Salmon Age and Sex Composition and Mean Lengths for the Yukon River Area, 2012

by
Kyle J. Schumann

December 2014
Alaska Department of Fish and Game
Divisions of Sport Fish and Commercial Fisheries

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

FISHERY DATA SERIES NO. 14-58

SALMON AGE AND SEX COMPOSITION AND MEAN LENGTHS FOR THE YUKON RIVER AREA, 2012

by
Kyle J. Schumann
Alaska Department of Fish and Game, Division of Commercial Fisheries, Anchorage

Alaska Department of Fish and Game
Division of Sport Fish, Research and Technical Services 333 Raspberry Road, Anchorage, Alaska, 99518-1565

December 2014

This investigation was partially financed by the United States Fish and Wildlife Service Agreement No. 701818G497 (ADF\&G IHG-09-006), under the authority of the Fish and Wildlife Coordination Act, 16 USC 661 to 667 (d), and the Yukon River Salmon Act 16 USC 5724 and 5727.

ADF\&G Fishery Data Series was established in 1987 for the publication of Division of Sport Fish technically oriented results for a single project or group of closely related projects, and in 2004 became a joint divisional series with the Division of Commercial Fisheries. Fishery Data Series reports are intended for fishery and other technical professionals and are available through the Alaska State Library and on the Internet: http://www.adfg.alaska.gov/sf/publications/ This publication has undergone editorial and peer review.

> Kyle J. Schumann
> Alaska Department of Fish and Game, Division of Commercial Fisheries, 333 Raspberry Rd., Anchorage, AK 99518, USA

This document should be cited as:
Schumann. K. J. 2014. Salmon age and sex composition and mean lengths for the Yukon River Area, 2012. Alaska Department of Fish and Game, Fishery Data Series No. 14-58, Anchorage.

The Alaska Department of Fish and Game (ADF\&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write:
ADF\&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526
U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203

Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240
The department's ADA Coordinator can be reached via phone at the following numbers:
(VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648,
(Juneau TDD) 907-465-3646, or (FAX) 907-465-6078
For information on alternative formats and questions on this publication, please contact:
ADF\&G, Division of Sport Fish, Research and Technical Services, 333 Raspberry Rd, Anchorage AK 99518 (907) 267-2375

TABLE OF CONTENTS

Page
LIST OF TABLES ii
LIST OF FIGURES ii
LIST OF APPENDICES ii
ABSTRACT 1
INTRODUCTION 1
BACKGROUND 2
Commercial Fisheries 2
Subsistence Fisheries 3
Test Fisheries 3
Dall Point Test Fishery 3
Lower Yukon Test Fishery 3
Mountain Village Test Fishery 4
Pilot Station Sonar 4
Eagle Sonar 4
Escapement Projects 4
East Fork Andreafsky River Weir 5
Anvik River Sonar 5
Chena River Tower 5
Delta River Carcass Survey 5
Gisasa River Weir 5
Henshaw Creek Weir 5
Salcha River Tower 6
Sheenjek River Sonar. 6
Toklat River Carcass Survey 6
Acoustic Tagging 6
Genetic Sampling 6
OBJECTIVE 6
METHODS 7
General Sampling Procedures 7
Sample Collection 7
Commercial Harvest Sampling 7
Subsistence Harvest Sampling 8
Test Fishery Sampling 8
Escapement Sampling 9
Acoustic Tag Sampling 9
Genetic Sampling 9
Age Determination 9
Data Analysis 10
Estimation of proportion by age and sex 10
Estimation of mean length by age and sex 11
RESULTS 12
Chinook Salmon 12
Summer Chum Salmon 13

TABLE OF CONTENTS (Continued)

Page
Fall Chum Salmon 13
Coho Salmon 14
DISCUSSION 15
ACKNOWLEDGEMENTS 16
REFERENCES CITED 17
TABLES AND FIGURES 19
APPENDIX A: CHINOOK SALMON 43
APPENDIX B: SUMMER CHUM SALMON 97
APPENDIX C: FALL CHUM SALMON 119
APPENDIX D: COHO SALMON 147
LIST OF TABLES
Table Page
1 Projects and salmon species for which age, sex, and length data were collected in 2012 from the Yukon area... 20
2 Yukon River Chinook salmon age and female percentages from commercial, subsistence, test fishery, escapement, and genetic sampling projects, 2012 21
3 Chinook salmon age and female percentages from the Lower Yukon River test fishery 8.5 in mesh set gillnet, 1985-2012. 23
4 Yukon River Chinook salmon age and female percentages, from selected escapement projects, 1985-2012. 24
5 Yukon River Chinook salmon mean length by sex, project, gear and age, 2012. 28
6 Yukon River chum salmon age and female percentages, from commercial, subsistence, test fishery, and escapement projects, 2012 30
7 Yukon River summer and fall chum salmon commercial harvest, age and sex composition, by district, 2012 32
8 Summer chum salmon age and female percentages from the Lower Yukon River test fishery 5.5 in mesh gillnet, 1985-2012 33
9 Yukon River summer and fall chum salmon mean length by sex, project, gear, and age, 2012 34
10 Yukon River fall chum salmon age and female percentages, from selected escapement projects, 1986-2012 36
11 Yukon River coho salmon age and female percentages, from commercial and test fishery 40 40
LIST OF FIGURES
Figure1 Yukon River drainage in Alaska and Canada41
2 Yukon River district and subdistrict map. 42
LIST OF APPENDICES
Appendix Page
A1 Yukon River District 1 Chinook salmon incidental commercial gillnet harvest, age and sex composition, and mean length 2012. 44
A2 Yukon River District 2 Chinook salmon incidental commercial gillnet harvest, age and sex composition, and mean length 2012 45
A3 Yukon River District 1 (Kotlik) Chinook salmon subsistence gillnet harvest, age and sex composition, and mean length 2012. 46
A4 Yukon River District 1 (Alakanuk) Chinook salmon subsistence gillnet harvest, age and sex composition, and mean length 2012. 48

LIST OF APPENDICES (Continued)

Appendix
A5 Yukon River District 1 (Emmonak) Chinook salmon subsistence gillnet harvest, age and sex composition, and mean length 2012 50
A6 Yukon River District 2 (Mountain Village) Chinook salmon subsistence gillnet harvest, age and sex composition, and mean length 2012 54
A7 Yukon River District 2 (St. Mary's) Chinook salmon subsistence gillnet harvest, age and sex composition, and mean length 2012. 56
A8 Yukon River District 2 (Marshall) Chinook salmon subsistence gillnet harvest, age and sex composition, and mean length 2012 58
A9 Yukon River Subdistrict 4-A (Anvik) Chinook salmon subsistence gillnet harvest, age and sex composition, and mean length 2012. 59
A10 Yukon River Subdistrict 4-A (Kaltag) Chinook salmon subsistence 7.5 in mesh drift gillnet harvest, age and sex composition, and mean length 2012 62
A11 Yukon River Subdistricts 4-B and 4-C (Galena) Chinook salmon subsistence gillnet harvest, age and sex composition, and mean length 2012. 63
A12 Yukon River Subdistricts 4-B and 4-C (Ruby) Chinook salmon subsistence 7.5 in mesh set gillnet harvest, age and sex composition, and mean length 2012 64
A13 Yukon River Subdistrict 5-B (Rampart Rapids) Chinook salmon subsistence harvest, sex composition, and mean length 2012. 65
A14 Yukon River Subdistrict 5-D (Fort Yukon) Chinook salmon subsistence fish wheel harvest, age and sex composition, and mean length 2012. 67
A15 Lower Yukon River test fishery (Big Eddy site) Chinook salmon 8.25 in mesh drift gillnet, age and sex composition, and mean length 2012. 68
A16 Lower Yukon River test fishery (Big Eddy site) Chinook salmon 8.5 in mesh set gillnet, age and sex composition, and mean length 2012. 70
A17 Lower Yukon River test fishery (Middle Mouth site) Chinook salmon 8.5 in mesh set gillnet, age and sex composition, and mean length 2012 72
A18 Lower Yukon River test fishery (combined Big Eddy and Middle Mouth sites) Chinook salmon 8.5 in mesh set gillnet, age and sex composition, and mean length 2012 74
A19 Yukon River Mountain Village test fishery Chinook salmon 7.5 in mesh drift gillnet, age and sex composition, and mean length 2012 76
A20 Yukon River Pilot Station sonar test fishery Chinook salmon variable mesh drift gillnet, age and sex composition, and mean length 2012. 78
A21 Yukon River Eagle sonar test fishery Chinook salmon variable mesh drift gillnet, age and sex composition, and mean length 2012. 81
A22 Andreafsky River (East Fork) weir Chinook salmon escapement, age and sex composition, and mean length 2012 83
A23 Anvik River Chinook salmon escapement, age and sex composition, and mean length 2012. 85
A24 Chena River carcass survey Chinook salmon, age and sex composition, and mean length 2012. 86
A25 Gisasa River weir Chinook salmon escapement, age and sex composition, and mean length 2012. 87
A26 Henshaw Creek weir Chinook salmon escapement, age and sex composition, and mean length 2012 89
A27 Salcha River carcass survey Chinook salmon escapement, age and sex composition, and mean length 2012 91
A28 Yukon River Pilot Station acoustic tagging Chinook salmon, age and sex composition, and mean length 2012 92
A29 Nulato River genetic sampling Chinook salmon, age and sex composition, and mean length 2012. 94
B1 Yukon River District 1 summer chum salmon commercial gillnet harvest, age and sex composition, and mean length 2012 98
B2 Yukon River District 2 summer chum salmon commercial gillnet harvest, age and sex composition, 2012. 100
B3 Yukon River Subdistrict 4-A summer chum salmon commercial fish wheel harvest, age and sex composition, and mean length 2012 101
B4 Yukon River District 6 summer chum salmon commercial fish wheel harvest, age and sex composition, and mean length 2012. 102
B5 Coastal District Dall Point test fishery summer chum salmon 5.5 in mesh drift gillnet, age and sex composition, and mean length 2012 103

LIST OF APPENDICES (Continued)

Appendix
B6 Lower Yukon River test fishery (Big Eddy site) summer chum salmon 5.5 in mesh drift gillnet, age and sex composition, and mean length 2012. 104
B7 Lower Yukon River test fishery (Middle Mouth site) summer chum salmon 5.5 in mesh drift gillnet, age and sex composition, and mean length 2012. 106
B8 Lower Yukon River test fishery (combined Big Eddy and Middle Mouth sites) summer chum salmon 5.5 in mesh drift gillnet, age and sex composition, and mean length 2012. 108
B9 Andreafsky River (East Fork) weir summer chum salmon escapement, age and sex composition, and mean length 2012. 110
B10 Anvik River sonar summer chum salmon escapement, age and sex composition, and mean length 2012. 112
B11 Gisasa River weir summer chum salmon escapement, age and sex composition, and mean length 2012.. 113
B12 Henshaw Creek weir summer chum salmon escapement, age and sex composition, and mean length 2012.. 115
B13 Salcha River carcass survey summer chum salmon escapement, age and sex composition, and mean length 2012 117
C1 Yukon River District 1 fall chum salmon commercial gillnet harvest, age and sex composition, and mean length 2012. 120
C2 Yukon River District 2 fall chum salmon commercial gillnet harvest, age and sex composition, 2012 122
C3 Yukon River Subdistrict 4-A fall chum salmon commercial fish wheel harvest, age and sex composition, and mean length 2012. 124
C4 Yukon River Subdistrict 5-C (Rampart) fall chum salmon subsistence fish wheel harvest, age and sex composition, and mean length 2012. 125
C5 Lower Yukon River test fishery (Big Eddy site) fall chum salmon 6.0 in mesh drift gillnet, age and sex composition, and mean length 2012 126
C6 Lower Yukon River test fishery (Middle Mouth site) fall chum salmon 6.0 in mesh drift gillnet, age and sex composition, and mean length 2012. 128
C7 Lower Yukon River test fishery (combined Big Eddy and Middle Mouth sites) fall chum salmon 6.0 in mesh drift gillnet, age and sex composition, and mean length 2012 130
C8 Yukon River Mountain Village test fishery fall chum salmon $5^{7 / 8}$ in mesh drift gillnet, age and sex composition, and mean length (mm) 2012 132
C9 Yukon River Eagle sonar test fishery fall chum salmon variable mesh drift gillnet, age and sex composition, and mean length 2012. 134
C10 Delta River carcass survey fall chum salmon escapement, age and sex composition, and mean length 2012. 135
C11 Sheenjek River sonar fall chum salmon beach seine, age and sex composition, and mean length 2012... 136
C12 Toklat River carcass survey fall chum salmon escapement, age and sex composition, and mean length 2012. 137
C13 Yukon River fall chum salmon mean length (mm) by project, sex, year, and age, 1973-2012. 138
D1 Yukon River District 1 coho salmon commercial gillnet harvest, age and sex composition, and mean length 2012 148
D2 Lower Yukon River test fishery (Big Eddy site) coho salmon 6.0 in mesh drift gillnet, age and sex composition, and mean length 2012. 149
D3 Lower Yukon River test fishery (Middle Mouth site) coho salmon 6.0 in mesh drift gillnet, age and sex composition, and mean length 2012 151
D4 Lower Yukon River test fishery (combined Big Eddy and Middle Mouth sites) coho salmon 6.0 in mesh drift gillnet, age and sex composition, and mean length 2012 153
D5 Yukon River Mountain Village test fishery coho salmon 5 7/8 in mesh drift gillnet, age and sex composition, and mean length 2012. 155

Abstract

Biological data were collected from Chinook (Oncorhynchus tshawytscha), summer chum (O. keta), fall chum (O. keta), and coho (O. kisutch) salmon at 34 locations along the United States portion of the Yukon River drainage in 2012. Age, sex, and length (ASL) data were obtained from 6,410 Chinook, 5,733 summer chum, 3,532 fall chum, and 966 coho salmon from commercial and subsistence harvests, as well as test fisheries, escapement, and tagging projects. Samples were collected from salmon caught with gillnets, fish wheels, beach seines, weir traps, rod and reel, dip nets, and from hand-picked carcasses. Where available, escapement estimates from sonar and weir projects were separated into temporal segments (strata) and commercial harvests were separated by fishing periods. The ASL data collected during the stratum or period was applied to the corresponding commercial harvest or escapement estimate. At test fishery projects, data were stratified by quartiles based on catch per unit of effort, sample size, or gear. Subsistence harvest data were stratified by gear.

