there were dissimilar data sources for defining rocky substrates, the study area was stratified into the Chiswell North and Chiswell South strata by the boundary, defining the southern edge of the NOAA multi-beam coverage.

A separate stratum was made for the steep-sided rocky substrates along the shoreline within the Chiswell North stratum. This was done because of the steep nature of the seafloor, which made it difficult to precisely digitize polygons around the rocky features. Additionally, it was anticipated that a different ROV deployment method would be needed to maintain a safe working distance between the shoreline and the vessel. The final Chiswell Ridge study area was composed of 3 strata (Chiswell North rocky reef, Chiswell North shoreline, and Chiswell South rocky reef) all within the 100 m contour (Figure 4). The Granite I survey area included the area seaward of Granite I to approximately 5 km east of Granite Cape, all within the 100 m contour.

ROV transect locations for the Chiswell Ridge was selected using stratified random sampling. Granite I locations were selected using simple random sampling. Random sampling points within the rocky reef polygons were chosen using PopTools 3.24 in ArcGIS ArcView 9.1. Because the ROV camera is tilted downward and produces an oblique view of the substrate, it is

² Product names used in this report are included for scientific completeness but do not constitute a product endorsement.

advantageous to pilot the ROV upslope to keep more of the substrate within view. This maximizes the video quality, insures the highest likelihood of detection by enabling interstitial spaces in the substrate to be viewed, and improves the accuracy of transect width measurements. To select upslope transects, a random direction between 0° and 359° was selected for each point. In ArcView, a 0.5 km line oriented in the random direction was laid on and slid over the point until an upslope transect was achieved. If no upslope transects terminated near the top of the rocky structure. If the deep end of the line extended outside of the rocky reef polygon, the entire transect was run and the data outside of the polygon was excluded later from the estimate. Transects within the Granite I rocky reef polygons were selected using the same methods. Due to the arbitrary boundary at Granite I, only density estimates are reported.

Granite I and Chiswell North shoreline transects were selected by summing the cumulative length of shoreline as measured in ArcGIS, and randomly selecting points along this distance. Half-kilometer transects were oriented perpendicular to the shoreline and terminated at mean lower low water. Once all planned transect lines were made, they were exported from ArcGIS and imported into the data acquisition software for survey preparation.

FIELD DATA COLLECTION

A Deep Ocean Engineering Phantom HD 2+2 ROV was used for this survey and deployed from the ADF&G R/V *Pandalus* (Figure 5). Additional components were added to increase the functionality of the ROV base system (Appendix A1). The ROV was positioned using an ultrashort baseline (USBL) tracking system, vessel DGPS, vessel heading sensor, and vessel pitch and roll sensor. Hypack Survey software was used for navigating transects and data acquisition (Figure 6). Real-time data acquired included Coordinated Universal Time (UTC), ROV *xy* position calculated in Hypack using the positioning sensors, ROV heading and depth from onboard sensors, and a continuous video record from a forward-looking camera recorded on a mini-DV DVR. UTC was also recorded on a video onscreen display from a time code generator and on the audio channel of tapes, allowing video data to be associated with ROV positions. To measure the size of objects and estimate the width of the transect line, 2 parallel scaling lasers were mounted 10 cm apart and above the video camera housing.

The ROV was deployed using a 200 lb clump weight for rocky reef transects following Amend et al. (2001) and without the clump weight for shoreline transects (Figure 7). Transects were always run up-current and up-slope. Upon arriving at a transect location the vessel captain assessed the drift and if it was favorable for the randomly selected direction the planned line was run. If the current was unfavorable the next random direction was assessed and so forth until a favorable direction was found. In practice, usually the first random direction was chosen. For the rocky reef transects, the ROV was allowed to run out 50 m before the umbilical was clipped into the clump weight line. A trawl float with 2.5 kg of flotation was secured at 25 m to keep the free portion of the umbilical off the bottom. The ROV descended to the bottom, down-current of the planned transect starting point, and was piloted up to the starting point of the transect. The ROV was flown approximately 1 m off the bottom at a target speed of 0.5 knots. A networked computer in the vessel's wheelhouse allowed the captain to maintain a distance of no more than 40 m to the side or behind the ROV thus keeping it in front and away from the clump weight. Shoreline transects were run in a similar manner except a clump weight was not used and instead

the umbilical handler fed and retrieved the umbilical as needed to minimize the amount of free umbilical between the ROV and vessel. All transects were run during daylight hours.

VIDEO REVIEW

A Horita Time Code Wedge was used to capture the time from the video tapes while logging observations during the video review process. All observations were later related to the ROV tracking data in a Microsoft Access database for georeferencing. Video transects were reviewed a minimum of 4 times for 1) video quality evaluation, 2) habitat classification, 3) fish enumeration, and 4) transect width measurements. A subset of transects were reviewed by 2 different viewers to assess between-viewer variability.

Video transect data were first evaluated for image quality based on visibility, erratic vehicle movement, and image loss due to high-relief substrate. Only those video segments that were classified as *Good* by the primary video quality grouping were included in any analysis (Table 1).

Multiple considerations helped determine the most appropriate seafloor classification scheme: 1) comparisons needed to be made with similar research studies along the Pacific west coast and the Gulf of Alaska, 2) factors measured needed to be biologically relevant for determining lingcod and DSR occurrence, distribution, and density, 3) because many other groundfish species would be enumerated, factors measured needed to be biologically relevant to other commercially and recreationally important species, and 4) at least some of the variables considered needed to be measured in a manner that enabled them to be scaled up to remotely sensed data – in particular, multi-beam bathymetry. The classification scheme utilized work from Stein et al. (1992) Yoklavich et al. (2000), and Karpov et al. (2001; Appendix A2). Seafloor features were classified by marking the time at the beginning and end of continuous video segments, along which the feature of interest remained constant for at least 10 sec (Hixon et al. 1991; Stein et al. 1992). Classifications were made for primary and secondary substrate type, vertical relief, crevice size, and crevice density. Primary substrate was defined as the substrate type constituting >50% of the viewing area and the secondary substrate type was defined as the next most dominant substrate type that covered between 20% and 50% of the viewing area (Stein et al. 1992).

Fish observations were recorded as point data. Fish were identified to species or recorded to the lowest possible taxa or convenient grouping (Appendix A3). Although all fish were enumerated, only the species of interest are reported here. Juvenile and adult yelloweye rockfish were enumerated separately. Juveniles were identified according to Love et al. (2002). Fish behavior was categorized at initial sighting to gauge fish response within the detection range of the camera. Response categories followed Adams et al. (1995), including 1) strongly attracted – rapidly moving into the frame; 2) weakly attracted – slowly moving into the frame; 3) no response – no movement; 4) weakly avoided – slowly moving out of frame; and 5) strongly avoided – rapidly moving out of frame. All fish that were strongly attracted to (category 1) or strongly avoided (category 5) the ROV were omitted from the analysis.

Laser separation distance was measured off the video monitor using electronic calipers at 30 sec intervals during the transect width review. If the laser points were not detected at an interval or were at an oblique angle to the substrate, the next closest available laser separation measurement was taken. Once in the database, laser separation measurements were used to calculate transect width (m) as specified below.

DATA PROCESSING AND ANALYTICAL METHODS

To estimate fish density, the area swept by the video camera must be accurately measured. Transect width was estimated using the Canadian perspective grid method (Wakefield and Genin 1987) and transect length measured from the USBL tracking data. The Canadian Perspective Grid method uses horizontal and vertical distances measured by a combination of camera tilt angle; parallel laser point measurements; camera viewing angle in water; and optical specifications of the camera to compute the focal distance and width of the video image, surface area of the seafloor in the image, and height of the camera above the bottom. An inwater calibration exercise was conducted to calculate the necessary parameter estimates (Davis and Tusting 1991). The camera was tilted 24° below the horizon and was assumed to be constant. Transect width was estimated at the 80% height of the video monitor (Fox et al. 2000). Detectability and positive species identification are much lower in the upper 20% of the viewing area because in that portion of the oblique view, fish and other objects are farthest from the camera. Fish observed in the upper 20% of the viewing area were not enumerated unless they did not move and came into view at the 80% mark as the ROV progressed.

ROV tracking data were filtered, interpolated, and smoothed before inclusion into a database. Tracking data were first filtered for outliers using a Hypack single-beam editor. One-second positions were created to relate ROV tracking data to all of the video observation. The USBL tracking system on average records a position every 2 to 3 sec, whereas the video data transcribed during the review process can occur at any second. To relate each video observation with an ROV position, it was necessary to interpolate the ROV tracking data. This was done using linear interpolation on the time and xyz positions in R statistical software package (ver. 2.11.1). Following interpolation, the data were smoothed using the R smooth.spline function (Hastie and Tibshirani 1990). The interpolated smoothed tracking data and video observations were imported into a Microsoft Access database and related by transect identification and time.

ET GeoWizards was used to create and segment transect polylines, and linear referencing in ArcGIS was used to help with calculating transect area and line lengths. ROV *xy* point data were first converted to polyline features. Any transect segments that fell outside of the rocky reef polygons were split at the polygon boundary and eliminated. Calibrated routes were made from the remaining lines. Video observation data were then used to create route events. The route data type accommodates the representation of multiple layers of attributes along a single line feature through the use of dynamic segmentation.

Route events were made for all *Good* video segments and then for each position where transect width measurements were taken so that distance between measurement locations could be calculated (Figure 8). These distances were then exported to the database where the final transect area swept was estimated by calculating the trapezoidal area for each transect width segment using the estimated width from adjacent segments and the distance between them. These were then summed to obtain the transect area sampled. The total available rocky reef area was simply the sum of all the digitized polygons for each stratum.

For Chiswell Ridge, there are 3 strata in the study area; density D and abundance τ were then estimated as:

$$D = \frac{\sum_{x=1}^{3} (D_x A_x)}{\sum_{x=1}^{3} A_x},$$
(1)

$$\tau = \sum_{x=1}^{3} \tau_x \,, \tag{2}$$

where:

$$D_{x} = \frac{\sum_{i=1}^{k} c_{i}}{\sum_{i=1}^{k} a_{i}},$$
(3)

$$\tau_x = D_x A_x. \tag{4}$$

For each stratum *x*:

 $A_x =$ the area (m²),

 τ_x = the number of fish counted for the stratum,

 c_i = the number of fish counted for transect *i*,

 a_i = the area (m²) sampled for transect *i*, and

k = the number of transects.

For the Granite I study area, without stratification density D and abundance τ were estimated as:

$$D = \frac{\sum_{i=1}^{k} c_i}{\sum_{i=1}^{k} a_i},$$

$$\tau = D A .$$
(5)

A non-parametric bootstrap was used to estimate variance by re-sampling the transects 1,000 times (Efron 1982). Upper and lower 95% confidence intervals were calculated using the percentile method (Efron 1987).

RESULTS

The ROV transect survey was conducted between April 2 to April 7 and April 26 to April 29, 2005. There were 42 transects successfully completed at Chiswell Ridge and 14 completed in the Granite Island study area. Of the 6 planned shoreline transects, 3 were completed. Shoreline transects that were run without the use of a clump weight proved to be difficult due to the

influence of drag on the unsecured umbilical. This resulted in either incomplete transects or a high percentage of unusable video due to difficulties piloting the ROV. Because of this, the 3 completed shoreline transects were not included in the analysis and the shoreline stratum was not included in the population estimates.

There were 26,603 m of transect run for both survey areas combined (Table 2). Of this, 8.5% fell outside of the rocky reef polygons and were excluded from the analysis. Of the remaining, 9.2% had bad video quality and were also excluded from the analysis. The final cumulative lengths of transect included were 15,020 m for the Chiswell Ridge study area and 6,036 m for the Granite Island study area. The total area swept for Chiswell Ridge was 23,577 m² and 9,641 m² for Harris Bay. The number of fish excluded from the analysis based on quick reactions either toward or away from the ROV varied by species (Table 3). The largest percentage excluded was lingcod (13%), followed by 5% of adult yelloweye rockfish, no juvenile yelloweye, and 4% of quillback rockfish.

Lingcod and yelloweye rockfish were patchily distributed among transects with a high frequency of zero counts (Figure 9). Quillback rockfish counts were more evenly distributed, although a high proportion of zero counts still occurred. The spatial distribution of fish within the study areas varied by species (Figures 10 and 11). Lingcod densities were generally higher in the south than the north but were patchily distributed among transects within both strata. All the Granite I transects had relatively low lingcod densities. Adult yelloweye rockfish occurred frequently at transects in the Chiswell Ridge south stratum but occurred both in lower densities and less frequently among transects in Chiswell North or Granite Island. Quillback rockfish were more widely distributed than other species. Their spatial distribution was similar between Granite I and Chiswell North.

The frequency and range of depths sampled appeared to be adequate for yelloweye and quillback rockfish, but under-sampling of shallow depth zones may have occurred for lingcod (Figure 12). Lingcod were observed from 10 m to 100 m with 26% occurring in depths less than 40 m, but sampling effort was skewed toward deeper depths and was relatively low at depths less than 40 m. The distribution of adult yelloweye and quillback rockfish observations were well within the depths sampled and no depth zones appeared to be under-sampled. Although juvenile yelloweye rockfish tended to occur deeper than others, median depth distribution was similar to the median depth sampled. Some sampling occurred outside of the 100 m survey boundary. These portions of the data were removed prior to estimation of population statistics.

Lingcod density and abundance was highest for the Chiswell south strata (Table 4). Density was significantly lower at Granite I (1,037 fish/km²) than at Chiswell Ridge (3,360 fish/km²). Lingcod population estimates were relatively precise with the coefficient of variation (CV) 0.20 at Chiswell Ridge and 0.22 at Granite I, and both areas had low estimated bias. Adult yelloweye rockfish density and abundance were similar for both Chiswell strata and were significantly lower at Granite I. Density of juvenile yelloweye rockfish was significantly higher in Chiswell South (1,802 fish/km²) compared to that of the North (878 fish/km²) but was similar between Chiswell North and Granite I. Quillback rockfish density and abundance trends were quite different than lingcod or yelloweye rockfish, being lowest in Chiswell South and having nearly identical density estimates between Chiswell North and Granite I strata. Precision was relatively high for Chiswell Ridge yelloweye rockfish (CV = 0.15) and quillback rockfish (CV = 0.18) estimates.

DISCUSSION

This survey produced the first lingcod and DSR population estimates for ADF&G Central Region. These estimates are probably of sufficient precision to reliably monitor local abundance through time. Yelloweye rockfish were estimated with similar precision to line transect submersible survey estimates in the ADF&G Southeast Region, which are used for stock assessment and management. Over the history of that assessment program, coefficient of variations ranged from 11% to 31%.

We designed the survey to estimate the population abundance of lingcod within a shallow bank defining Chiswell Ridge. We assumed minimal emigration and immigration in the survey area. Additional assumptions should be considered when interpreting the results. These can be classified into 2 areas: those associated with transect sampling methodology and those associated with sampling design. Strip transect sampling assumes that 100% of the organisms of interest are observed within the strip width. As with distance sampling, it is also assumed that organisms do not move in response to the presence of the observer prior to detection (the ROV in this case). For strip transect sampling, this refers to fish moving into or out of the transect, not within it. Specific protocols were used to maximize the number of detections during this survey, including transiting up-slope to keep more of the substrate within view and closer to the camera lens, transiting at a slow steady speed, and truncating the vertical field of view to exclude observations that were far away and in the dimly lit upper corners of the video monitor. Detection probably varies with substrate complexity, and because higher densities of both DSR and lingcod are often found in more complex habitats, it is possible that detections were lower in the more complex boulder and basement habitats. Though it is impossible to know what percentage of fish went undetected, our protocols should have minimized the possibility. To address possible responsive movement, fish were categorized by swimming speed and direction of movement. While this classification attempted to separate natural fish movement from responsive movement, it was purely qualitative. However, the nature of the classification scheme made it easy for observers to reasonably differentiate between natural and responsive movement.

Another source of error associated with the sampling methodology was transect width estimation. Laser separation distance was used to estimate transect width. This method works well on flat substrate; however, most of the substrate in this survey was rocky and complex. Video review protocols were established for selecting clear perpendicular laser fixes at defined intervals. Further, transect segments where the substrate disappeared on one side or the other (e.g., traversing a rock wall) were measured and eliminated to avoid overestimation of the viewable transect width. Although these protocols should have increased the accuracy of transect width estimates, there is a measurement error component that remains unquantified.

A strict stratified random sampling design was followed that should have provided unbiased results. Ideally, the direction chosen for running transects would be random, but to balance the logistical needs of piloting the ROV up-current and attempting to obtain the highest quality video and detection rate by piloting up-slope, alternate random directions were chosen in the field to meet these logistical needs. The bias introduced here was probably very small, although it is difficult to evaluate.