In 2012, age-1.3 Chinook salmon predominated the incidental harvest in the summer chum salmon commercial fishery and subsistence samples, as well as most escapement project samples. Age-1.4 Chinook salmon predominated most of the test fishery samples. At many long standing projects 5 -year-old (age-1.3 and age-2.2) Chinook salmon percentages were at or above the 5 -year average. Both summer and fall chum salmon commercial, test fishery, and escapement samples were primarily composed of age- 0.3 fish. Age- 2.1 coho salmon predominated in the commercial and test fishery samples.

Key words: Chinook, Oncorhynchus tshawytscha,summer and fall chum O. keta, coho, O. kisutch, age, sex, length (ASL), escapement, weir, test fish, subsistence, commercial, Yukon River.

INTRODUCTION

The Yukon River drainage encompasses coastal waters from Canal Point light, near Cape Stephens, southward to the Naskonat Peninsula (Estensen et al. 2012), and upstream to the headwaters near Whitehorse, Canada (Figure 1). The drainage supports major runs of Chinook (Oncorhynchus tshawytscha) summer chum (O. keta), fall chum (O. keta), and coho (O. kisutch) salmon. All 3 of these salmon species are harvested in commercial, subsistence, personal use, test, and sport fisheries in Alaska. Harvests also occur in the Canadian portion of the drainage by commercial, subsistence, aboriginal, sport, and domestic fishermen (JTC 2013). Pink (O. gorbuscha) and sockeye (O. nerka) salmon are also indigenous to the drainage; however, neither species are harvested by fishermen to any significant extent.
Adult Chinook and summer chum salmon runs typically enter the mouth of the Yukon River during late May or early June to begin their upstream migration. These runs are followed by fall chum salmon, which enter the Yukon River from mid-July through early September. Summer chum salmon are genetically distinct from fall chum salmon and can be distinguished from their fall counterparts by their smaller size, lower oil content, and different spawning locations. Summer chum salmon spawn in the lower and middle portion of the drainage, whereas fall chum salmon spawn in the upper portion of the drainage (Crane et al. 2001; Estensen et al. 2012). Coho salmon enter the Yukon River from late July through September.

For management purposes, the Alaska portion of the drainage is divided into 7 districts and 10 subdistricts (Figure 2). The Lower Yukon area consists of the Coastal District and Districts 1, 2, and 3. The Upper Yukon area consists of Districts 4, 5, and 6.
In order to characterize annual spawning runs of each species, by specific location and for the drainage as a whole, by age, sex, and size, sampling must be conducted to adequately represent fisheries (subsistence and commercial) and escapement. Age composition estimates are necessary in order to estimate the total returns of salmon from each parent brood year; this
information is used for inseason management, preseason outlooks, run reconstructions and analysis of escapement goals.

Yukon River drainage salmon age, sex, and length (ASL) data have been collected since 1960. Data were historically recorded using handwritten forms, then on computerized mark-sense forms, electronic data loggers, and most recently, with Microsoft Excel ${ }^{1}$ files. Annual ASL data summaries have been reported in various formats. From 1962 through 1968 these data were reported in Annual Management Reports or Arctic Anadromous Fishery Investigation Reports. From 1969 through 1981 data were reported in Salmon Age, Sex, and Size Composition, an Alaska Department of Fish and Game (ADF\&G) special report series. From 1982 through 1988 data were published in the Technical Fisheries Report series (e.g., Buklis 1987). For the years 1989, 1990-2003 data were published in the Regional Information Report series (e.g., Menard 1996). In 2004, ADF\&G Division of Commercial Fisheries (CF) began using the Fishery Data Series to report annual Yukon River area ASL data (e.g., Schumann and DuBois 2011). Individual salmon ASL data records collected in the Yukon River area are available from the Arctic, Yukon, and Kuskokwim (AYK) Salmon Database Management System http://www.adfg.alaska.gov/CommFishR3/WebSite/AYKDBMSWebsite/Default.aspx.

The purpose of this report is to provide a summary of the 2012 Yukon River drainage salmon ASL data collected from various commercial and subsistence harvests, test fisheries, and escapement, tagging, and genetic sampling projects (Table 1). ASL data and summaries provide the basis for a variety of analyses including preseason run outlooks, assessment of females and older-aged fish in escapements, and spawner-recruit models.

BACKGROUND

COMMERCIAL FISHERIES

Commercial fishing occurs throughout the mainstem Yukon River and in the lower 224 river miles (rm) of the Tanana River. A directed Chinook salmon commercial harvest has not occurred since 2007 because of decreased run abundance. Fall chum and coho salmon were typically harvested in Districts 1, 2, 5, and 6. Samples were typically collected from districts with large harvests that were most accessible for sampling crews: Districts 1 and 2 from the Emmonakbased crew and Districts 5 and 6 from the Fairbanks-based crew. The majority of the commercially caught Chinook and summer chum salmon were harvested from Districts 1 and 2, with smaller harvests occurring in the other districts.

In 2012, set and drift gillnets were the only legal commercial and subsistence fishing gear in the Lower Yukon area (Districts 1, 2, and 3; Figure 2). In 2012, set gillnets and fish wheels were the only legal gear in the Upper Yukon area (Districts 4, 5, and 6; Figure 2), except for District 4 where drift gillnets were allowed (ADF\&G 2010-2013).

In 2012, summer chum commercial fishing occurred from June 29 to July 15 in District 1, July 2 through July 18 in District 2, July 1 through July 30 in Subdistrict 4-A, and July 20 through August 15 in District 6. The sale of incidentally harvested Chinook salmon was not allowed due to low abundance. In Districts 1 and 2 gillnets were restricted to 6 in or smaller mesh sizes and in Subdistrict 4-A and in District 6 all harvest were from fish wheels (Hayes and Newland 2012).

[^0]Summer chum salmon were sampled from selected periods in Districts 1, 6, and Subdistrict 4-A. Most of the incidentally harvested Chinook salmon samples were from the District 1 harvest.

In 2012, commercial fishing for fall chum and coho salmon occurred in District 1 from July 16 through August 30, District 2 from July 22 through August 31, and in Subdistrict 4-A from August 9 through September 30. Coho salmon were incidentally harvested and sold during fall chum salmon directed commercial fishing periods (Estensen and Borba 2012). Commerciallycaught fall chum were sampled in 2012 from selected periods in District 1 and Subdistrict 4-A. Coho salmon were sampled from the District 1 harvest.

Subsistence Fisheries

Subsistence fishing occurs throughout the Yukon River drainage, with most of the effort concentrated in the mainstem. Chinook, summer chum, fall chum, and coho salmon are the principal species utilized by subsistence fishermen. The primary gear used to harvest subsistence salmon in Districts 1 and 2 were set and drift gillnets; a mixture of gillnets and fish wheels were used in Districts 4 and 5 (Jallen et al. 2012). The main species sampled for ASL data from subsistence harvests was Chinook salmon because U.S. subsistence harvests comprised most of the Canadian stock harvest in 2012 and age composition was needed to update the brood table for this stock. Because of low Chinook salmon abundance, sampling was not directed by specific gear types or mesh sizes; instead, any fish available were sampled. Fall chum salmon subsistence harvests typically were not sampled in the drainage; however, samples were collected from a fish wheel in Subdistrict 4-A in 2012.

Since 2001, the summer season subsistence salmon fishery has been on a regulatory "windowed" schedule consistent with Chinook salmon migratory timing as the run progresses upstream (JTC 2013). To provide further protection of Chinook salmon, some subsistence fishing periods were cancelled, some periods were reduced, and mesh sizes were restricted to 6 in or less (Hayes and Newland 2012). For fall chum salmon, beginning July 16 in District 1, subsistence fishing was open 7 days a week; 24 hours a day and with 7.5 in or less mesh gillnets.

TEST Fisheries

Test fishery projects provided assessments of run strength, timing, and ASL composition. Test fishery projects in 2012 operated in marine waters and in the mainstem Yukon River. Data from these test fisheries were included in the ASL sampling program to supplement information on inseason run strength and timing indices.

Dall Point Test Fishery

In 2012, in cooperation with the Yukon Delta Fisheries Development Association (YDFDA), a drift gillnet test fishery operated offshore of Dall Point, in the vicinity of Hooper Bay (Figure 2). The purpose of this project was to evaluate the feasibility of estimating run timing and relative abundance of salmon before they enter the Yukon River. Test fishing was conducted during the summer season using gillnets with 5.5 in mesh for summer chum salmon. ASL data were collected from summer chum salmon in 2012.

Lower Yukon Test Fishery

The Big Eddy and Middle Mouth test fishery sites, located in District 1 near river mile 24, are referred to as the Lower Yukon test fishery (LYTF). Since 1979, the LYTF has utilized set and
drift gillnets to estimate run timing and relative abundance of Chinook, summer chum, fall chum, and coho salmon returning to the Yukon River. The Big Eddy test fishery site is located on Kwikluak Pass (South Mouth) near the village of Emmonak (Figure 1). The Middle Mouth test fishery site is located on Kwikpak Pass, upstream of Kawanak Pass (Middle Mouth) and Apoon Pass (North Mouth, Figure 1; Estensen and Padilla 2012).

During the summer season (ending July 15) in 2012, 8.5 in mesh set gillnets and 8.25 in mesh drift gillnets were used to target Chinook salmon, and 5.5 in mesh drift gillnets were used to target summer chum salmon (Newland and Hayes 2008). During the fall season (July 16-August 31) in 2012, 6.0 in mesh drift gillnets were used to target fall chum and coho salmon (Estensen and Padilla 2012). ASL data were collected from Chinook, summer chum, fall chum, and coho salmon in 2012.

Mountain Village Test Fishery

The Mountain Village drift gillnet test fishery operated during the fall season in District 2 from 1995 to 2012 in cooperation with Asa'carsarmiut Traditional Council, and for the summer season from 2010 to 2012 with assistance from YDFDA. The objectives were to estimate the relative abundance and migratory timing of Chinook, fall chum, and coho salmon in the Yukon River near Mountain Village (rm 87, Figure 1). In 2012, the Mountain Village test fishery operated from mid-June to mid-July for the summer season using 7.5 in mesh drift gillnets to target Chinook salmon, and from mid-July to mid-September for the fall season in using $57 / 8$ in mesh drift gillnets to target fall chum and coho salmon. ASL data were collected from Chinook, fall chum, and coho salmon in 2012.

Pilot Station Sonar

Located in District 2 (rm 123, Figure 1), Pilot Station sonar uses hydroacoustic equipment to generate daily Chinook, summer chum, fall chum, and coho salmon abundance estimates. Pilot Station sonar has been in operation since 1986, and multiple styles of equipment have been used to estimate fish passage. In 2012, the Pilot Station sonar project used a combination of fixedlocation split-beam sonar and dual frequency identification sonar (DIDSON).
Test fishing was conducted in order to apportion the passage estimates by species; a suite of gillnets of various mesh sizes were drifted through the sonar site (Carroll and McIntosh 2011). Sonar equipment and fishing gear were operated at regular intervals within a 24 hour period. Chinook salmon were sampled for ASL data from early June to mid-July in 2012.

Eagle Sonar

Located in District 5, the Eagle sonar project (rm 1,206, Figure 1) estimates run timing and passage estimates for Chinook and fall chum salmon. To apportion the passage estimates by species, a test fishery is conducted in which a suite of gillnets of various mesh sizes are drifted through the sonar site. Chinook salmon were sampled from test fishery catches from early July to mid-August and fall chum salmon were sampled from mid-August to early October (Smith and Dunbar 2012).

EscAPEMENT ProJECTS

Annual assessments of spawning escapements are monitored in Yukon River tributaries by means of weirs, counting towers, sonar projects, and carcass and aerial surveys (Estensen et al. 2012). The ground based weir, tower, and sonar projects typically include an ASL sampling program,
whereby samples are collected by capturing salmon with a trap built into a weir (see Tobin 1994 for an example of weir sampling and operation methods), fishing a beach seine, or hand-picking carcasses on the spawning grounds. In 2012, ASL samples were collected from Chinook and summer chum salmon on 4 long-standing escapement projects in the drainage, located on the East Fork Andreafsky, Anvik, Chena, and Salcha rivers. Additional ASL sampling was conducted on the Gisasa River and Henshaw Creek, both tributaries of the Koyukuk River.