Other assumptions associated with the sampling design could potentially have had the most influence on the results. We assumed that (a) all rocky habitats were mapped, (b) fish occurred predominantly in rocky reef habitat, and (c) it was a closed population. The rocky shoreline

habitat was difficult to delineate and sample. For this area, we used a different deployment method to maintain a safe working distance off the beach. In practice, operating with the clump weight would probably be more effective for sampling shoreline habitats. This approach will be used in future surveys. Due to sampling difficulties in the field, the shoreline stratum was excluded from the population estimates, resulting in an underestimate of total abundance. During a lingcod jig survey in the same area, CPUE was approximately 2 times greater offshore than along shore (Bethe and Meyer 2002). Although lingcod clearly occur along shoreline habitats, densities were probably lower than rocky reef areas surveyed by the ROV.

The greatest uncertainty regarding survey estimates relates to the closed population assumption. Lingcod have generally been described as sedimentary, ambush, or sit-and-wait predators (Miller and Geibel 1973; Cass et al. 1990; Smith et al. 1990), although anecdotally they may occasionally be active feeders (Star et al. 2004). Lingcod have small home ranges and show strong site fidelity to rocky reefs (Smith et al. 1990; Matthews 1992; Starr et al. 2004; Anthony 2009; Greenley 2009; Tolimieri et al. 2009). Lingcod migrations and movements do occur; however, migrations are generally driven by ontogenetic shifts from juvenile to adult habitats (Forrester 1973; Miller and Geibel 1973; Cass et al. 1990) and seasonal bathymetric shifts associated with shallow-water spawning activities and nest guarding by males (Low and Beamish 1978; Cass et al. 1990). Even as adults, larger lingcod tend to occur in deeper waters, suggesting a further bathymetric shift with ontogeny (Smith et al 1990; Gordon 1994). Conventional tagging studies have shown that most lingcod movement is restricted to small distances (81% to 95% moving < 8.1 km to 10 km), with a small percentage moving moderate distances of up to 50 km and a few to great distances up to hundreds of km (Hart 1943; Chatwin 1958; Cass et al. 1986; Davis 1986; Barss and Demory 1989; Cass et al. 1990; Smith et al. 1990). However, Mathews and LaRiviere (1987) found approximately 50% of 1,692 tagged fish moved > 8.1 km. A common finding in most tagging studies has been that no net movement occurred, although Jagielo (1999) estimated a net offshore movement of lingcod off the Washington coast.

Although many tagging studies report similar movement patterns for lingcod, there appears to be some level of variability, which may be related to the size of fish tagged. Greater movement may occur with larger animals and may be related to sex (Chatwin 1956; Miller and Geibel 1973; Cass et al. 1984) or sexual maturity. Although females tend to disperse into deeper waters following spawning, they may remain in relatively shallow waters throughout the spring and summer and then transition into deeper habitats (Cass et al. 1990).

There have been mixed results for studies addressing off-reef movements. Off-reef forays by lingcod, presumably associated with foraging, have been documented in Southeast Alaska (Starr et al. 2004). In those studies, 10% of acoustically tagged lingcod spent more than 2 weeks outside an acoustic array that encircled 2 rocky pinnacles. Off-reef forays from other acoustic tagging studies have been much shorter in duration (< 1 day) (Bishop et al. 2010; Lee et al. 2011), and others have observed no off-reef movement (Matthews 1992; Yamanaka and Richards 1993). Lingcod also have the ability to home back to rocky habitats even when crossing unsheltered areas to do so. When translocated from rocky reefs, they have homed back distances of 1 to 2.8 km in 33 hours to 60 hours, mostly moving at night (Matthews 1992). The choice of only sampling within the rocky habitats for this survey was done to increase the efficiency of the Chiswell Ridge survey, both in terms of sampling efficiency and increasing precision. Although lingcod prefer rocky habitats, the proportion of the population either residing outside of the Chiswell Ridge rocky reefs or making off-reef forays is unknown. This makes the population

estimate conservative for the entire Chiswell Ridge area because density estimates were only scaled up to the available rocky substrates.

Sampling timing may be important when considering lingcod movements. Lingcod may have foraging times that are related to diurnal or tidal cycles (Tolimieri et al. 2009; Beaudreau and Essington 2011) or forage availability (Beaudreau and Essington 2007). These movements may involve off-reefs forays or they may occur within rocky reef structure (Beaudreau and Essington 2011). For studies that have assessed diurnal movement, rates have been higher at night (Mathews 1992; Tolimieri et al. 2009). Because all sampling in this study occurred during daylight and outside of crepuscular hours, any movement due to diurnal effects should have been minimized.

When considering how fish migrations or movements may have influenced the results of this survey, it is important to consider scale, both temporally and spatially. Although lingcod occur at depths > 300 m, they are typically found between 10 m and 100 m (Cass et al. 1990). The Chiswell Ridge study area is surrounded on 3 sides (west, north, and east) by deep fjords with depths ranging from 150 m to 300 m, averaging approximately 220 m. These basins are predominately filled with soft substrate material. To the south, outside the 100 m study area boundary, there is a low slope extending to Amatouli Trough at approximately 240 m. This area appears to have little rocky structure based on the best available single-beam bathymetry. These deeper depths, which are outside of the typical lingcod depth distribution, and the apparent lack of rocky features surrounding the study area probably help to restrict the movement of lingcod and DSR to the Chiswell Ridge. Because lingcod do occur deeper than 100 m and occur outside of rocky substrates, they are fully capable of moving into and out of the Chiswell Ridge study area. The pertinent questions, however, are how much movement could occur, whether there could be net movement into and out of the study area, and the temporal pattern of movement. Understanding these aspects of migration and movement would assist in understanding how well the closed population assumption was satisfied. This in turn would assist in gauging how movement may influence interannual abundance estimates and the ability to detect changes in lingcod abundance along the Chiswell Ridge. Even with the patchy distribution of lingcod, the error for the Chiswell Ridge population estimate was relatively low. Additionally, significant differences in lingcod density were detected in the nearby Granite I study area. This bodes well for being able to detect larger spatial and temporal changes in abundance using this survey methodology. Without empirical data on lingcod movement, it is important to define survey areas in a manner which, with an understanding of lingcod biology, will minimize the influence of fish movement on monitoring population abundance.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. William Bechtol for initiating the ROV program for Central Region research. We wish to thank Sid Wolford, Josh Mumm, Ted Otis, Dave Carlile, and Lee Hulbert for fieldwork assistance. Lastly, we thank Mark Hottman, vessel captain of the R/V *Pandalus*, for his skill in field operations and assistance and advice in every aspect of this project.

REFERENCES CITED

- Able, K. W., D. C. Twitchell, C. G. Grimes, and R. S. Jones. 1987. Side scan sonar as a tool for detecting demersal fish habitats. Fishery Bulletin 85(4):725–744.
- Adams, P. B. 1980. Life history patterns in marine fishes and their consequences for fisheries management. Fishery Bulletin 78:1–12.
- Adams, P. B., J. L. Butler, C. H. Baxter, T. E. Laidig, K. A. Dahlin, and W. W. Wakefield. 1995. Population estimates of Pacific coast groundfish from video transects and swept-area trawls. Fishery Bulletin 93:446–455.
- Adams, P. B., E. H. Williams, K. R. Silberberg, and T. E. Laidig. 1999. Southern lingcod stock assessment in 1999: Appendix status of the Pacific Coast groundfish fishery through 1999 and recommended acceptable biological catches for 2000 (SAFE Report). Pacific Fishery Management Council, Portland.
- Anthony, K. M. 2009. Translocation, homing behavior and habitat utilization of oil platform-associated groundfishes in the East Santa Barbara Channel, California. Master Thesis, California State University Long Beach, CA.
- Amend, M., D. Fox, and C. Romsos. 2001. 2001 Nearshore rocky reef assessment ROV survey. Oregon Department of Fish and Wildlife, Newport, OR.
- Barss, W. H., and R. L. Demory. 1989. Movement of lingcod tagged off the central Oregon coast. Oregon Department of Fish and Wildlife, Information Report No. 89-8, Oregon.
- Beaudreau, A. H., and T. E. Essington. 2007. Spatial, temporal, and ontogenetic patterns of predation on rockfishes by lingcod. Transactions of the American Fisheries Society 136(5)1438–1452.
- Beaudreau, A. H., and T. E. Essington. 2011. Use of pelagic prey subsidies by demersal predators in rocky reefs: Insight from movement patterns of lingcod. Marine Biology 158(2):471–483.
- Bethe, M. L., and S. C. Meyer. 2002. A survey of lingcod in Resurrection Bay and the Chiswell Islands, Gulf of Alaska, 1998. Alaska Department of Fish and Game, Fishery Data Series No. 02-08, Anchorage.
- Bishop, M. A., B. F. Reynolds, and S. P. Powers. 2010. An *In Situ*, individual-based approach to quantify connectivity of marine fish: ontogenetic movements and residency of lingcod. PLOS one 5(12):e14267.doi:10.1371/journal.pone.0014267.
- Byerly, M. 2005. North Gulf lingcod distribution and recruitment. [*In*]: Nearshore marine research in Alaska (IV): Final comprehensive progress report. NOAA Cooperative Agreement NA16FN2808. Alaska Department of Fish and Game, Division of Commercial Fisheries, 67–94, Juneau.
- Byerly, M. 2007. Lingcod population parameters in the Northern Gulf of Alaska. [*In*] Nearshore marine research in Alaska (V): Final comprehensive progress report. NOAA Cooperative Agreement NA03NMF4370202. Alaska Department of Fish and Game, Division of Commercial Fisheries, 42–76, Juneau.
- Byerly, M., R. E. Sylwester, D. Aldrich, and M. Spahn. 2008. Chiswell Ridge habitat mapping and groundfish assessment: Final report. North Pacific Research Board Project No. 616:20.
- Cass, A. J., R. J., Beamish, and M. S., Smith. 1984. Study of the biology of lingcod off the west coast of Vancouver Island, M/V Arctic Harvester, November 22–December 2, 1977. Department of Fisheries and Oceans, Fisheries Research Branch, Pacific Biological Station.
- Cass, A. J., J. R., Selsby, and L. J. Richards. 1986. Lingcod maturity cruise off southwest Vancouver Island and in Queen Charlotte Sound, R/V G. B. Reed, August 20–September 5, 1985. Department of Fisheries and Oceans, Fisheries Research Branch, Pacific Biological Station.
- Cass, A. J., R. J. Beamish, and G. A. McFarlane. 1990. Lingcod (*Ophiodon elongatus*). Vol. 109 Department of Fisheries and Oceans, Canada.
- Chatwin, B. M. 1956. Further results from tagging experiments on lingcod. Fisheries Research Board of Canada, Pacific Progress Report 107:19–21.

REFERENCES CITED (Continued)

- Chatwin, B. M. 1958. Mortality rates and estimates of theoretical yield in relation to minimum commercial size of lingcod (*Ophidon elongates*) from the Strait of Georgia, British Columbia. Journal of the Fisheries Board of Canada 15(5)831–849.
- Davis, G. S. 1986. Results of lingcod tagging in the Gulf of Georgia, 1982–83. State of Washington, Department of Fisheries, Olympia.
- Davis, D. L., and R. F. Tusting. 1991. Quantitative benthic photography using laser calibrations. Monterey Bay Aquarium Research Institute contribution #DD91-26, Pacific Grove.
- Efron, B. 1982. The jackknife, the bootstrap and other resampling plans. Society for Industrial and Applied Mathematics, Vol. 38, Philadelphia.
- Efron, B. 1987. Better bootstrap confidence intervals. Journal of the American Statistical Association 82(397):171–200.
- Forrester, C. R. 1973. The lingcod (*Ophidon elongates*) in waters off western Canada. Fisheries Research Board of Canada, Pacific Biological Station.
- Fox, D., M. Amend, A. Merems, and M. Appy. 2000. 2000 Nearshore rocky reef assessment. Oregon Department of Fish and Wildlife, Marine Program.
- Gordon, D. A. 1994. Lingcod fishery and fishery monitoring in Southeast, Alaska. Alaska Fishery Research Bulletin 1(2)140–152.
- Greenley, A. P. 2009. Movements of lingcod (*Ophidon elongates*) tagged in Carmel Bay, CA. Doctoral dissertation. Moss Landing Marine Laboratories, San Jose State University, San Jose, CA.
- Hart, J. L. 1943. Migration of lingcod. Fisheries Research Board of Canada, Pacific Coast Progress Report 57:3-7.
- Hart, J. L. 1973. Pacific fishes of Canada. Fisheries Research Board of Canada, Bulletin 180. Ottawa.
- Hastie, T. J., and R. J. Tibshirani. 1990. Generalized additive models. Chapman and Hall, New York, NY.
- Hixon, M. A., B. N. Tissot, and W. G. Pearcy. 1991. Fish assemblages of rocky banks of the Pacific Northwest. A final report by the Department of Zoology and College of Oceanography for the U.S. Department of the Interior, Minerals Management Service Pacific OCS office, Camarillo, CA.
- Jagielo, T. H. 1988. The spatial, temporal, and bathymetric distribution of coastal lingcod trawl landings and effort in 1986. State of Washington, Department of Fisheries, Marine Fish Program.
- Jagielo, T. H. 1999. Movement, mortality, and size selectivity of sport- and trawl-caught lingcod off Washington. Transactions of the American Fisheries Society 128(1):31–48.
- Jagielo, T., P. Adams, M. Peoples, S. Rosenfield, K. R. Silberberg, and T. E. Laidig. 1997. Assessment of lingcod in 1997. Pacific Fishery Management Council, Portland, OR.
- Jagielo, T., A. Hoffmann, J. Tagart, and M. Zimmermann. 2003. Demersal groundfish densities in trawlable and untrawlable habitats off Washington: implications for the estimation of habitat bias in trawl surveys. Fishery Bulletin 101(3):545–565.
- Karpov, K., D. Sweetnam, M. Prall, V. Kirby, A. Lauermann, J. DeMartini, P. Lampietro, R. Villa, D. A. Powers, D Albin, M. Patyten, R. Kvitek, C. K. Bretz, F. Shaughnessy, P. Viensze, J. Geibel, P. Buttolph, and C. Malzon. 2001. Project Number PG-1: Quantitative inventory of habitat and species of management concern at Punta Gorda Ecological Reserve. Marine Reserves Research Program Research Results, 1996–2001. CD-ROM. California Sea Grant College Program, La Jolla, California. 182 p.
- Lee, J. S. F, B. A. Berejikian, M. B. Rust, K. Massee, T. Wright, K. Brakensiek, S. Steltzner, and H. L. Blankenship. 2011. Movements of hatchery-reared lingcod released on rocky reefs in Puget Sound. Environmental Biology of Fishes 92(4)437–445.
- Love, M. S., M. Yoklavich, and L. Thorsteinson. 2002. The rockfishes of the Northeast Pacific. University of California Press, Berkeley.

REFERENCES CITED (Continued)

- Low, C. J., and R. J. Beamish. 1978. A study of the nesting behavior of lingcod (*Ophiodon elongates*) in the Strait of Georgia British Columbia. Fisheries and Marine Service Technical Report 843, Nanaimo.
- Matthews, K. R. 1992. A telemetric study of the home ranges and homing routes of lingcod *Ophiodon elongates* on shallow rocky reefs off Vancouver Island, British Columbia. Fisheries Bulletin 90(4):784–790.
- Matthews, S. B., and M. LaRiviere. 1987. Movement of tagged lingcod, *Ophiodon elongates* in the Pacific northwest. Fisheries Bulletin 85(1):153–159.
- Miller, D. J, and J. J. Geibel. 1973. Summary of blue rockfish and lingcod life histories: a reef ecology study; and giant kelp, *Macrocystis pyrifera*, experiments in Monterey Bay, California. State of California, Resources Agency, Department of Fish and Game 158:1–137.
- Nasby-Lucas, N. M., B. W. Embley, M. A. Hixon, S. G. Merle, B. N. Tissot, and D. J. Wright. 2002. Integration of submersible transect data and high-resolution multi beam sonar imagery for a habitat-based groundfish assessment of Heceta Bank, Oregon. Fisheries Bulletin 100(4):739–751.
- O'Connell, V. M. 1993. Submersible observations on lingcod, *Ophiodon elongates*, nesting below 30 m off Sitka, Alaska. Marine Fisheries Review 55(1):19–24.
- O'Connell, V. M., C. Brylinsky, D. Carlile. 2003. Demersal shelf rockfish stock assessment and fishery evaluation report for 2004. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J03-39, Juneau.
- O'Connell, V. M., and D. W. Carlile. 1993. Habitat specific density of adult yelloweye rockfish *Sebastes ruberrimus* in the eastern Gulf of Alaska. Fishery Bulletin 91(2):304–309.
- Parker, S. J., S. A. Berkeley, J. T. Golden, D. R. Gunderson, J. Heifetz, M. A. Hixon, R. Larson, B. M. Leaman, M. S. Love, J. A. Musick, V. M. O'Connell, S. Ralston, H. J. Weeks, and M. M. Yoklavich. 2000. Management of Pacific rockfish. Fisheries 25(3):22–30.
- Phillips, J. B. 1959. A review of the lingcod, *Ophiodon elongates*. California Department of Fish and Game 45:19–28.
- Smith, P. J., and C. R. Forrester. 1973. Depth distribution of catch by Canadian otter trawlers. Fisheries Research Board of Canada.
- Smith, B. D., G. A. McFarlane, and A. J. Cass. 1990. Movements and mortality of tagged male and female lingcod in the Strait of Georgia, British Columbia. Transactions of the American Fisheries Society 119(5):813–824.
- Star, R. M., V. O'Connell, and S. Ralston. 2004. Movement of lingcod (*Ophiodon elongates*) in southeast Alaska: potential for increased conservation and yield from marine reserves. Canadian Journal of Fisheries and Aquatic Sciences 61(7):1083–1094.
- Stein, D. L., B. N. Tissot, M. A. Hixon, and W. Barss. 1992. Fish-habitat associations on a deep reef at the edge of the Oregon continental shelf. Fisheries Bulletin 90(3):540–551.
- Stock, C. E., and S. C. Meyer. 2005. Composition of the recreational lingcod harvest in southcentral Alaska, 1993– 2002. Alaska Department of Fish and Game, Fishery Data Series No. 05-35, Anchorage.
- Tolimieri, N., K. Andrews, G. Williams, S. Katz, and P.S. Levin. 2009. Home range size and patterns of space use by lingcod, copper rockfish and quillback rockfish in relation to diel and tidal cycles. Marine Ecology Progress Series 380:229–243.
- Wakefield, W. W. and Genin, A. 1987. The use of a Canadian (perspective) grid in deep-sea photography: Deep sea research Part A. Oceanographic Research Papers 34(3):469–478.
- Yamanaka, K. L., and L. J. Richards. 1993. Movements of transplanted lingcod, *Ophiodon elongates*, determined by ultrasonic telemetry. Fishery Research Bulletin 91:582–587.