East Fork Andreafsky River Weir

The Andreafsky River joins the Yukon River near the village of Saint Mary’s (rm 104, Figure 1). A weir has operated to estimate Chinook and summer chum salmon escapements in the East Fork Andreafsky River since 1994 (Mears 2011). The weir typically operates from mid-June to late July. A weir trap was used to collect samples from Chinook and summer chum salmon in 2012.

Anvik River Sonar

The Anvik River flows for 124 river miles before joining the Yukon River near the community of Anvik (rm 318, Figure 1). Summer chum salmon escapements to the Anvik River have been monitored since 1979 using sonar (McEwen 2011). The sonar typically operates from late June to late July. ASL data were collected from Chinook salmon in 2012 from hand-picked carcasses and from summer chum salmon caught with a beach seine.

Chena River Tower

The Chena River (rm 920) is a tributary of the Tanana River, located 225 rm upriver from the confluence of the Tanana and Yukon rivers (Figure 1). A counting tower has operated to estimate Chinook and summer chum salmon escapements in the Chena River since 1993. ASL data from Chinook salmon were collected in 2012 from hand-picked carcasses.

Delta River Carcass Survey

The Delta River is a tributary of the Tanana River, located 336 rm upriver from the confluence of the Tanana and Yukon rivers (Figure 1). Carcass surveys have been used to monitor Delta River fall chum salmon escapements since 1972 (JTC 2013). These surveys are typically conducted from late October to late November, contingent on run timing. ASL data using vertebrae were collected from fall chum salmon in 2012. Vertebrae were collected for age determination from chum salmon from projects further from the Yukon River mouth due to high amounts of scale absorption.

Gisasa River Weir

The Gisasa River flows into the Koyukuk River 56 rm upstream from the confluence of the Koyukuk and Yukon rivers (rm 508, Figure 1). A resistance board weir has operated on the Gisasa River since 1994 to estimate Chinook and summer chum salmon escapements and run timing. The weir typically operates from late June through late July and is located 2.5 rm upriver from the confluence with the Koyukuk River (Melegari 2012). Chinook and summer chum salmon were captured for sampling using a weir trap in 2012.

Henshaw Creek Weir

Henshaw Creek is located in the upper Koyukuk River drainage 468 rm from the confluence of the Koyukuk and Yukon rivers (Figure 1). A resistance board weir, located about 1 mile up from
the confluence with the Koyukuk River, has operated on Henshaw Creek since 2000. The weir typically operates from late June to early August and provides escapement and run timing estimates for Chinook and summer chum salmon. ASL data were collected in 2012 from Chinook and summer chum salmon using a weir trap.

Salcha River Tower

The Salcha River (rm 965) is a tributary of the Tanana River, located 270 rm upriver from the confluence of the Tanana and Yukon rivers (Figure 1). Salcha River Chinook and summer chum salmon escapements have been monitored by a counting tower located near the Richardson Highway Bridge since 1993 (Savereide 2012). Counting is conducted from late June to early September. ASL data were collected from Chinook and summer chum salmon carcasses in 2012.

Sheenjek River Sonar

The Sheenjek River sonar project is located 6 rm upstream from the confluence with the Porcupine River (Figure 1). The Porcupine River flows another 52 rm before its confluence with the mainstem Yukon River (rm 1,002). Fall chum salmon escapement in the Sheenjek River was monitored using sonar technology from 1981 through 2012, generally from early August to late September (Dunbar 2012). ASL data (from vertebrae) were collected from fall chum salmon caught in a beach seine in 2012.

Toklat River Carcass Survey

The Toklat River flows into the Kantishna River 45 rm upstream of the confluence of the Tanana and Yukon rivers (695 rm Figure 1). ASL data (from vertebrae) were collected from fall chum salmon carcasses in 2012.

Acoustic Tagging

The purpose of this project was to determine the physical distribution of adult salmon as they migrated in the Yukon River past the sonar project at Pilot Station. The project objective was to acoustically tag 150 Chinook salmon and 150 summer chum salmon during each of 2 operational seasons beginning in 2011. Chinook and summer chum salmon were caught using a suite of gillnets of various mesh sizes near Pitkas Point (rm 103, Figure 2). Once caught, the fish were outfitted with an acoustic tag and released. In 2012, ASL data were collected from Chinook salmon (Bruce McIntosh, Commercial Fisheries Biologist, ADF\&G, Fairbanks; personal communication).

Genetic SAMPLING

The Nulato River joins the Yukon River below the village of Nulato (rm 484, Figure 2). The purpose of Nulato River genetic sampling in 2012 was to collect tissue samples from 200 adult Chinook salmon to add to the genetic stock identification (GSI) baseline. ASL data were also collected from most fish (P. Drobny, Fish Biologist, Spearfish Research; personal communication).

OBJECTIVE

The objective of the Yukon River ASL project in 2012 was to summarize age, sex, and length data by fishery and location or by project from Chinook, summer chum, fall chum, and coho salmon collected throughout the Alaska portion of the Yukon River drainage.

METHODS

Various state, federal, non-governmental agencies and consultants collected ASL samples and data. Methods described are those procedures recommended by ADF\&G; other organizations may have collected and recorded data using slightly different procedures.

General Sampling Procedures

Scales were removed from the preferred area of the fish and mounted on gum cards for age determination by ADF\&G staff (INPFC 1963). The preferred area is located on the left side of the fish, 2 rows of scales above the lateral line along a line from the posterior insertion of the dorsal fin to the anterior insertion of the anal fin. One scale was removed from each chum salmon and a minimum of 3 scales were removed from each Chinook and coho salmon. Scale regeneration, or scale loss and rapid replacement, contributes to aging uncertainties primarily in the freshwater growth area. Chinook and coho salmon usually rear in freshwater for 1 year or longer, hence 3 scales were removed from these fish to increase the chance of selecting a scale that could be aged (Bales and DuBois 2007). In some tributaries, vertebrae were used to age summer chum and fall chum salmon when scale absorption makes aging scales difficult. Vertebrae were removed from fish collected during carcass sampling and beach seining projects.

Sex was determined by examining internal reproductive organs or external characteristics such as kype development and presence of reproductive organs at the vent. The Dall Point test fishery, LYTF, and carcass sampling surveys were the only projects where internal organs were examined; hence, these projects have accurate sex composition. Other test fishery projects conducted by non-ADF\&G staff were instructed to examine internal organs; however, this protocol may not have been followed in all projects. Internal organs were not examined from commercial and some subsistence harvests and some non-ADF\&G staffed test fisheries, because cutting fish would decrease fish value to commercial buyers and subsistence fishermen prefer to cut their fish immediately before processing.
Lengths were determined by measuring each fish from mideye to fork-of-tail with a caliper, meter stick, flexible cloth tape, fish board or fish cradle and were recorded to the nearest 1 mm increment. Field data were recorded in Rite in the Rain books, entered into MS Excel files, and uploaded into an inseason MS Access database.

SAMPLE COLLECTION

Commercial Harvest Sampling

ADF\&G Division of Commercial Fisheries crews conducted commercial harvest sampling for summer and fall chum salmon, and coho salmon in Districts 1 and 6 and Subdistrict 4-A. Chinook salmon incidentally harvested during summer chum salmon directed commercial fishing periods and retained for subsistence use were sampled in District 1 by ADF\&G crews and subsistence samplers, and in District 2 by subsistence samplers (Table 1). Sample goals were 200 Chinook, 160 (each) summer and fall chum, and 140 coho salmon by period or week and district (Bromaghin 1993). District 1 samples were collected from a fish processor in Emmonak. Subdistrict 4-A summer and fall chum salmon samples were collected from a processor in Kaltag. District 6 summer chum salmon samples were collected from a processor in North Pole near Fairbanks.

Off-loading crews placed each chum or coho salmon in a species-specific tote or bin. When excess fish were not available, crews sampled all available fish until the sample goal was attained. When excess fish were available, sampling crews selected a tote of fish and sampled every fish in the tote. Sampling crews worked quickly to attain sampling goals in the short time between fish delivery and processing.
The majority of Chinook salmon incidentally caught during summer chum salmon directed commercial fishing periods in District 1 were sampled at the dock while the fishermen were signing their fish tickets. As each boat arrived at the dock a member of the ADF\&G crew asked the captain of each boat for permission to sample any Chinook salmon they had harvested. If permission was granted, any Chinook salmon in the boat were laid out in the bottom of the boat or fish tote and sampled. Due to the circumstances and conditions in which these fish were sampled, the length measurements were not collected in an ideal manner (i.e., completely flat on a level surface), and are therefore considered not as accurate as those collected under better circumstances (e.g., LYTF). In addition to samples collected by the ADF\&G crew, subsistence samplers contracted through Association of Village Council Presidents (AVCP) sampled Chinook salmon incidentally caught during summer chum salmon directed commercial periods in Districts 1 and 2 and retained for subsistence use.

Subsistence Harvest Sampling

Subsistence harvests of Chinook and fall chum salmon were sampled during subsistence fishing openings or shortly after the closure. Sex, length, gear type, and mesh size data were collected in most samples. The sample design for Chinook salmon subsistence harvests was to collect samples from selected villages in each district along the Yukon River mainstem. The resulting age composition estimates were later combined for a drainage-wide estimate (e.g., Leba and DuBois 2011). ADF\&G selected villages for sampling based on past success and data gaps among districts. Collecting subsistence harvest samples from each selected village was opportunistic and depended on timing, availability, and willingness of fishermen to participate. Assuming consistent effort by samplers, more fish were sampled when more fish are available which tends to self-weight the samples by gear, area, and time period collected.
Numerous agencies employed technicians to sample Chinook salmon from local subsistence harvests. AVCP technicians conducted sampling in Alakanuk, Emmonak, Kotlik, Marshall, Mountain Village, and Saint Mary’s. Tanana Chiefs Conference (TCC) technicians conducted sampling in Anvik, Fort Yukon, Galena, and Ruby. Technicians from the City of Kaltag sampled harvests near Kaltag. Stan Zuray and a crew from the Rapids Research Center (RRC) sampled harvests near Rampart Rapids. Samples were collected from fall chum salmon by an ADF\&G commercial fisheries crew near Rampart (Table 1).

Test Fishery Sampling

The test fishery sampling goals were up to 30 (each) Chinook, summer chum, and fall chum salmon daily; and up to 20 coho salmon daily. The Dall Point test fishery crew (ADF\&G) sampled summer chum salmon from 5.5 in mesh drift gillnets. The ADF\&G crew sampled Chinook salmon at the Big Eddy and Middle Mouth test fishing sites from 8.5 in mesh set gillnets and 8.25 in mesh drift gillnets, summer chum salmon from 5.5 in drift gillnets, and fall chum and coho salmon from 6.0 in mesh drift gillnets. For fish sampled from the Dall Point and the LYTF projects sex was determined by examination of internal reproductive organs for accurate sex determination. Test fishery crews in Mountain Village (YDFDA and Asa’carsarmiut Traditional Council) sampled

Chinook salmon from 7.5 in mesh drift gillnets, and fall chum and coho salmon from $57 / 8$ in mesh drift gillnets. The Pilot Station sonar crew (ADF\&G) sampled Chinook salmon caught in a suite of drift gillnets of various mesh sizes ($2.75 \mathrm{in}, 4.0 \mathrm{in}, 5.0 \mathrm{in}, 5.25 \mathrm{in}, 5.75 \mathrm{in}, 6.5 \mathrm{in}, 7.5 \mathrm{in}$, and 8.5 in). The Eagle sonar crew (ADF\&G) also used a suite of drift gillnets of various mesh sizes to sample Chinook ($5.25 \mathrm{in}, 6.5 \mathrm{in}, 7.5 \mathrm{in}$, and 8.5 in) and fall chum salmon (5.25 in and 7.5 in). Test fishery crews sampled every fish harvested until their daily sample goal was reached.

Escapement Sampling

Several organizations that operated weirs, sonar projects, counting towers, and other groundbased surveys conducted escapement sampling (Table 1). Sampling goals varied among projects, but generally were 160 Chinook, and 160 summer or fall chum salmon per event. An event may have been weekly sampling, quartiles based upon run timing, or a single sample goal for the season. Suggested sample goals, specific project objectives, fish abundance, historical fish passage, run timing, water levels, personnel, and budget were some of the issues considered by project leaders when assessing sample goals. The U.S. Fish and Wildlife Service (USFWS) collected samples at the East Fork Andreafsky and Gisasa rivers. Samples collected from Henshaw Creek were collected by TCC. Samples collected from the Anvik, Delta, Sheenjek, and Toklat rivers were collected by ADF\&G. Samples from the Chena River were collected by ADF\&G Division of Sport Fish. Samples from the Salcha River were collected by Bering Sea Fisherman's Association (BSFA).
Chinook and summer chum salmon were live-sampled using a trap built into the weirs at the East Fork Andreafsky and Gisasa rivers and Henshaw Creek (see Sundlov et al. 2003 for an example of weir sampling and operation methods). Summer chum salmon were live-sampled using a beach seine in the Anvik River. Ground based surveys were used to sample Chinook salmon carcasses at the Anvik, East Fork Andreafsky, Chena, and Salcha rivers (Savereide 2012).

Acoustic Tag Sampling

The ADF\&G tagging crew collected ASL samples from Chinook salmon caught in $5.25 \mathrm{in}, 6.0 \mathrm{in}$, 7.25 in, and 8.5 in mesh drift gillnets.