REFERENCES CITED (Continued)

- Yoklavich, M. M., H. G. Greene, G. M. Cailliet, D. E. Sullivan, R. N. Lea, and M. S. Love. 2000. Habitat associations of deep-water rockfishes in a submarine canyon: an example of a natural refuge. Fishery Research Bulletin 98:625–641.
- Yoklavich, M. M., and V. O'Connell. 2008. Twenty years of research on demersal communities using the Delta submersible off Alaska and the west coast of North America. Page 143 [*In*] Marine Habitat Mapping Technologies for Alaska. University of Alaska, School of Fisheries and Ocean Sciences, Alaska Sea Grant Monograph, Fairbanks, CD-ROM. Doi: 10.4027/mhmta.2008.

TABLES AND FIGURES

Primary	Secondary		
grouping	grouping	Code	Definition
Good	Good	GGF	Going Forward
Bad	Good	GRB	Resting on Bottom
Bad	Good	GRBC	Resting on Bottom with Close-up image
Bad	Bad	BDO	Going over Drop Off
Bad	Bad	BBS	Bottom Stirrup
Bad	Bad	BLB	Lost Bottom visual
Bad	Bad	BGB	Going Backwards
Bad	Bad	BRB	Resting on Bottom
Bad	Bad	BCF	Bad Camera Focus
Bad	Bad	BLA	Loitering in same Area
Bad	Bad	BPV	Poor Visibility
Bad	Bad	BRP	RePositioned

Table 1.-Video quality categories.

Table 2.-Meters of transect line run for each stratum.

		Within roc	ky reef
	Total	Good and bad	Good
_	m	m	m
Chiswell North	9,103	7,693	7,027
Chiswell South	10,651	8,647	7,993
Harris Bay	6,849	6,397	6,036
Total	26,603	22,737	21,056

Note: Included are total meters run and meters run within rocky reef polygons including good and bad video segments and good video only segments.

Table 3.-Fish counts by reaction category

Reaction	Lingcod	Juvenile yelloweye	Adult yelloweye	Quillback
Quickly toward	12	0	2	3
Slowly toward	8	5	17	4
None	95	35	53	138
Slowly away	5	1	11	11
Quickly away	4	0	2	3
Total	124	41	85	159
Included	108	41	81	153

Note: Only fish that were categorized as slowly toward, none, or slowly away, were included in population estimates.

				Lingcod			
	Chiswell	North	Chiswell	South	Chiswel	l Ridge	Granite 1
	<i>D</i> ^	τ^	<i>D</i> ^	τ^	<i>D</i> ^	τ^	D^{\wedge}
Estimate	2,633	34,924	5,255	47,112	3,690	82,036	1,141
Bootstrap mean	2,696	35,771	5,304	47,549	3,748	83,320	1,145
Bootstrap SD	694	9,203	1,476	13,231	727	16,155	247
LCI	1,416	18,787	2,600	23,309	2,413	53,640	666
UCI	4,108	54,503	8,393	75,241	5,268	117,123	1,614
Estimated bias	64	847	49	437	58	1,284	4
CV	26%	26%	28%	28%	20%	20%	22%
			Adult	yelloweye roo	ckfish		
	Chiswell	North	Chiswell	South	Chiswel	Granite I	
	<i>D</i> ^	τ^	<i>D</i> ^	τ^	<i>D</i> ^	τ^	D^{\wedge}
Estimate	2,828	37,511	3,228	28,940	2,989	66,451	934
Bootstrap mean	2,905	38,544	3,234	28,996	3,038	67,540	951
Bootstrap SD	802	10,644	618	5,543	545	12,119	258
LCI	1,529	20,281	2,131	19,103	2,067	45,946	482
UCI	4,578	60,739	4,562	40,901	4,210	93,594	1,490
Estimated bias	78	1,033	6	55	49	1,089	18
CV	28%	28%	19%	19%	18%	18%	28%
			Juveni	le yelloweye ro	ockfish		
	Chiswell	North	Chiswell	South	Chiswel	l Ridge	Granite I
	D^{\wedge}	τ^	D^{\wedge}	τ^	<i>D</i> ^	τ^	D^{\wedge}
Estimate	878	11,641	1,802	16,153	1,250	27,794	830
Bootstrap mean	868	11,516	1,785	16,006	1,238	27,521	821
Bootstrap SD	271	3,591	402	3,604	225	4,996	304
LCI	391	5,183	1,031	9,241	810	18,006	229
UCI	1,421	18,847	2,619	23,478	1,675	37,242	1,411
Estimated bias	-9	-126	-16	-147	-12	-273	-9
CV	31%	31%	22%	22%	18%	18%	37%

Table 4.–Fish density D^{\wedge} (fish km2) and abundance τ^{\wedge} estimates for each stratum and study area.

			All	yelloweye roo	ckfish		
_	Chiswel	l North	Chiswell	South	Chiswel	l Ridge	Granite I
_	D^{\wedge}	τ^	<i>D</i> ^	τ^{\wedge}	<i>D</i> ^	τ^{\wedge}	<i>D</i> ^
Estimate	3,705	49,152	5,030	45,093	4,239	94,245	1,763
Bootstrap mean	3,773	50,060	5,020	45,001	4,276	95,061	1,772
Bootstrap SD	909	12,064	755	6,770	615	13,675	486
LCI	2,248	29,828	3,621	32,465	3,160	70,248	907
UCI	5,697	75,584	6,561	58,815	5,542	123,215	2,756
Estimated bias	68	908	-10	-92	37	816	9
CV	25%	25%	15%	15%	15%	15%	28%
			Q	uillback rock	fish		
	Chiswel	l North	Chiswell	Chiswell South		Chiswell Ridge	
	D^{\wedge}	τ^{\wedge}	D^{\wedge}	τ^	<i>D</i> ^	τ^{\wedge}	<i>D</i> ^
Estimate	5,850	77,609	2,928	26,248	4,672	103,857	5,601
Bootstrap mean	5,814	77,127	2,931	26,276	4,651	103,403	5,720
Bootstrap SD	1,345	17,841	450	4,031	824	18,308	1,379
LCI	3,531	46,842	2,101	18,837	3,177	70,637	3,046
UCI	8,768	116,319	3,807	34,127	6,471	143,867	8,436
Estimated bias	-36	-482	3	27	-20	-455	119
CV	23%	23%	15%	15%	18%	18%	25%

Table 4.–Page 2 of 2.

Note: Also included are bias and error statistics including upper and lower 95% confidence limits.

Figure 1.–Chiswell Ridge and the north gulf coast of the Kenai Peninsula with hillshade of bathymetric grid (azimuth = 315° and altitude = 45°).

Figure 2.–Chiswell Ridge and Granite Island study areas with hillshade of bathymetric grid (azimuth = 315° and altitude = 45°).

Note: Study area boundaries were defined between mean-lower-low-water and 100 m.

Figure 3.–Hillshaded bathymetry with bathymetry source and rocky reef delineations for the Chiswell Ridge and Granite I study areas with hillshade of bathymetric grid (azimuth = 315° and altitude = 45°).

Note: Panel A shows the difference in resolution between the multi beam available for northern Chiswell Ridge and single-beam bathymetry for the southern. Panel B shows the multi-beam bathymetry collected after the ROV survey in 2006 and refined rocky reef delineation.

Figure 4.–Study area boundaries, stratification, and transect locations for the Chiswell Ridge and Granite I study areas.

Figure 5.–The R/V Pandalus and Deep Ocean Engineering Phantom HD2+2 ROV used for the survey.

Survey				_ [] ×
Logging Line Chart Vess	els Matrix Targets Tide Op	ions Helm Map Window	Language Help	
1111200	XXX & M	RUCIA		
Hda 26.3	1 22:45:00 UI 115.5 t	() Map		
Speed BEA	Rcvd: x=12.60, y=-6.00,		/	
Ewdeneed *0.54	X= 342659.29, Y=66105			
Sthd sneed >0.1	1 22:45:02 01 118.9			
Depth 0.00	Revd: x=13.70, y=-7.50,			1
Status Logging	X= 342659.64, Y=66105			/
	1 22:45:04 01 117.0		\ {## [~]	
	Rcvd: x=13.10, y=-6.70,			/
	X= 342659.31, Y=66105		1 the second sec	
SCEO SCEO	1 22:45:05 01 104.9		and the second second	
HDOP 1.6	HCV0: X=12.40, y=-3.30,		1 18	
Sat 11 Mode Stand-al	X= 342059.94, T=00105			
Sigma N 0.00	MD900		1 Mr.	
Sigma E 0.00	Pitch: -2.0 Boll: -2.2		1 8	
Err. el 0.00	Pitch: -2.0 Roll: -1.3		f B	
Lat 59°36.1	Pitch: -1.0 Roll: -2.2		2 <u>e</u>	
Lon 149°47	Pitch: -1.1 Roll: -3.1		f st	
Easting 342650.28	Pitch: -1.1 Roll: -3.0		Helm Man	
Northing 6610526	Pitch: -2.1 Roll: -3.7			THE T A STORE
Undul 0.00 m	Pitch: -2.3 Roll: -2.6		[S	1000 A 100 A 100 A
Sync err 6.49 ms	Pitch: -0.8 Roll: -1.4	0 7 15 22 30		
Time source COM	Pitch: -0.3 Roll: -1.5		a area	
🖾 Data Disolay			A A A A A A A A A A A A A A A A A A A	
Curs WGS84 Lat	59d36.2362' N			
Curs WGS84 Lon	149d47.6500' W			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ROV Lat WGS84	59d36.1882' N		260 C 10	and a contract
ROV Lon WGS84	149d47.2837' W		225779B	7 1 1 4 4
ROV Hdg	26.1		1025 etc.	
ROV Speed	0.94		1992500	A start of the sta
ROV Stbd speed	>0.0			A STATE OF A
ROV Fwd speed	^0.9			Level and the second second second
ROV Depth:	60.40	-		CENTRE IN A MARCHINE
·				
an ellon	[S-1.1.1.1	u ilen-		NUMBER OF ALL DATE OF ALL DATE
Raw	*Hypack Ma	x - c:inypack	ey 🔄 Microsoft PowerPoint - [r	····································

Figure 6.-Computer screen shot of Hypack navigation software used for navigating and data acquisition.

Figure 7.–Schematic of the ROV deployment method.

Figure 8.–Example of the methods used to segment out portions of transect that fell outside of the rock reef polygons and those that had bad video segments.

Figure 9.-Frequency of fish counts for each transect by strata and species.

Figure 10.–Distribution of lingcod and quillback rockfish density within the Chiswell Ridge and Granite I study areas.

Figure 11.–Distribution of juvenile and adult yelloweye rockfish density within the Chiswell Ridge and Granite I study areas.

Figure 12.–Violin and box plots of fish observations by depth along with the distribution of sampling effort by depth.

APPENDIX A

Component		Make / Model	Use
ROV			
	ROV base system	Deep Ocean Engineering Phantom HD2	Components include two horizontal thrusters and one vertical thruster controlled by a remote control unit, a Sony EVI-330 video camera, two dimmable Deep Sea Power and Light 250- watt halogen lights, a depth pressure sensor, and a fluxgate compass
Additi	onal thrusters		-
	Horizontal thrusters	Deep Ocean Engineering	Two horizontal thrusters are mounted to the ROV crash frame. The additional thrusters provide twice the forward, reverse, and turning thrust of the ROV base system (HD2+2)
	Lateral thruster	Deep Ocean Engineering	The one lateral thruster is mounted below the ROV hull within the crash frame. The additional thruster provides the ability to maneuver the ROV laterally without turning
Video			
	On screen display	Deep Ocean Engineering OSD- 379	Overlays the following data on the video records; magnetic heading and depth of the ROV, the number of twists in the umbilical cable, date and time code from the time code
	Digital video recording deck	Panasonic AG- DV2000P	Digital recording of ROV video on mini-DV
Naviga	ation and tracking		
C	GPS satellite compass	Furuno SC-60	Vessel heading
	DGPS	Trimble Ag132	Vessel positioning
	Motion sensor	Applied Geomechanics, MD900-TW	For determining pitch and roll of the research vessel. These measurements are sent to Hypack Survey software to correct vessel motion when calculating ROV position
	Ultrashort baseline tracking system	Linkquest Tracklink 1500MA transceiver with TN1500B transponder	For acoustic tracking of the ROV. The slant angle, range, and bearing of the ROV are calculated by the system and output to Hypack Survey software. Hypack then calculates the x , y , z position of the ROV using the latitude and longitude from the GPS and vessel pitch and roll from the motion sensor
	Dual-frequency scanning sonar	Tritech Seaking Sonar	Mounted on the front of the ROV inside the crash frame. Can scan 360 degrees or sector scan. Provides the ROV pilot and navigator with images of objects outside of the range of the video camera. Used primarily for enhancing navigation capability and for avoiding obstacles that present dangers to the ROV
Data a	cquisition		
	Scaling lasers	Deep Sea Power and Light, SeaLaser 100	The two lasers are mounted horizontally, 10 cm apart, above the video camera housing. Used for measuring the size of substrate or fish length and for calculating the width of the transect line
	Time code generator	Horita GPS3	Captures UTC from GPS and passes it to the on screen display and video recording deck
	Programmable keyboard	PI Engineering X- Keys	Use for logging video observations into database
	Hypack	Max Lite	Software for survey preparation and data acquisition

Appendix A1.–Components for the ROV system.

Substrate	Expanded		
type	code	Definition	Description
BLK	Block Large	Rocks	>= 3 m diam.
LBO	boulder	Rocks	1 < 3 m diam.
BAS	Basement Small	Solid bedrock	
SBO	boulder	Rocks	0.25 < 1 m diam.
COB	Cobble Mixed	Rocks	64 < 254 mm diam.
MIX	coarse	Sand and/or gravel and/or shell hash	
PEB	Gravel	Small rocks or pebbles	4 < 64 mm diam.
SND	Sand	Clearly separate grains	< 4 mm diam.
SHE	Shell hash	Area primarily covered with whole or crushed shells	
SOF	Soft	Mud / silt	
Psub	Primary	Substrate type occupies $> 50\%$ of the area	
Ssub	Secondary	The next most dominant substrate type that makes up at least 20% of area	
	Expanded		
Relief	code	Definition	Description
NONE	None	0	<u>Maximum vertical relief</u> – not a measure of slope. Important
LOW	Low	< 1 m	measurement for basement. For
HIGH	High	1–3 m	same as the rock diameter;
			however, relief may be higher if
STEEP	Steep	> 3 m	rocks are piled vertically. Also applies to sand waves.

Appendix A2.–Habitat classification schem	ıe.
---	-----

Appendix A2.–Page 2 of 2.