Genetic Sampling

Chinook salmon were caught using hook and line or dip nets and a small number of samples were obtained from carcasses. The genetic samples and ASL data were collected by Spearfish Research.

Age Determination

Scales or vertebrae were used to determine age. The scales, which are mounted on gum cards, were impressed in cellulose acetate using methods described by Clutter and Whitesel (1956). Scale impressions were magnified and examined using a Microfiche reader. Age was determined by counting the number of freshwater and marine annuli. Annuli are the regions of the scale where the circuli, or rings, are tightly spaced representing slower growth rates associated with winter conditions (Mosher 1969). Ages were recorded using European notation, the number of freshwater annuli separated by a decimal from the number of marine annuli. Total age from the brood year is the sum of freshwater and marine annuli plus 1 to account for time spent in the gravel before hatching. Vertebrae samples were frozen, cleaned, and dried; ages were also
determined by visually counting annuli. Ages were entered into MS Access, or into an MS Excel file depending upon the format in which sex and length data were originally recorded.

Data Analysis

As observed from a given location, the ASL composition of a returning salmon population often changes over the course of the season (Molyneaux et al. 2006); therefore, to better estimate a total harvest or escapement, a stratified random sampling design was used. Samples were divided into time strata, ASL composition from the samples in each stratum were applied to the harvest or escapement for that stratum, and stratum estimates were summed to obtain the season total ASL composition estimate. This design was intended to minimize effects of disproportionate sampling due to changes in ASL composition through the season. Strata were assigned to fishing periods for commercial harvests and to date ranges for escapement estimates. Strata were adjusted depending on the number and distribution of samples collected. An attempt was made to include sufficient sample sizes within each stratum to estimate the proportion of each major age class to obtain a 95% confidence interval width no greater than of 10% of the estimate (Bromaghin 1993). The escapement or harvest for each stratum was provided by project leaders or ADF\&G fish ticket harvest reports. Sample ASL compositions were applied to most commercial harvests and escapement estimates at the East Fork Andreafsky, Gisasa, and Henshaw weirs and the Anvik River sonar.

Estimation of proportion by age and sex

Proportion of fish of age class a of sex s during the stratified period i was estimated as:

$$
\begin{equation*}
\hat{p}_{a, s, i}=\frac{n_{a, s, i}}{n_{i}} \tag{1}
\end{equation*}
$$

Where,

$$
\begin{aligned}
n_{a, s, i} & =\text { number of samples for age class } a \text { of sex } s \text { in stratified period } i, \text { and } \\
n_{i} & =\text { number of samples in stratified period } i .
\end{aligned}
$$

Within a given fishery, location, or project, the number of fish of specific age class a and sex s during a stratified period i was estimated as:

$$
\begin{equation*}
\hat{N}_{a, s, i}=\frac{n_{a, s, i}}{n_{i}} N_{i}, \tag{2}
\end{equation*}
$$

Where,

$$
\begin{aligned}
n_{a, s, i} & =\text { number of samples for age class } a \text { of sex } s \text { in stratified period } i, \\
n_{i} & =\text { number of samples in stratified period } i, \text { and } \\
N_{i} & =\text { number of fish during the stratified period } i .
\end{aligned}
$$

When data for all strata were available, the seasonwide proportion and number of fish of specific age a and sex s was estimated as:

$$
\begin{gather*}
\hat{p}_{a, s}=\frac{1}{N} \sum_{i} N_{i} \hat{p}_{a, s, i}, N=\sum_{i} N_{i}, \tag{3}\\
\hat{N}_{a, s}=\sum_{i} \hat{N}_{a, s, i} .
\end{gather*}
$$

Seasonwide age proportion was estimated as:

$$
\begin{equation*}
\hat{p}_{a}=\frac{1}{N} \sum_{i} \sum_{s} N_{i} \hat{p}_{a, s, i} . \tag{4}
\end{equation*}
$$

Seasonwide female proportion was estimated as:

$$
\begin{equation*}
\hat{p}_{s=f}=\frac{1}{N} \sum_{i} \sum_{a} N_{i} \hat{p}_{a, s, i} . \tag{5}
\end{equation*}
$$

Estimation of mean length by age and sex

For the length, mean length and standard error for fish of age a and sex s in stratified period i was estimated as:

$$
\begin{gather*}
\bar{y}_{a, s, i}=\frac{\sum_{j} y_{a, s, i, j}}{n_{a, s, i}} \tag{6}\\
s e=\sqrt{\frac{s_{a, s, i}^{2}}{n_{a, s, i}}} .
\end{gather*}
$$

Where:
$y_{a, s, i, j}=$ length of j-th fish of age a and sex s, sampled during period i, and

$$
\begin{equation*}
s_{a, s, i}^{2}=\frac{\sum_{j}\left(y_{a, s, i, j}-\bar{y}_{a, s, i}\right)^{2}}{n_{a, s, i}-1} . \tag{7}
\end{equation*}
$$

When data for all strata were available, seasonwide mean length and standard error for fish of age a and sex s were estimated as:

$$
\begin{gather*}
\bar{y}_{a, s}=\frac{1}{N_{a, s}} \sum_{i} N_{a, s, i} \bar{y}_{a, s, i} \\
s e=\sqrt{\hat{V}\left(\bar{y}_{a, s}\right)} . \tag{8}
\end{gather*}
$$

Where:

$$
\begin{gather*}
\hat{V}\left(\bar{y}_{a, s}\right)=\frac{1}{N_{a, s}^{2}} \sum_{i} N_{a, s, i}^{2} \hat{V}\left(\bar{y}_{a, s, i}\right) \\
\hat{V}\left(\bar{y}_{a, s, i}\right)=\left(\frac{s_{a, s, i}^{2}}{n_{a, s, i}}\right) . \tag{9}
\end{gather*}
$$

Samples from other projects (test fisheries and subsistence harvests) were summarized by sample size only, without applying them to harvest numbers or run strength indices. Some of these samples were also be summarized by mesh size, gear type, location, or date ranges.

RESULTS

Chinook Salmon

In 2012, a total of 6,410 Chinook salmon were sampled for ASL data from the United States portion of the Yukon River drainage (Tables 2-5; Appendices A1-A29).

Age, sex, and length samples were collected from 627 Chinook salmon incidentally harvested during summer chum salmon directed commercial fishing periods. Most samples ($n=621$) were from Chinook salmon harvested in District 1 (Appendix A1). The samples collected from District 1 were considered sufficient to represent the entire District 1 harvest. The samples collected from District $2(n=6)$ were not adequate to represent the District 2 harvest due to the small sample size (Appendix A2). District 1 samples were assumed to be representative of the District 2 harvest. Age-1.3 fish predominated the District 1 harvest and females comprised 29.8\% of the harvest (Table 2 and Appendix A1).

Age, sex and length samples were collected from 1,273 subsistence-harvested Chinook salmon (Table 2; Appendices A3-A14). Chinook salmon harvested from Rampart Rapids ($n=444$) were sampled for length and sex only (Table 2; Appendix A13). Age-1.3 fish predominated from all other subsistence locations (Table 2; Appendices A3-A14). Female percentages in the subsistence harvest ranged from 12.5% in the Ruby gillnet harvest to 35.0% in the Anvik gillnet harvest (Table 2; Appendices A12 and A9).

Age, sex and length samples were collected from a total of 2,062 Chinook salmon at 5 test fishery locations (Tables 2 and 3; Appendices A15-A21). Age-1.4 fish predominated from all locations, with the exception of the Pilot Station sonar which had 47.8% age- 1.3 fish. The LYTF Big Eddy site 8.5 in mesh set gillnet and the Big Eddy site 8.25 in mesh drift gillnet had the highest percentage of age-1.4 fish with 71.4% and 64.4% respectively (Table 2; Appendices A16 and A15). In the test fishery samples, female percentages ranged from 43.1\% at Pilot Station sonar to 64.6% at the LYTF Middle Mouth site 8.5 in mesh set gillnet (Table 2; Appendices A17 and A20).

Age, sex, and length samples were collected from a total of 2,248 Chinook salmon at 6 escapement projects (Tables 2 and 4; Appendices A22-A27). Age-1.3 Chinook salmon predominated from most escapement projects, with the exception of the Chena and Salcha River carcass surveys which had 49.0% and 59.3% age-1.4 fish, respectively (Table 2; Appendices A24 and A27). Female percentages ranged from 28.2\% in the East Fork Andreafsky River weir samples to 59.8% from the Salcha River carcass survey (Table 2; Appendices A22 and A27).

The Pilot Station Chinook salmon acoustic tagging project collected age, sex, and length samples from a total of 150 Chinook salmon during operation in 2012. Age-1.4 Chinook salmon predominated and females comprised 64.0% of fish sampled (Table 2; Appendix A28).

The Nulato River Chinook salmon genetic sampling project collected age, sex, and length samples from a total of 50 Chinook salmon. The ASL samples were incidental to the genetic collection and not applied to an escapement estimate. Age-1.3 Chinook salmon predominated and females comprised 36.0\% of fish sampled (Table 2; Appendix A29).

The male mean length by age from all projects was: 563 mm for age-1.2, 707 mm for age-1.3, and 806 mm for age-1.4 fish. The female mean length by age from all projects was: 583 mm for age-1.2, 761 mm for age-1.3, and 831 mm for age-1.4 fish (Table 5).

Summer Chum Salmon

A total of 5,733 summer chum salmon were sampled for ASL data from the Alaska portion of Yukon River drainage in 2012 (Tables 6-9; Appendices B1-B13).
Age, sex, and length samples were collected from 1,374 commercially-harvested summer chum salmon (Tables 6 and 7; Appendices B1-B4). Age-0.3 fish predominated from the commercial harvests in all districts (Tables 6 and 7). Females represented 47.6% of the District l, 49.2% of the District 2, 98.4% of the Subdistrict $4-\mathrm{A}$, and 64.9% of the District 6 commercial harvest (Tables 6 and 7). No samples were collected from summer chum salmon harvested during District 2 commercial periods. The overall age and sex composition for the District 2 harvest was estimated by applying the age and sex composition of District 1 periods to unsampled District 2 periods. The high female percentage in the Subdistrict 4-A commercial harvest is because females only were sold during some periods.

Age, sex, and length samples from 2,007 summer chum salmon were collected from the Dall Point test fishery and the LYTF projects combined (Tables 6 and 8; Appendices B5-B8). Similar to the commercial harvest in the lower river, age- 0.3 fish was the most common age class. Females made up 38.3\% of summer chum salmon sampled at Dall Point, 55.5\% at the Big Eddy site, and 58.5% at the Middle Mouth site. Compared with the LYTF historical average (19871988, 1990-2006, 2009-2012), the 2012 LYTF summer chum salmon age-0.3 and age-0.5 percentages were above average and female percentages were slightly below average (Table 8).

Age, sex, and length samples from 2,352 summer chum salmon were collected from 5 escapement projects in tributaries of the Yukon River. Similar to the commercial harvest, age-0.3 fish predominated from all escapement projects (Table 6; Appendices B9-B13). The average percentage of females from all escapement projects was 54.8%. The Salcha River carcass samples had the highest percentage of females at 65.4% and the East Fork Andreafsky River weir had the lowest at 47.6% (Table 6; Appendices B13 and B9).

The mean length for male summer chum salmon by age was: 527 mm for age-0.2, 562 mm for age- $0.3,589 \mathrm{~mm}$ for age- 0.4 , and 593 mm for age- 0.5 . The female mean length by age was: 496 mm for age- $0.2,537 \mathrm{~mm}$ for age- 0.3 , 556 mm for age- 0.4 , and 563 mm for age- 0.5 fish (Table 9). Length comparisons between males and females at all projects for summer chum salmon showed that males were larger than females of equal age.

FALL CHUM SALMON

A total of 3,532 fall chum salmon were sampled for ASL data from the Alaska portion of the Yukon River drainage in 2012 (Tables 6, 7, 9 and 10; Appendices C1-C13).
Age, sex, and length samples were collected from 1,126 commercially-harvested fall chum salmon. Age-0.3 fish predominated in all districts and subdistricts. Females represented 54.7% of the District 1, 52.8% of the District 2, and 50.5% of the Subdistrict 4 -A commercial harvest (Tables 6 and 7; Appendices C1-C3). No samples were collected from the fall chum salmon harvested in the District 2 commercial periods. The overall age and sex composition for the

District 2 harvest was estimated by applying the age and sex composition of District 1 periods to unsampled District 2 periods.

Age, sex, and length samples were collected from 49 fall chum salmon in the Subdistrict 5-C subsistence harvest. Irrespective of the small sample size, the age composition was consistent with that of the commercial harvest in District 1 with 81.6% age- 0.3 fish. Females comprised 49.0\% of the samples (Table 6; Appendix C4).

Age, sex, and length samples were collected from 1,817 fall chum salmon harvested in 4 test fisheries (Table 6; Appendices C5-C9). Overall, the test fishery samples were predominated by age-0.3 fish (75.0%) and females composed 51.9\% of fish sampled (Table 6).
Vertebrae samples from 510 fall chum salmon were collected at 3 escapement sites in Yukon River tributaries: the Delta, Sheenjek, and Toklat rivers (Tables 6, 9, and 10; Appendices C10C13). Overall, the samples were predominated by age-0.3 fish (69.0\%), which was less than the age- 0.3 percentage from most other fall chum salmon projects. Overall, the fish sampled from the escapement projects were composed of 50.4% females, ranging from 65.0% from Toklat River carcass samples to 32.8% from Delta River carcass samples (Table 6; Appendix C10 and C12). The Toklat River samples consisted of 150 aged fish and 180 fish with sex and length; the ages were not collected with the corresponding sex and length (Appendix C12).

The mean length for male fall chum salmon by age was: 553 mm for age- 0.2 , 583 mm for age$0.3,600 \mathrm{~mm}$ for age- 0.4 , and 617 mm for age- 0.5 fish. The female mean length by age was: 561 mm for age- $0.2,566 \mathrm{~mm}$ for age- $0.3,577 \mathrm{~mm}$ for age- 0.4 , and 581 mm for age- 0.5 fish (Table 9). Similar to summer chum salmon, length comparisons between males and females for fall chum salmon showed that males were larger than females of equal age, with the exception of age- 0.2 females being slightly larger than males (Table 9).

COHO SALMON

A total of 966 coho salmon were sampled for ASL data from the Yukon River drainage in 2012 (Tables 11 and 12; Appendices D1-D5).
Age, sex, and length samples were collected from 458 commercially-harvested coho salmon from District 1. Age-2.1 fish predominated the District 1 commercial harvest. Females comprised 49.2% of the District 1 commercial harvest (Table 11; Appendix D1).

Age, sex, and length samples were collected from 508 coho salmon at 3 test fishery projects, (Table 11; Appendices D2-D5). Overall, the test fishery samples were predominated by age-2.1 fish (59.0\%) followed by age-1.1 fish (33.9\%). Females comprised 45.7% of the test fishery samples (Table 11).
The male mean length by age was: 552 mm for age-1.1 and age-2.1, and 548 mm for age- 3.1 fish. The female mean length by age was: 551 mm for age-1.1, 552 mm for age-2.1, and 553 mm for age-3.1 fish (Table 12).
In 2012, age- 2.1 coho salmon predominated; this is typically the most common age of coho salmon that return to the drainage (Table 11). The percentage of female coho salmon was below 50% at all test fish projects with the exception of the LYTF Middle Mouth site (Table 11). The LYTF Middle Mouth site harvest had the highest percentage of female fish; the sex of these fish was determined from internal characteristics (51.5\%, Table 11). In 2012, there was little
difference in mean length by sex with the exception of the age-3.1 females being larger than males (Table 12).

DISCUSSION

Age, sex, and length data have been collected from Yukon River salmon species since the 1960s. This information aids in fishery management decisions and allows researchers to develop brood tables for run reconstruction and spawner-recruit analysis. It also provides data to evaluate annual and historical changes in the ASL composition of salmon throughout the Yukon River drainage. Yukon River ASL sampling projects were designed to account for temporal and spatial variability that exists within salmon populations, but there is potential for some biases caused by small sample sizes, scale absorption, and collection methods. Age, sex, and length data users are cautioned to be aware of these inherent biases when interpreting data.
One possible bias, due to scale absorption, exists in samples collected from carcasses as well as those taken on or near the spawning grounds. This potential bias is caused by the margin of the scale being absorbed as an energy reserve in the last few weeks of a salmon's life (Clutter and Whitesel 1956). Scale absorption normally becomes more pronounced the farther upriver the samples are collected and may lead to under aging because little evidence of the outermost annulus remains. For these reasons, vertebrae were collected for aging Salcha River summer chum carcasses, and all fall chum salmon carcasses.

A bias often results from inherent size selectivity in sample collection methods. This bias is most apparent with Chinook salmon, because of the large range in fish size, where males and younger aged fish predominate in the smaller size fish. Gillnets are size selective based on mesh size, and fish wheels tend to be biased towards smaller sized fish that migrate near shore in lower water velocities (Meehan 1961). In spawning ground carcass recoveries, Kissner and Hubartt (1986) indicated that Chinook salmon males tend to drift downstream while females tend to remain near their redds; during periods of increased water velocities, smaller fish have a greater potential to be carried downstream and out of the study area. Zhou (2002) indicated that fish size and stream flow affect carcass recovery rates. This nonrandom dispersal of carcasses could bias ASL data towards females and larger older-aged fish, although proper sampling designs have been shown to reduce this (Evenson 1991; Skaugstad 1990). Many scientists also believe a bias may exist in weir sampling towards smaller fish when larger fish are more reluctant, or "trap shy", to enter a confined weir trap structure and be available for live sampling. Though trap shyness has yet to be scientifically evaluated, users of these data should be aware that this potential bias exists. Sampling biases are described in greater detail by Molyneaux et al. (2006).
Historically, Chinook salmon caught in the LYTF with 8.5 in mesh have been close to 50% female (Table 3). Females made up 62.6% of the 2012 samples from the LYTF, which was above the historical average (Table 3). This above average percentage of females may be attributed to the slightly above average percentage of 6 -year-old fish, which are predominantly females. Samples collected from individual projects and locations can vary in sex composition, which is often related to the gear used to capture the fish and the relative percentage of smaller age-1.2 fish which are usually male. A relatively low percentage of females can be attributable to the selectivity of small mesh gillnets or fish wheels, where smaller and typically male fish are caught (Meehan 1961; Molyneaux et al. 2005). In 2012, low percentages of females were found in the District 1 commercial harvest, as well as all of the subsistence harvest sampling projects (Table 2). The low percentage of females in the District 1 commercial harvests is most likely due
to the commercial periods targeting summer chum salmon with 6.0 in or less mesh gillnets that harvested smaller, usually male, Chinook salmon. The percentage of females from the East Fork Andreafsky River weir and the Anvik River were below average, but the percentage of females from the Chena and Salcha rivers were above average (Table 4).
At the LYTF projects where sex was determined through internal examination of reproductive organs, and is therefore more accurate than other projects using external characteristics for sex determination, Chinook salmon males were smaller on average than females, which is consistent with recent analyses. Karpovich and DuBois (2007) found that males were smaller than females with the exception of the age-1.5 fish. Molyneaux et al. (2006) also reported male Chinook salmon had a smaller mean length than females on the Kuskokwim River.

At the LYTF project locations, Chinook salmon age distribution was different by sex, where the majority of the younger fish (age-1.2 and age-1.3) were male and more of the older fish (age-1.4, age-1.5, and age-2.4) were female. This relationship between Chinook salmon age and sex is typical and has been reported previously from the Yukon and Kuskokwim rivers (Horne-Brine et al. 2009; Molyneaux et al. 2006).

In 2012, overall the percentage of 5 -year-old Chinook salmon (age-1.3 and age-2.2) was at or above the historical average (Tables 3 and 4). The above average percentage of 5 -year-old Chinook salmon is attributed to the 2007 brood year. Above average percentages of Chinook salmon returning from the 2007 brood year were also observed from all escapement projects in 2011, where 4-year-old fish (age-1.2 and age-2.1) comprised as many as 22.4 percentage points more than average (Table 4). The 2012 percentages of 5-year-old (age-1.3 and age-2.2) Chinook salmon from LYTF, East Fork Andreafsky River, Anvik River, Chena River, and Salcha River were at, or significantly above, the 5 -year averages (Tables 3 and 4). Other escapement projects with high percentages of 5-year-old fish were the Gisasa River and Henshaw Creek weirs (Table 2). 5-year-old Chinook salmon also predominated in the subsistence harvest, regardless of gear.

ACKNOWLEDGEMENTS

This investigation was funded by the United States Fish and Wildlife Service and the Alaska Department of Fish and Game. The author thanks all agencies and organizations that collected the salmon stock assessment data included in this report: the Alaska Department of Fish and Game, Divisions of Sport Fish and Commercial Fisheries; Asa’carsarmiut Traditional Council, Association of Village Council Presidents, Bering Sea Fisherman’s Association, City of Kaltag, Spearfish Research, Tanana Chiefs Conference, United States Fish and Wildlife Service, United States Department of the Interior Bureau of Land Management, Yukon Delta Fisheries Development Association, and the Yukon River Drainage Fisheries Association, as well as Kwik'Pak Fisheries for their cooperation during commercial harvest sampling. The author also thanks Jan Conitz, Larry DuBois, and Toshihide Hamazaki for providing reviews of draft manuscripts.

REFERENCES CITED

ADF\&G (Alaska Department of Fish and Game). 2010-2013 Arctic-Yukon-Kuskokwim Commercial Finfish-Subsistence-Personal Use Finfish and Shellfish Fishing Regulations 2010-2013. Alaska Department of Fish and Game, Juneau.

Bales, J., and L. DuBois. 2007. Yukon River salmon age, sex and length (ASL) sampling procedures for scale gum cards and mark-sense data forms. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 3A07-08, Anchorage.
Bromaghin, J. F. 1993. Sample size determination for interval estimation of multinomial probabilities. The American Statistician (August 1993) 47(3):203-206.

Buklis, L. S. 1987. Age, sex, and size of Yukon River salmon catch and escapement, 1986. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report No. 221, Anchorage.

Carroll, H., and B. C. McIntosh. 2011. Sonar estimation of salmon passage in the Yukon River near Pilot Station, 2007. Alaska Department of Fish and Game, Fishery Data Series No. 11-43, Anchorage.

Clutter, R., and L. Whitesel. 1956. Collection and interpretation of sockeye salmon scales. Bulletin of the International North Pacific Fisheries Commission 9.

Crane, P. A., W. J. Spearaman, and L. W. Seeb. 2001. Yukon River chum salmon: Report for genetic stock identification studies, 1992-1997. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 5J01-08.
Dunbar, R. D. 2012. Sonar estimation of fall chum salmon abundance in the Sheenjek River, 2010. Alaska Department of Fish and Game, Fishery Data Series No. 12-47, Anchorage.

Estensen, J. L., S. Hayes, S. Buckelew, D. Green, and D. J. Bergstrom. 2012. Annual management report for the Yukon and Northern areas, 2010. Alaska Department of Fish and Game, Fishery Management Report No. 1223, Anchorage.

Estensen, J. L., and A. J. Padilla. 2012. Fall season cooperative salmon drift gillnet test fishing in the Lower Yukon River, 2010. Alaska Department of Fish and Game, Fishery Data Series No. 12-09, Anchorage.
Estensen, J., and B. Borba. 2012. 2012 Yukon River fall season summary. Alaska Department of Fish and Game, Division of Commercial Fisheries, News Release, Fairbanks.
http://www.adfg.alaska.gov/static/home/news/pdfs/newsreleases/cf/238374496.pdf (Accessed: February 2013).
Evenson, M. J. 1991. Abundance, egg production, and age-sex-size composition of Chinook salmon escapement in the Chena River, 1990. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 91-6, Anchorage.

Hayes, S. J., and E. Newland. 2012. 2012 Yukon River summer season summary. Alaska Department of Fish and Game, Division of Commercial Fisheries, News Release, Anchorage. http://www.adfg.alaska.gov/static/home /news/pdfs/newsreleases/cf/229271472.pdf. (Accessed: November 2012).

Horne-Brine, M. H., J. Bales, and L. DuBois. 2009. Salmon age and sex composition and mean lengths for the Yukon River area, 2007. Alaska Department of Fish and Game, Fishery Data Series No. 09-26, Anchorage.
INFPC (International North Pacific Fisheries Commission). 1963. Annual report, 1961. Vancouver, British Columbia.
Jallen, D. M., S. D. Ayers, and T. Hamazaki. 2012. Subsistence and personal use salmon harvests in the Alaska portion of the Yukon River drainage, 2010. Alaska Department of Fish and Game, Fishery Data Series No. 1218, Anchorage.
JTC (Joint Technical Committee of the Yukon River US/Canada Panel). 2013. Yukon River salmon 2012 season summary and 2013 season outlook. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 3A13-02, Anchorage.
Karpovich, S. and L. DuBois. 2007. Salmon age and sex composition and mean lengths for the Yukon River area, 2004. Alaska Department of Fish and Game, Fishery Data Series No. 07-05, Anchorage.

REFERENCES CITED (Continued)

Kissner, P. D., Jr. and D. J. Hubartt. 1986. A study of Chinook salmon in Southeast Alaska. Alaska Department of Fish and Game, Division of Sport Fish, Annual Report 1985-1966. Project F-10-1, 27 (ASW-41).

Leba, H. A., and L. DuBois. 2011. Origins of Chinook salmon in the Yukon River fisheries, 2008. Alaska Department of Fish and Game, Fishery Data Series No. 11-59, Anchorage

McEwen, M. S. 2011. Anvik River sonar chum salmon escapement study, 2010. Alaska Department of Fish and Game, Fishery Data Series No. 11-35, Anchorage.
Mears, J. D. 2011. Abundance and run timing of adult pacific salmon in the East Fork Andreafsky River, Yukon Delta Wildlife Refuge, Alaska, 2011. U. S. Fish and Wildlife Service, Fairbanks Fishery Resource Office, Alaska Fisheries Data Series Number 2012-5, Fairbanks, Alaska.

Meehan, W. R. 1961. Use of a fish wheel in salmon research and management. Transactions of the American Fisheries Society. 90(4):490-494.
Melegari, J. L. 2012. Abundance and run timing of adult fall chum salmon in the Chandalar River, Yukon Flats National Wildlife Refuge, Alaska, 2011. U. S. Fish and Wildlife Service, Fairbanks Fishery Resource Office, Alaska Fisheries Data Series Number 2012-7, Fairbanks, Alaska.