Crevice size	Expanded code	Definition		Description
ZERO	Zero	0	Smooth surface	If in rocks: 1) occur as voids b/w
SM	Small	< 0.25 m	Small crevices in either basement or among cobble or small boulder	space b/w bottom of large or block boulders and sediment. If
MED	Medium	0.25–0.5 m	Most typically in either small to block boulders, or in basement	at least <u>as deep as they are wide</u> , 2) will appear as either <u>cracks</u> ,
LG	Large	> 0.5	Most typically in either large or block boulder fields, or large cracks in basement	<u>depressions, or folds</u> .
Crevice density	Expanded code	Definition		Description
NONE	None	No crevices		For rocks, crevice density refers to the density of voids, but is
FEW	Few	Smaller densi crack, depress cracks, depres	ty of rocks touching, or one > 0.5m sion, or fold in basement (or) few < 0.5m ssions, or folds in basement.	related to rock size. For <u>basement</u> , crevice density refers to the number of cracks, depressions, or folds, <u>but</u> is associated with crevice size. For
MOD	Moderate	Moderate den	sity of above	example, if <u>one large</u> (> 0.5 m wide) crack.
ABUN	Abundant	Rock fields w highly fractur	with all rocks touching or piled, or in ed or folded basement	

		Total		Within rocky reef	
	-	Good and bad	Good and bad	Good	Good
Strata	Transect	m	m	М	sq m
Chiswell Ridge North	2005R02001	425.8	423.7	402.8	530.5
U	2005R02002	496.6	258.1	252.5	363.0
	2005R02003	467.1	450.2	420.9	592.4
	2005R02004	472.9	309.0	266.5	441.4
	2005R02005	340.2	290.5	229.2	299.8
	2005R02019	234.8	234.8	226.1	325.6
	2005R02020	498.2	477.5	455.8	649.9
	2005R02021	517.5	439.1	435.8	649.3
	2005R02024	500.3	132.7	130.0	147.4
	2005R02025	153.3	153.3	115.2	169.2
	2005R02026	464.4	464.4	402.7	659.8
	2005R02029	449.0	449.0	431.0	648.3
	2005R02030	340.4	340.4	321.8	457.1
	2005R02031	295.3	263.6	197.9	238.1
	2005R02032	276.7	276.7	251.8	358.4
	2005R02033	301.2	301.2	233.1	304.5
	2005R02034	508.9	343.6	328.6	459.3
	2005R02043	617.1	498.6	468.3	760.7
	2005R02044	522.6	433.3	405.9	594.6
	2005R02045	513.6	445.8	418.7	655.3
	2005R02047	117.8	117.8	115.0	158.9
	2005R02048	589.3	589.3	517.3	792.9
	Total	9,102.8	7,692.5	7,026.9	10,256.3
Chiswell Ridge South	2005R02006	494.7	310.1	296.1	479.7
	2005R02007	429.7	429.7	385.9	651.8
	2005R02008	494.4	240.5	237.0	382.9
	2005R02009	524.4	524.4	496.6	745.6
	2005R02010	492.8	229.2	202.5	305.7
	2005R02011	517.1	125.3	119.0	201.1
	2005R02012	543.4	543.4	486.3	883.7
	2005R02013	302.3	223.5	204.2	394.1
	2005R02014	507.7	507.7	445.2	832.0
	2005R02015	512.9	359.5	327.4	575.5
	2005R02016	385.6	385.6	349.5	640.4
	2005R02017	618.5	618.5	611.4	1,143.5
	2005R02018	444.5	237.8	216.2	413.8
	2005R02035	196.0	170.0	152.0	229.1
	2005R02036	513.7	513.7	494.7	663.4
	2005R02037	489.8	489.8	480.9	759.6
	2005R02038	537.0	537.0	506.7	908.3
	2005R02039	557.9	444.5	424.0	633.9
	2005R02040	469.3	469.3	452.8	680.2
	2005R02041	568.7	262.7	248.6	321.0
	2005R02042	524.0	524.0	440.3	715.1
	2005R02049	526.3	500.8	415.5	759.9
	Total	10,650.9	8,647.1	7,992.9	13,320.2

Appendix A3.–Meters of transect line run and area sampled by video quality and habitat type.

		Total		Within rocky reef	
	_	Good and bad	Good and bad	Good	Good
Strata	Transect	m	m	m	sq m
Granite I	2005R02027	474.7	409.5	373.2	533.3
	2005R02028	471.2	452.5	419.1	624.5
	2005R02050	510.8	481.1	446.7	673.1
	2005R02051	537.8	537.8	485.7	986.7
	2005R02052	502.1	502.1	459.8	692.9
	2005R02053	489.4	489.4	482.0	763.5
	2005R02054	501.9	466.9	450.7	843.4
	2005R02056	524.1	524.1	478.4	716.6
	2005R02057	517.2	449.6	420.1	620.8
	2005R02058	492.4	257.0	246.5	374.3
	2005R02059	507.6	507.6	499.8	789.9
	2005R02060	519.5	519.5	497.4	788.7
	2005R02061	508.4	508.4	493.8	769.2
	2005R02062	291.9	291.9	282.7	463.7
	Total	6,849.0	6,397.4	6,036.0	9,640.7
	Grand total	26,602.7	22,737.0	21,055.8	33,217.2

Appendix A3.–Page 2 of 2.

Species or species group	Description
Lingcod	Ophiodon elongatus
Pelagic rockfish	
Black rockfish	Sebastes melanops
Black / dark rockfish	Sebastes melanops or S. ciliatus
Dark / dusky rockfish	Sebastes ciliatus or S. variabilis
Dark rockfish	Sebastes ciliatus
Dusky rockfish	Sebastes variabilis
Yellowtail rockfish	Sebastes flavidus
Demersal rockfish	
Canary rockfish	Sebastes pinniger
China rockfish	Sebastes nebulosus
Quillback rockfish	Sebastes maliger
Rosethorn rockfish	Sebastes helvomaculatus
Redstripe rockfish	Sebastes proriger
Silvergray rockfish	Sebastes brevispinis
Silvergray / Redstripe rockfish	Sebastes helvomaculatus or S. proriger
Tiger rockfish	Sebastes nigrocinctus
Juvenile yelloweye rockfish	Sebastes flavidus
Yelloweye rockfish	Sebastes ruberrimus
Other unidentified rockfish	
Large rockfish unspecified	Sebastes
Small benthic rockfish unspecified	Small benthic oriented sebastes (could be juvenile or adult)
Small benthic red rockfish	Small benthic oriented red colored sebastes (could be juvenile or
unspecified	adult)
Juvenile rockfish unspecified	Junenile Sebastes
Other fish	
Bathyraja unspecified	Bathyraja
Large gadid unspecified	Large gadidae
Juvenile gadid unspecified	Juvenile Gadidae
Walleye Pollock	Theragra chalcogramma or Gadus chalcogrammus
Kelp greenling	Hexagrammos decagrammus
Greenling unspecified	Hexagrammidae
Prowfish	Zaprora silenus
Sculpin unspecified	Cottidae
Northern ronquil	Ronquilus jordani
Alaska ronquil	Bathymaster caeruleofasciatus
Searcher	Bathymaster signatus
Ronquil unspecified	Bathymasteridae
Prickleback / eelpout unspecified	Stichaeidae or Zoarcidae
Prickleback unspecified	Stichaeidae
Halibut	Hippoglossus stenolepis
Flat fish unspecified	Pleuronectiformes
Juvenile fish unspecified	Juvenile Teleostei
Unidentified fish	Teleostei
Invertebrates	
Tanner crab	Chionoecetes tanneri
Brown box crab	Lopholithodes foraminatus
Red sea cucumber	Parastichopus californicus
Red urchin	Strongylocentrotus franciscanus
Demspong unspecified	Demospongiae
Hydrocoral unspecified	Stylasteridae

Appendix A4.–Species and species groupings for all animals enumerated.

Appendix A5.–Distribution of 1000 bootstrap replicates of density estimates by species and strata.

											Tra	nsect										
Species or species group	2005R02001	2005R02002	2005R02003	2005R02004	2005R02005	2005R02019	2005R02020	2005R02021	2005R02024	2005R02025	2005R02026	2005R02029	2005R02030	2005R02031	2005R02032	2005R02033	2005R02034	2005R02043	2005R02044	2005R02045	2005R02047	2005R02048
Lingcod	2	1		2						2	3		6		1		2	3	1	4		
Pelagic rockfish																						
Black rockfish						4	1		4		33		51		2	4	1	7		4	1	2
Black / dark rockfish						1	2										1					
Dark / dusky rockfish						1														1		
Dark rockfish			3								2		3			4						
Dusky rockfish	1				2	1																
Yellowtail rockfish																						
Demersal rockfish																						
Canary rockfish																						
China rockfish										3	5		2			1		1			2	3
Quillback rockfish	2	13	5		2	1	7	3	2		1	1	2			1	3	8	1	2	1	5
Rosethorn rockfish					1							5		1					2			
Redstripe rockfish							9	7			2	12					1	1	15	1		1
Silvergray rockfish			2		3		6										1			2		
Silvergray / Redstripe rockfish		5	3		4																	
Tiger rockfish		1	2				1	1		1	1	1	1		2	2		1	1	1		
Juvenile yelloweye rockfish							2				1				1		1	1	1	2		
Yelloweye rockfish		1		2	1	2	2			2	3		3	1	7	2		1	1	1		
Unidentified rockfish																						
Large rockfish unspecified	1					1	1			1				3			1					
Small benthic rockfish unspecified	1	2	7	2	3			2										1		3		2
Small benthic red rockfish unspecified	15	5	24	4	18	6	61	23		2	1	17			10	1	2	9	41	2		2
Juvenile rockfish unspecified	21	6		4	2	17	10	6	1	1	38			1	3	6	25	88		26		11

Appendix A6.–Species or species group counts by transect for the Chiswell north stratum.