Menard, J. 1996. Age, sex, and length of Yukon River salmon catches and escapements, 1994. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 3A96-16, Juneau.

Molyneaux, D. B., D. L. Folletti, L. K. Brannian, and G. Roczicka. 2005. Age, sex, and length composition of Chinook salmon from the 2004 Kuskokwim River subsistence fishery. Alaska Department of Fish and Game, Fishery Data Series No. 05-45, Anchorage.

Molyneaux, D. B., D. L. Folletti, and C. A. Shelden. 2006. Salmon age, sex, and length catalog for the Kuskokwim area, 2005. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 3A06-01, Anchorage.

Mosher, K. H. 1969. Identification of Pacific salmon and steelhead trout by scale characteristics. United States Department of the Interior, United States Fish and Wildlife Service, Bureau of Commercial Fisheries, Circular 317, Washington, D.C.

Newland, E. J., and S. J. Hayes. 2008. Summer season cooperative salmon drift gillnet test fishing in the Lower Yukon River, 2006. Alaska Department of Fish and Game, Fishery Data Series No. 08-39, Anchorage.

Savereide, J. W. 2012. Salmon studies in the Chena, Salcha, Goodpaster, and Delta Clearwater rivers, 2010. Alaska Department of Fish and Game, Fishery Data Series No. 12-05, Anchorage.
Schumann. K., and L. DuBois. 2011. Salmon age and sex composition and mean lengths for the Yukon River area, 2010. Alaska Department of Fish and Game, Fishery Data Series No. 11-48, Anchorage.

Skaugstad, C. 1990. Abundance, egg production, and age-sex-size composition of Chinook salmon escapement in the Salcha River, 1989. Alaska Department of Fish and Game, Fishery Data Series No. 90-23, Anchorage.

Smith, E. A., and R. D. Dunbar. 2012. Sonar estimation of Chinook and fall chum salmon passage in the Yukon River near Eagle, Alaska, 2011. Alaska Department of Fish and Game, Fishery Data Series No. 12-52, Anchorage.
Sundlov, T. J., C. F. Kresinger and B. Karlen. 2003. Abundance and run timing of adult salmon in the Tozitna River, Alaska, 2003. USFWS Office of Subsistence Management, Fisheries Resource Monitoring Program, Annual Report No. 03-203, Anchorage, Alaska.

Tobin, J. H. 1994. Construction and performance of a portable resistance board weir for counting migrating adult salmon in rivers. U. S. Fish and Wildlife Service, Kenai Fishery Resource Office, Alaska Fisheries Technical Report Number 22, Kenai, Alaska.
Zhou, S. 2002. Size-dependent recovery of Chinook salmon in carcass surveys. Transactions of the American Fisheries Society 131: 1194-1202.

TABLES AND FIGURES

Table 1.-Projects and salmon species for which age, sex, and length data were collected in 2012 from the Yukon area.

Project Type	Location	Salmon Species (ASL Summaries Present = X)			
		Chinook	Summer	Fall Chum	Coho
Commercial	District $1^{\text {a }}$	$\mathrm{X}^{\text {b }}$	X	X	X
	District $2^{\text {a }}$	$\mathrm{X}^{\text {b }}$			
	Subdistrict 4-A ${ }^{\text {a }}$		X	X	
	District $6{ }^{\text {a }}$		X		
Subsistence	District 1 Alakanuk ${ }^{\text {c }}$	X			
	District 1 Emmonak ${ }^{\text {c }}$	X			
	District 1 Kotlik ${ }^{\text {c }}$	X			
	District 2 Marshall ${ }^{\text {c }}$	X			
	District 2 Mountain Village ${ }^{\text {c }}$	X			
	District 2 St. Mary's ${ }^{\text {c }}$	X			
	Subdistric 4-A Anvik ${ }^{\text {d }}$	X			
	Subdistrict 4-A Kaltag ${ }^{\text {e }}$	X			
	Subdistricts 4-A, 4-B, 4-C Galena ${ }^{\text {d }}$	X			
	Subdistricts 4-B, 4-C Ruby ${ }^{\text {d }}$	X			
	Subdistrict 5-B Rampart Rapids ${ }^{\text {f }}$	X^{g}			
	Subdistrict 5-C Rampart ${ }^{\text {a }}$			X	
	Subdistrict 5-D Fort Yukon ${ }^{\text {d }}$	X			
Test Fishery	Dall Point ${ }^{\text {a }}$		X		
	Big Eddy ${ }^{\text {a }}$	X	X	X	X
	Middle Mouth ${ }^{\text {a }}$	X	X	X	X
	Mountain Village ${ }^{\text {h }}$	X		X	X
	Pilot Station Sonar ${ }^{\text {a }}$	X			
	Eagle Sonar ${ }^{\text {a }}$	X		X	X
Escapement	Andreafsky River, East Fork ${ }^{\text {i }}$	X	X		
	Anvik River ${ }^{\text {a }}$	X	X		
	Chena River ${ }^{\text {j }}$	X			
	Delta River ${ }^{\text {a }}$			X	
	Gisasa River ${ }^{\text {i }}$	X	X		
	Henshaw Creek ${ }^{\text {d }}$	X	X		
	Salcha River ${ }^{\mathrm{k}}$	X	X		
	Sheenjek River Sonar ${ }^{\text {a }}$			X	
	Toklat River ${ }^{\text {a }}$			X	
Acoustic	Pilot Station ${ }^{\text {a }}$	X			
Genetic	Nulato River ${ }^{1}$	X			

a Project was operated by the Alaska Department of Fish and Game, Division of Commercial Fisheries.
b Incidental harvest from the commercial summer chum salmon fishery.
c Project was operated by Association of Village Council Presidents.
d Project was operated by the Tanana Chiefs Conference.
e Project was operated by the City of Kaltag.
f Project was operated by the Rapids Research Center and Stan Zuray.
g Only sex and length data were collected by this project.
${ }^{h}$ Project was operated by the Asa'carsarmiut Traditional Council.
i Project was operated by the United States Fish and Wildlife Service.
j Project was operated by the Alaska Department of Fish and Game, Division of Sport Fish.
${ }^{k}$ Project was operated by the Bering Sea Fishermen's Association.
${ }^{1}$ Project was operated by Spearfish Research.

Table 2.-Yukon River Chinook salmon age and female percentages from commercial, subsistence, test fishery, escapement, and genetic sampling projects, 2012.

		Percent (\%)						
		Brood Year (Age)						
Project Type	Sample	2009	2008	2007	2006	2005	2004	
Location and (gear)	Size	(1.1)	(1.2) (2.1)	(1.3) (2.2)	(1.4) (2.3)	(1.5) (2.4)	(1.6) (2.5)	Female

Commercial													
District $1\left(\leq 6^{\prime \prime}\right.$ mesh gillnet) ${ }^{\text {a }}$	621	0.0	18.8	0.0	50.2	0.2	30.0	0.2	0.5	0.2	0.0	0.0	29.8
District $2\left(\leq 6^{\prime \prime}\right.$ mesh gillnet) ${ }^{\text {a,b }}$	6	0.0	33.3	0.0	50.0	0.0	16.7	0.0	0.0	0.0	0.0	0.0	50.0

Subsistence										
District 1 Alakanuk (gillnet)	58	0.0	12.1	0.0	55.2	0.0	27.6	3.4	1.7	0.0
District 1 Kotlik (gillnet)	13	0.0	5.9	0.0	69.2	0.0	30.8	0.0	0.0	0.0
District 1 Emmonak (gillnet)	46	0.0	6.5	0.0	63.0	0.0	28.3	0.0	0.0	2.2

| Test Fishery | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Big Eddy (8.25" mesh drift gillnet) | 219 | 0.0 | 1.8 | 0.0 | 31.5 | 0.5 | 64.4 | 0.0 | 0.0 | 1.8 | 0.0 | 0.0 | 61.2 |
| Big Eddy (8.5" mesh set gillnet) | 346 | 0.0 | 1.4 | 0.0 | 24.3 | 0.0 | 71.4 | 0.0 | 2.0 | 0.9 | 0.0 | 0.0 | 59.8 |
| Middle Mouth (8.5" mesh set gillnet) | 461 | 0.0 | 1.1 | 0.0 | 34.1 | 0.0 | 63.1 | 0.0 | 0.7 | 1.1 | 0.0 | 0.0 | 64.6 |
| Mountain Village (7.5" mesh drift gillnet) | 405 | 0.0 | 1.7 | 0.0 | 44.7 | 0.2 | 49.1 | 0.0 | 1.2 | 2.7 | 0.0 | 0.2 | 44.2 |
| Pilot Station Sonar (2.75" to 8.5" mesh drift gillnet) | 385 | 0.8 | 5.7 | 0.0 | 47.8 | 0.0 | 42.9 | 0.5 | 0.8 | 1.6 | 0.0 | 0.0 | 43.1 |
| Eagle Sonar (5.25" to 8.5" mesh drift gillnet) | 246 | 0.4 | 6.1 | 0.0 | 29.3 | 0.4 | 56.9 | 2.4 | 1.2 | 3.3 | 0.0 | 0.0 | 49.6 |

-continued-

Table 2.-Page 2 of 2.

		Percent (\%)											
		Brood Year (Age)											Female
Project Type	Sample Size	2009	2008		2007		2006		2005		2004		
Location and (gear)		(1.1)	(1.2)	(2.1)	(1.3)	(2.2)	(1.4)	(2.3)	(1.5)	(2.4)	(1.6)	(2.5)	
Escapement													
Andreafsky River, East Fork (weir trap)	572	0.2	11.1	0.0	64.6	0.0	23.7	0.0	0.3	0.0	0.0	0.0	28.2
Anvik River (hook and line, carcass) ${ }^{\text {d }}$	246	0.0	14.6	0.0	53.7	0.0	31.3	0.0	0.0	0.4	0.0	0.0	30.1
Chena River (carcass)	198	0.5	5.1	0.0	45.5	0.0	49.0	0.0	0.0	0.0	0.0	0.0	55.6
Gisasa River (weir trap)	523	0.0	11.4	0.0	60.6	0.3	26.9	0.0	0.4	0.3	0.0	0.0	33.4
Henshaw Creek (weir trap)	289	0.0	15.1	0.0	49.0	0.0	35.5	0.0	0.4	0.0	0.0	0.0	42.0
Salcha River (carcass)	420	0.2	6.0	0.0	32.9	0.0	59.3	0.0	1.7	0.0	0.0	0.0	59.8
Acoustic Tagging													
Pilot Station (5.25" to 8.5" mesh drift gillnet)	150	0.0	0.0	0.0	34.7	0.0	60.7	0.7	2.0	2.0	0.0	0.0	64.0
Genetic Sampling													
Nulato River (hook and line, dip net, carcass)	50	0.0	6.0	0.0	62.0	0.0	32.0	0.0	0.0	0.0	0.0	0.0	36.0
Total Chinook	6,410												

a Incidental harvest from the summer chum salmon commercial fishery.
b Only sampled fish from Periods 1, 2, and 3. Not representative of harvest.
c Project only collected sex and length data.
${ }^{d}$ Only males were harvested in the sport fishery.

Table 3.-Chinook salmon age and female percentages from the Lower Yukon River test fishery (combined Big Eddy and Middle Mouth sites) 8.5 in mesh set gillnet, 1985-2012.

Year	Sample Size	Percent (\%)							
		Number of Days	Age						Female
			3 yr	$\frac{4 \mathrm{yr}}{(12.21)}$	5 yr	$\frac{6 \mathrm{yr}}{\left(1.4{ }^{\text {a }} \text {) }\right.}$	$\frac{7 \mathrm{yr}}{}$	8 yr	
			(1.1)	(1.2, 2.1)	(1.3, 2.2)	(1.4, 2.3)	(1.5, 2.4)	(1.6, 2.5)	
1985	309	18	0.0	3.9	8.4	79.3	8.1	0.3	53.7
1986	533	25	0.3	0.9	22.7	52.9	23.1	0.2	46.3
1987	465	20	0.3	0.9	3.0	78.5	17.0	0.4	62.8
1988	262	30	0.0	2.3	15.3	43.9	37.8	0.8	56.1
1989	381	29	0.0	0.8	17.8	67.2	13.9	0.5	53.0
1990	227	23	0.0	3.5	11.0	76.7	8.8	0.0	56.4
1991	356	27	0.0	1.4	42.1	48.9	7.0	0.6	49.2
1992	359	19	0.0	1.1	10.6	82.7	5.0	0.6	56.5
1993	472	25	0.0	0.8	25.8	63.8	9.3	0.2	50.8
1994	653	41	0.2	1.4	41.3	51.8	5.5	0.0	47.3
1995	445	19	0.0	0.9	11.2	81.6	6.3	0.0	50.8
1996	355	13	0.0	1.1	61.4	21.4	16.3	0.0	53.0
1997	302	12	0.0	1.7	9.6	86.4	2.6	0.0	51.3
1998	928	39	0.0	1.3	43.4	45.3	9.9	0.1	50.2
1999	942	35	0.0	0.7	9.1	87.0	3.1	0.0	61.4
2000	950	42	0.2	0.7	19.2	71.1	9.1	0.0	53.4
2001	1,020	37	0.0	0.5	11.0	80.6	8.0	0.0	56.9
2002	1,050	43	0.0	2.5	20.5	64.9	12.1	0.0	52.2
2003	1,400	50	0.0	0.6	24.1	68.0	7.3	0.1	52.5
2004	865	48	0.1	4.3	18.5	74.5	2.7	0.0	58.2
2005	994	43	0.0	1.5	40.9	55.0	2.5	0.0	48.9
2006	987	38	0.0	2.2	50.6	45.0	2.2	0.0	48.5
2007	1,030	42	0.0	4.7	14.4	80.2	0.8	0.0	52.5
2008	1,271	43	0.0	1.2	44.4	51.0	3.5	0.0	46.3
2009	1,035	42	0.0	3.4	9.1	85.5	2.0	0.0	60.3
2010	1,328	37	0.2	4.1	59.6	33.6	2.6	0.0	47.8
2011	998	42	0.0	1.4	31.7	62.8	4.0	0.1	52.4
2012	807	34	0.0	1.2	29.9	66.7	2.2	0.0	62.6
Average ${ }^{\mathrm{a}}$ $(1994,1998-2011)$	1,030	41	0.0	2.0	29.2	63.7	5.0	0.0	52.6
5 yr Average (2008-2011)	1,132	41	0.0	2.9	31.8	62.6	2.6	0.0	51.9

Note: The Lower Yukon River test fishery was conducted from the end of May through July 15. Before 1998, this test fishery was often discontinuous or was not conducted throughout the season. The "Number of Days" refers only to those days that scale samples were collected from Chinook salmon and aged.
a The averages only include years when samples were collected throughout the season and years with a 35 day season minimum. Averages were not weighted by number of fish sampled each year.

Table 4.-Yukon River Chinook salmon age and female percentages, from selected escapement projects, 1985-2012.

-continued-

Table 4.-Page 2 of 4.

-continued-

Table 4.-Page 3 of 4.

Project	Year	Sample Size	Percent (\%)						
			Age						Female
			3 yr	4 yr	$5 \mathrm{yr}$	$6 \mathrm{yr}$	$7 \mathrm{yr}$	8 yr	
			(1.1)	(1.2, 2.1)	(1.3, 2.2)	(1.4, 2.3)	(1.5, 2.4)	(1.6, 2.5)	
Chena River	$1985{ }^{\text {i }}$	513	0.0	12.1	21.7	59.2	7.0	0.0	52.5
	$1986{ }^{\text {i }}$	729	0.1	9.3	51.2	29.9	9.3	0.1	25.4
	$1987{ }^{\text {i }}$	560	0.0	2.9	13.1	75.6	8.4	0.0	58.0
	$1988{ }^{\text {i }}$	468	0.6	10.5	17.5	46.4	24.6	0.4	60.9
	$1989{ }^{\text {i }}$	288	0.3	4.2	30.2	54.9	10.4	0.0	64.9
	$1990{ }^{\text {i }}$	522	0.0	23.8	25.7	46.7	3.8	0.0	46.2
	$1991{ }^{\text {i }}$	337	0.0	8.3	55.8	28.5	7.4	0.0	31.5
	$1992{ }^{\text {i }}$	464	1.9	40.7	16.4	40.5	0.4	0.0	37.7
	$1993{ }^{\text {b }}$	187	0.5	29.4	41.2	27.8	1.1	0.0	16.6
	$1994{ }^{\text {b }}$	512	0.0	2.9	43.6	51.2	2.3	0.0	45.1
	$1995{ }^{\text {b }}$	464	0.0	4.4	20.9	70.9	3.8	0.0	66.0
	$1996{ }^{\text {b }}$	514	2.1	6.2	44.2	23.5	23.9	0.0	44.0
	$1997{ }^{\text {b }}$	702	0.3	37.2	13.4	48.0	1.1	0.0	39.6
	$1998{ }^{\text {b }}$	228	0.0	4.4	72.4	18.4	4.8	0.0	41.2
	$1999{ }^{\text {b }}$	318	0.9	7.9	25.2	65.4	0.6	0.0	58.8
	$2000{ }^{\text {b }}$	149	0.0	20.1	35.6	35.6	8.7	0.0	34.9
	$2001{ }^{\text {b }}$	521	0.6	9.6	33.6	51.2	5.0	0.0	44.0
	$2002{ }^{\text {b }}$	373	0.1	29.0	29.8	38.5	2.7	0.0	31.7
	$2003{ }^{\text {b }}$	370	0.0	5.1	46.5	41.6	6.8	0.0	44.9
	$2004{ }^{\text {b }}$	158	0.0	8.9	17.7	71.5	1.9	0.0	66.5
	$2005{ }^{\text {b }}$	553	0.0	6.5	49.9	39.5	4.1	0.0	42.4
	$2006{ }^{\text {b }}$	362	0.0	12.7	45.6	40.6	1.1	0.0	45.9
	$2007{ }^{\text {b,g }}$	53	-	-	-	-	-	-	-
	$2008{ }^{\text {b,g }}$	36	0.0	27.8	61.1	11.1	0.0	0.0	44.4
	$2009{ }^{\text {b }}$	442	0.0	14.5	17.0	67.8	0.7	0.0	55.1
	$2010{ }^{\text {b }}$	80	0.0	13.6	51.9	32.1	2.5	0.0	30.9
	$2011{ }^{\text {b }}$	425	0.2	22.6	46.8	28.7	1.6	0.0	31.8
	$2012{ }^{\text {b }}$	198	0.5	5.1	45.5	49.0	0.0	0.0	55.6
Average ${ }^{\mathrm{f}}$ (1985-2011)			0.3	13.9	34.7	45.4	5.8	0.0	44.7
5 yr Average ${ }^{\text {f }}$ (2005-2006, 2009-2011)			0.0	14.0	42.2	41.7	2.0	0.0	41.2

-continued-

Table 4.-Page 4 of 4.

Project	Year	Sample Size	Percent (\%)						
			Age						Female
			3 yr	$\frac{4 \mathrm{yr}}{}$	$5 \mathrm{yr}$	$6 \mathrm{yr}$	$7 \mathrm{yr}$	8 yr	
			(1.1)	(1.2, 2.1)	(1.3, 2.2)	(1.4, 2.3)	(1.5, 2.4)	(1.6, 2.5)	
Salcha River	$1985{ }^{\text {i }}$	511	0.0	12.3	17.6	64.8	5.3	0.0	48.5
	$1986{ }^{\text {i }}$	586	0.2	11.8	43.7	29.5	14.8	0.0	35.8
	$1987{ }^{\text {i }}$	551	0.2	6.0	12.6	73.5	7.8	0.0	62.8
	$1988{ }^{\text {i }}$	497	0.4	20.3	22.5	42.1	14.7	0.0	39.6
	$1989{ }^{\text {i }}$	222	0.5	4.1	28.9	57.8	8.8	0.0	62.2
	$1990{ }^{\text {i }}$	498	0.2	17.6	24.9	48.9	8.3	0.0	48.9
	$1991{ }^{\text {i }}$	515	0.2	8.2	44.3	41.4	5.8	0.2	47.2
	$1992{ }^{\text {i }}$	646	1.2	30.8	28.6	38.2	1.1	0.0	34.4
	$1993{ }^{\text {b }}$	453	0.9	28.0	39.1	31.1	0.9	0.0	27.6
	$1994{ }^{\text {b }}$	524	0.6	2.7	39.1	52.9	4.8	0.0	44.5
	$1995{ }^{\text {b }}$	646	0.0	13.6	20.6	62.8	3.1	0.0	56.0
	$1996{ }^{\text {b }}$	406	2.7	6.2	38.4	28.6	24.1	0.0	50.8
	$1997{ }^{\text {b }}$	180	0.0	14.4	14.4	69.4	1.7	0.0	50.0
	$1998{ }^{\text {b }}$	352	2.4	4.9	72.4	17.9	2.4	0.0	30.0
	$1999{ }^{\text {b }}$	307	0.0	9.1	24.1	66.4	0.3	0.0	54.7
	$2000{ }^{\text {b,g }}$	41	0.0	22.0	48.8	24.4	4.9	0.0	43.9
	$2001{ }^{\text {b }}$	192	0.5	10.4	33.9	52.1	3.1	0.0	37.5
	$2002{ }^{\text {b }}$	282	0.0	36.2	13.8	38.7	11.3	0.0	34.8
	$2003{ }^{\text {b }}$	151	0.7	7.3	42.4	42.4	7.3	0.0	42.4
	$2004{ }^{\text {b }}$	229	0.0	9.2	8.3	81.7	0.9	0.0	62.9
	$2005{ }^{\text {b }}$	602	0.0	9.3	41.5	46.2	3.0	0.0	54.3
	$2006{ }^{\text {b }}$	509	0.0	5.7	49.3	43.0	2.0	0.0	43.4
	$2007{ }^{\text {b }}$	308	0.0	22.4	26.9	50.3	0.3	0.0	35.7
	$2008{ }^{\text {b }}$	303	0.7	9.9	51.8	36.0	1.7	0.0	39.3
	$2009{ }^{\text {b }}$	458	0.0	31.7	21.4	46.7	0.2	0.0	39.1
	$2010{ }^{\text {b }}$	410	0.5	25.5	58.0	14.8	1.2	0.0	30.3
	$2011{ }^{\text {b }}$	527	0.2	14.6	35.5	48.2	1.5	0.0	42.1
	$2012{ }^{\text {b }}$	420	0.2	6.0	32.9	59.3	1.7	0.0	59.8
Average ${ }^{\mathrm{f}}$ (1985-2011)			0.5	14.3	32.9	47.1	5.2	0.0	44.4
5 yr Average ${ }^{\text {f (}}$ (2007-2011)			0.3	20.8	38.7	39.2	1.0	0.0	37.3

a Project was operated as sonar.
${ }^{\text {b }}$ Project was operated as a counting tower.
${ }^{\text {c }}$ Project was operated as weir.
${ }^{\text {d }}$ Sampling dates may not represent run, 2001 E.F. Andreafsky River is not included in average.
e Percent female data not available.
f Averages were not weighted by number of fish sampled each year.
${ }^{\mathrm{g}}$ Small sample size, not included in average.
${ }^{h}$ Chinook salmon samples were not collected.
${ }^{i}$ Samples were from mark-recapture project.

Table 5.-Yukon River Chinook salmon mean length (mm) by sex, project, gear and age, 2012.

Sex	Project Location	Project Type and (Gear)	Brood Year (Age)										
			2009	2008		2007		2006		2005		2004	
			(1.1)	(1.2)	(2.1)	(1.3)	(2.2)	(1.4)	(2.3)	(1.5)	(2.4)	(1.6)	(2.5)
Male	District $1^{\text {a }}$	Com ($\leq 6{ }^{\prime \prime} \mathrm{GN}$)	-	568	-	684	557	802	637	-	-	-	-
	District $2^{\text {a, }}$ b	Com ($\leq 6{ }^{\prime \prime} \mathrm{GN}$)	-	551	-	735	-	-	-	-	-	-	-
	District 1, Alakanuk	Sub (DGN, SGN)	-	568	-	681	-	768	664	910	-	-	-
	District 1, Kotlik	Sub (DGN, SGN)	-	-	-	691	-	792	-	-	-	-	-
	District 1, Emmonak	Sub (DGN, SGN)	-	596	-	677	-	777	-	-	810	-	-
	District 2, Mountain Village	Sub (DGN)	-	-	-	711	-	798	-	-	-	-	-
	District 2, St. Mary's	Sub (DGN)	-	548	-	716	633	807	680	1000	-	-	-
	District 2, Marshall	Sub (DGN)	-	571	-	701	-	800	695	-	727	-	-
	Subdistrict 4-A, Anvik	Sub (DGN,SGN)	-	558	-	704	-	809	705	-	-	-	-
	Subdistrict 4-A, Kaltag	Sub (7.5" DGN)	-	552	-	724	-	853	-	-	-	-	-
	Subdistricts 4-B, 4-C Galena	Sub (SGN)	-	-	-	708	-	830	-	-	-	-	-
	Subdistrics 4-B, 4-C Ruby	Sub (7.5" SGN)	-	611	-	694	-	797	-	-	730	-	-
	Subdistrict 5-D, Fort Yukon	Sub (FW)	370	546	-	703	660	823	690	-	720	-	-
	Big Eddy	TF (8.25" DGN)	-	571	-	716	569	815	-	-	818	-	-
	Big Eddy	TF (8.5" SGN)	-	573	-	745	-	823	-	822	-	-	-
	Middle Mouth	TF (8.5" SGN)	-	534	-	765	-	810	-	947	830	-	-
	Mountain Village	TF (7.5" DGN)	-	584	-	720	607	809	-	984	824	-	-
	Pilot Station	TF (DGN)	364	569	-	702	-	812	609	890	804	-	-
	Eagle Sonar	TF (DGN)	313	583	-	701	612	832	697	-	793	-	-
	Andreafsky, E.F.	Esc (WR)	355	541	-	672	-	799	-	-	-	-	-
	Anvik	Esc (CR)	-	561	-	685	-	794	-	-	-	-	-
	Anvik ${ }^{\text {c }}$	Esc (HL)	-	541	-	713	-	755	-	-	-	-	-
	Chena	Esc (CR)	340	538	-	707	-	815	-	-	-	-	-
	Gisasa	Esc (WR)	-	538	-	687	500	786	-	-	-	-	-
	Henshaw	Esc (WR)	-	557	-	699	-	807	-	-	-	-	-
	Salcha	Esc (CR)	366	569	-	711	-	822	-	-	-	-	-
	Pilot Station	Tag (DGN)	-	-	-	734	-	822	727	-	-	-	-
	Nulato	GS (HL, DP, CR)	-	576	-	699	-	806	-	-	-	-	-
		Average Male Mean Length ${ }^{\text {d }}$	351	563	-	707	591	806	678	926	784	-	-
		SE ${ }^{\text {d }}$	9	4	-	4	20	4	12	27	15	-	-

[^1]Table 5.-Page 2 of 2.