Appendix A6.–Page 2 of 2.

											Tra	ansect	-									
	2005R02001	2005R02002	2005R02003	2005R02004	2005R02005	2005R02019	2005R02020	2005R02021	2005R02024	2005R02025	2005R02026	2005R02029	2005R02030	2005R02031	2005R02032	2005R02033	2005R02034	2005R02043	2005R02044	2005R02045	2005R02047	2005R02048
Species or species group																						
Other fish		1																				
Bathyraja unspecified		1					2															
Large gadid unspectfied	2						3	24											5	5		
Welless Dellest	3						2	34											5	3		
Walleye Pollock	1		1	1			Z	1	2	4	2		2	1			1	F	1	1	1	5
Creenling unergatified	1		1	1					2	4	3		3	1			1	3	1	1	1	5
Browfich																		1				
FIOWIISII Soulain unspecified							2	2								15		1	2	4		
Northern renguil							2	Z								15		3	3	4		
Alaska ronguil										1												
Alaska longun Seereber										1												
Denguil unerpecified																						
Drickleback / colnect unspecified																	2		6	2		
Prickleback / eerpout unspecified																	Z		0	3		
Halibut																	1		1			
Flat fish unspecified	1							2				1					1	4	1	1		
International second	1							2				1					4	4	5	1		
Unidentified fish								1				2	1						6	1		
Invertebrates								1				2	1						0	1		
Tanner crab				1				1														
Box crab				6				1														
Box clau Red sea cucumber	35	16	10	32	30	30	106	17	7	16	76	110	10	78	03	22	115	51	00	132		107
Purple urchin	55	10	10	54	59	50	100	1/	/	10	70	110	10	70	95	44	115	51	77	152		107
Demspong unspecified	1	1	1								1									1	1	2
Hydrocoral unspecified	1		1		1	2				3	5	17	233		12	10	11	27		5	1	10

-											Tran	sect										
Species or species group	2005R02006	2005R02007	2005R02008	2005R02009	2005R02010	2005R02011	2005R02012	2005R02013	2005R02014	2005R02015	2005R02016	2005R02017	2005R02018	2005R02035	2005R02036	2005R02037	2005R02038	2005R02039	2005R02040	2005R02041	2005R02042	2005R02049
Lingcod	8	4					10	9	2		3	2		8		1		9			11	3
Pelagic rockfish																						
Black rockfish	4		1				4	1	2	1	1	7		5				3	1		4	
Black / dark rockfish									2		3	1									1	
Dark / dusky rockfish			1				3		2	1	1	2										
Dark rockfish				1	1		2	1			1	1						1				
Dusky rockfish				1			3		5	1						3				1		
Yellowtail rockfish																						
Demersal rockfish																						
Canary rockfish																						
China rockfish	1										2	1										
Quillback rockfish		2	1	1	2	1	4		2	1	3	2		1	2	4	1	5	1	1	4	1
Rosethorn rockfish			2							3		1		1	1		1	1				
Redstripe rockfish												1		3	17	4	9					
Silvergray rockfish					1								1		1		1			1		4
Silvergray / Redstripe rockfish		2		2					2	1	1		2									
Tiger rockfish	3	1		1	1	1			3			3			1	3	3		1		3	1
Juvenile yelloweye rockfish								2	1			1			2	4	3	3	2	1	2	3
Yelloweye rockfish		3	1				2	1	8	2	3	5		2	2	3	1	4	1		3	2
Unidentified rockfish																						
Large rockfish unspecified									1		1					1	1				5	
Small benthic rockfish unspecified											1	2				2	4	1			5	1
Small benthic red rockfish unspecified			5	2			1	1	8			3	3		26	33	19			5	21	
Juvenile rockfish unspecified		5	27	17	11		38	27	3	38	56			4	3	5	4	1		10	26	8

Appendix A7.–Species or species group counts by transect for the Chiswell south stratum.

Appendix A7.–Page 2 of 2.

	05R02006	05R02007	05R02008	05R02009	05R02010	05R02011	05R02012	05R02013	05R02014	05R02015	05R02016	05R02017	05R02018	05R02035	05R02036	05R02037	05R02038	05R02039	05R02040	05R02041	05R02042	05R02049
Species or species group	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Other fish																						
Bathyraja unspecified																						
Large gadid unspecified																						
Juvenile gadid unspecified	3		12	6	17		2	2		4					3	2	2	9		13		
Walleye Pollock																						
Kelp greenling	1	1			1	1	6			2	3	1		1		1	1	4	1		3	1
Greenling unspecified								2			1											
Prowfish																						
Sculpin unspecified									1						1	1		1		2		
Northern ronquil																						
Alaska ronquil																						
Searcher															3							
Ronquil unspecified												1									1	
Prickleback / eelpout unspecified			3	7				1						3		1						
Prickleback unspecified	2	1			2																	
Halibut																						
Flat fish unspecified	1									1					1			1		2		
Juvenile fish unspecified																						
Unidentified fish		1	1	1			4										1					
Invertebrates																						
Tanner crab																						
Box crab	20		1									1										
Red sea cucumber	33	56	47	58	9	28	30	39	85	80	30	132	4	32	78	110	150	72	68	41	70	87
Purple urchin																						
Demspong unspecified							1						1		48	150	122					
Hydrocoral unspecified	78	48		2	51	9	187	99	10	33	132	150		172	51	296	50	71	14	13	21	38

							Gran	ite I						
Species or species group	2005R02027	2005R02028	2005R02050	2005R02051	2005R02052	2005R02053	2005R02054	2005R02056	2005R02057	2005R02058	2005R02059	2005R02060	2005R02061	2005R02062
Lingcod	1	1	1	1		2	2				1	1		1
Pelagic rockfish	-	-	_	-		_	_				-	-		-
Black rockfish	14	10		10			17			4				
Black / dark rockfish				1										
Dark / dusky rockfish														
Dark rockfish		3					9			3				
Dusky rockfish		1	1									1	1	
Yellowtail rockfish				2										1
Demersal rockfish														
Canary rockfish							2			4				
China rockfish	1	3		7			6			2				
Quillback rockfish	4	7	9			11	1	1	6	2	1	3	6	3
Rosethorn rockfish														
Redstripe rockfish	22	3	23	3					2	2	2	4	1	
Silvergray rockfish	1	2	1			1					1	1		
Silvergray / Redstripe rockfish														
Tiger rockfish						1			2	1				
Juvenile yelloweye rockfish			2	1							2	1	2	
Yelloweye rockfish	1		2	1		1				1	1		1	1
Unidentified rockfish														
Large rockfish unspecified			1	1							2	2		
Small benthic rockfish unspecified			2					1						
Small benthic red rockfish unspecified	29	6	1	10					4		1	2	2	
Juvenile rockfish unspecified		1	5	3		6		1	31	21	2	43		

Appendix A8.–Species or species group counts by transect for the Granite I study area.

Appendix Ao. – rage 2 01 2	Appendix	A8	-Page	2	ot	2.
----------------------------	----------	----	-------	---	----	----

	5R 02027)5R02028	5R02050	J5R02051)5R02052	5R02053)5R02054)5R02056	J5R02057	J5R02058	J5R02059	5R02060	5R02061	J5R02062
Spacios or spacios group	200	200	200	20(200	200	200	200	200	200	200	200	200	200
Other fich														
Bethyraia unspecified														
Large gadid unspecified														
Invenile gadid unspecified		1	1											
Walleve Pollock		1	1											
Keln greenling	4	1		10	5	2	2		2	4	2	1	1	2
Greenling unspecified		-		10	C	-	-		-	•	-	-	-	-
Prowfish														
Sculpin unspecified			1		3			22	6					
Northern ronguil					1									
Alaska ronquil				3										
Searcher														
Ronquil unspecified														
Prickleback / eelpout unspecified	1					1		2	22	1	1	3	4	
Prickleback unspecified														
Halibut						1		1						
Flat fish unspecified		1	1		2		3	4	4	11	1			1
Juvenile fish unspecified														30
Unidentified fish			1	1		1		2	2	1	1			
Invertebrates														
Tanner crab													1	
Box crab	1													
Red sea cucumber	79	65	129	15	1	20		29	72	7	70	104	73	55
Purple urchin														
Demspong unspecified	1	6	1						1	1	1		13	
Hydrocoral unspecified			27	6								9		5