Sex	Project Location	Project Type and (Gear)	Brood Year (Age)										
			2009	2008		2007		2006		2005		2004	
			(1.1)	(1.2)	(2.1)	(1.3)	(2.2)	(1.4)	(2.3)	(1.5)	(2.4)	(1.6)	(2.5)
Female	District $1^{\text {a }}$	Com ($\leq 6{ }^{\prime \prime} \mathrm{GN}$)		534	,	760		832		866	765	-	-
	District $2{ }^{\text {a, b }}$	Com ($\leq 6{ }^{\prime \prime} \mathrm{GN}$)	-	-	-	725	-	800	-	-	-	-	-
	District 1, Alakanuk	Sub (DGN, SGN)	-	-	-	850	-	834	-	-	-	-	-
	District 1, Kotlik	Sub (DGN, SGN)	-	-	-	770	-	806	-	-	-	-	-
	District 1, Emmonak	Sub (DGN, SGN)	-	-	-	754	-	833	-	-	-	-	-
	District 2, Mountain Village	Sub (DGN)	-	-	-	796	-	833	-	859	-	-	-
	District 2, St. Mary's	Sub (DGN)	-	-	-	771	-	830	-	828	-	-	-
	District 2, Marshall	Sub (DGN)	-	-	-	800	-	840	-	903	-	-	-
	Subdistrict 4-A, Anvik	Sub (DGN,SGN)	-	-	-	738	-	862	760	-	-	-	-
	Subdistrict 4-A, Kaltag	Sub (7.5" DGN)	-	-	-	-	-	839	-	-	-	-	-
	Subdistricts4-B, 4-C Galena	Sub (SGN)	-	-	-	740	-	833	-	-	-	-	-
	Subdistrics 4-B, 4-C Ruby	Sub (7.5" SGN)	-	-	-	750	-	813	-	-	-	-	-
	Subdistrict 5-D, Fort Yukon	Sub (FW)	-	640	-	700	-	850	-	900	950	-	-
	Big Eddy	TF (8.25" DGN)	-	-	-	791	-	833	-	-	816	-	-
	Big Eddy	TF (8.5" SGN)	-	-	-	794	-	842	-	887	779	-	-
	Middle Mouth	TF (8.5" SGN)	-	-	-	799	-	840	-	924	849	-	-
	Mountain Village	TF (7.5" DGN)	-	-	-	780	-	836	-	913	809	-	864
	Pilot Station	TF (DGN)	-	-	-	762	-	825	747	855	797	-	-
	Eagle Sonar	TF (DGN)	-	-	-	770	-	838	-	929	830	-	-
	Andreafsky, E.F.	Esc (WR)	-	610	-	735	-	811	-	851	-	-	-
	Anvik	Esc (CR)	-	-	-	775	-	828	-	-	799	-	-
	Chena	Esc (CR)	-	-	-	741	-	820	-	-	-	-	-
	Gisasa	Esc (WR)	-	573	-	688	-	826	-	784	760	-	-
	Henshaw	Esc (WR)	-	558	-	744	-	830	-	915	-	-	-
	Salcha	Esc (CR)	-	-	-	766	-	832	-	890	-	-	-
	Pilot Station	Tag (DGN)	-	-	-	734	-	833	-	890	795	-	-
	Nulato	GS (HL, DP, CR)	-	-	-	756	-	829	-	-	-	-	-
		Average Female Mean Length ${ }^{\text {d }}$	-	583	-	761	-	831	754	880	814	-	864
		SE ${ }^{\text {d }}$	-	19	-	7	-	2	7	10	16	-	-

Note: Com is commercial, Sub is subsistence, TF is test fishery, Esc is escapement, Tag is acoustic tagging, GS is genetics sampling, GN is gillnet preceded by mesh size, SGN is set gillnet, DGN is drift gillnet, FW is fish wheel, WR is weir, CR is carcass, HL is hook and line, and DP is dip net.
${ }^{a}$ Incidental harvest from the summer chum salmon commercial fishery.
b Only fish from Periods 1, 2, and 3 were sampled. Not representative of entire harvest.
c Only males were harvested by hook and line in the sport fishery.
${ }^{\text {d }}$ Calculated from the actual number of fish sampled at all projects combined.

Table 6.-Yukon River chum salmon age and female percentages, from commercial, subsistence, test fishery, and escapement projects, 2012.

-continued-

Table 6.-Page 2 of 2.

Project Type	Sample	Percent (\%)					
		Brood Year (Age)					Female
		2009	2008	2007	2006	2005	
Location and (gear)	Size	(0.2)	(0.3)	(0.4)	(0.5)	(0.6)	
Escapement - Summer Chum							
Andreafsky River, East Fork (weir trap)	606	0.6	69.1	26.3	4.0	0.0	47.6
Anvik River (beach seine)	422	0.7	66.6	29.3	3.4	0.0	55.8
Gisasa River (weir trap)	687	0.2	78.6	19.4	1.8	0.0	52.8
Henshaw Creek (weir trap)	478	0.9	84.1	13.3	1.8	0.0	52.3
Salcha River (carcass) ${ }^{\text {e }}$	159	1.3	64.2	29.6	5.0	0.0	65.4
	Escapement Summer Chum Average ${ }^{\text {c }}$	0.7	72.5	23.6	3.2	0.0	54.8
Escapement - Fall Chum							
Delta River (carcass) ${ }^{\text {e }}$	180	1.7	71.1	26.7	0.6	0.0	32.8
Sheenjak River (beach seine) ${ }^{\text {e }}$	180	0.0	56.7	38.9	4.4	0.0	53.3
Toklat River (carcass) ${ }^{\text {e,f }}$	180	2.0	79.3	18.0	0.7	0.0	65.0
	Escapement Fall Chum Average ${ }^{\text {c }}$	1.2	69.0	27.9	1.9	0.0	50.4
Total Summer Chum	5,733						
Total Fall Chum	3,532						

[^2]${ }^{\text {b }}$ Only females were bought during Periods 8 to 13.
c Averages were not weighted by sample sizes.
${ }^{d}$ Samples were only taken from fish harvested during Period 4. Not representative of entire harvest.
e Vertebrae were used for age determination.
${ }^{\mathrm{f}}$ Age composition is based on 150 vertebrae samples. Female percentage is based on 180 fish sampled.

Table 7.-Yukon River summer and fall chum salmon commercial harvest, age and sex composition, by district, 2012.

[^3]${ }^{\text {b }}$ Age and sex composition based on estimates using District 1 commercial samples.
c Commercial fishing gear was fish wheels.
${ }^{d}$ Only females were bought during Periods 8-13.
e All commercial fishing periods were restricted to 7.5 in or smaller mesh gillnets.

Table 8.-Summer chum salmon age and female percentages from the Lower Yukon River test fishery (combined Big Eddy and Middle Mouth sites) 5.5 in mesh gillnet, 1985-2012.

Year	Sample Size	Number of Days ${ }^{\text {a }}$	Percent (\%)					
			Age					Female
			0.2	0.3	0.4	0.5	0.6	
1985	954	19	0.0	62.4	37.1	0.5	0.0	51.6
1986	1,125	27	0.1	26.2	73.2	0.4	0.0	55.1
1987	1,169	34	0.6	48.8	43.7	6.8	0.0	56.8
1988	804	30	0.1	50.5	48.4	1.0	0.0	59.5
1989	1,074	29	0.0	39.9	59.5	0.6	0.0	62.2
1990	1,328	42	0.8	46.1	50.1	3.1	0.0	66.0
1991	1,495	41	0.0	45.4	53.6	0.9	0.0	55.2
1992	1,089	32	0.0	22.0	71.8	6.2	0.0	61.4
1993	1,757	46	0.1	38.2	57.4	4.4	0.0	50.4
1994	2,385	49	0.0	35.6	61.9	2.6	0.0	62.5
1995	1,839	38	0.5	40.2	53.2	6.1	0.0	56.2
1996	1,936	47	0.1	42.3	52.4	5.2	0.0	63.7
1997	1,947	46	0.0	24.1	71.5	4.4	0.0	61.0
1998	1,649	47	0.0	62.5	33.5	4.0	0.0	52.5
1999	1,227	33	1.1	48.1	47.4	3.4	0.0	50.0
2000	950	38	0.2	52.5	45.8	1.5	0.0	63.8
2001	724	33	0.0	25.0	73.8	1.2	0.0	64.6
2002	792	45	0.5	57.3	40.4	1.8	0.0	63.3
2003	822	42	0.4	78.7	18.7	2.2	0.0	54.4
2004	521	45	3.1	40.1	56.8	0.0	0.0	66.0
2005	754	32	0.1	89.8	9.9	0.1	0.0	54.5
2006	860	30	0.3	27.3	72.2	0.1	0.0	59.0
$2007{ }^{\text {b }}$	91	16	0.0	42.9	47.3	9.9	0.0	65.9
$2008{ }^{\text {c }}$	784	24	0.0	41.2	53.7	5.1	0.0	55.4
2009	1,042	33	1.2	48.8	47.9	1.8	0.2	54.3
2010	1,211	31	4.0	64.7	29.8	1.5	0.0	56.6
2011	1,493	41	0.1	44.1	55.5	0.4	0.0	63.2
2012	1,576	35	0.0	68.7	25.9	5.4	0.0	56.7
Average $^{\mathrm{d}}$ (1987-1988, 1990-2006, 2009-2012)	1,277	39	0.6	47.9	48.8	2.8	0.0	58.8
5 yr average ${ }^{\mathrm{d}}$ (2006, 2009-2012)	1,236	34	1.1	50.7	46.3	1.8	0.0	58.0

a The Lower Yukon River test fishery was conducted from the end of May through July 15. Prior to 1990 this project was often discontinuous within the season or was not conducted throughout the season. The "Number of Days" refers only to those days that scale samples were collected from summer chum salmon and aged.
${ }^{\text {b }}$ One set gillnet was operated at Big Eddy site only.
c Two drift gillnets were operated at Big Eddy and 1 drift gillnet was operated at Middle Mouth.
${ }^{\text {d }}$ The averages only include years when samples were collected throughout the season and years with a 30 day season minimum. Averages were not weighted by number of fish sampled each year.

Table 9.-Yukon River summer and fall chum salmon mean length (mm) by sex, project, gear, and age, 2012.

Table 9.-Page 2 of 2.

Note: Com is commercial, Sub is subsistence, TF is test fishery, Esc is escapement, GN is gillnet preceded by mesh size, DGN is drift gillnet, FW is fish wheel, WR is weir, SN is seine net, and CR is carcass.
${ }^{a}$ Males only bought during Period 7.
b Ages were obtained from vertebrae.
c Average was not weighted by number of fish sampled in each project.

Table 10.-Yukon River fall chum salmon age and female percentages, from selected escapement projects, 1986-2012.

Project	Year	Sample Size ${ }^{a}$	Percent (\%)					
			Age					Female ${ }^{\text {b }}$
			3 yr	4 yr	5 yr	6 yr	7 yr	
			(0.2)	(0.3)	(0.4)	(0.5)	(0.6)	
Chandalar River	$1986{ }^{\text {c }}$	75	0.0	65.0	35.0	0.0	0.0	32.0
	$1987^{\text {c }}$	134	0.0	55.0	42.0	3.0	0.0	24.3
	$1988{ }^{\text {d }}$	73	1.0	44.0	54.0	1.0	0.0	26.0
	$1989{ }^{\text {e }}$	149	4.1	70.5	20.5	4.8	0.1	51.8
	$1990{ }^{\text {f }}$	153	0.7	56.2	39.2	3.9	0.0	66.9
	1991 ${ }^{\text {g }}$	-	-	-	-	-	-	-
	19928	-	-	-	-	-	-	-
	19938	-	-	-	-	-	-	-
	19948	-	-	-	-	-	-	-
	$1995{ }^{\text {e, }} \mathrm{g}$	-	-	-	-	-	-	20.5
	1996 ${ }^{\text {e }}$	144	2.1	36.6	53.5	7.8	0.0	32.8
	19978	-	-	-	-	-	-	-
	$1998{ }^{\text {g }}$	-	-	-	-	-	-	-
	19998	-	-	_	_	-	-	-
	$2000{ }^{\text {g }}$	-	-	-	-	-	-	-
	20018	-	-	-	-	-	-	-
	20028	-	-	-	-	-	-	-
	$2003{ }^{\text {g }}$	-	-	-	-	-	-	-
	2004 ${ }^{\text {g }}$	-	-	-	-	-	-	-
	$2005{ }^{\text {f, }} \mathrm{h}$	172	0.0	91.3	8.1	0.6	0.0	48.4
	$2006{ }^{\text {f, }} \mathrm{h}$	179	3.9	25.1	62.0	9.0	0.0	47.8
	$2007^{\text {f, }} \mathrm{h}$	175	6.9	66.3	25.1	1.7	0.0	41.7
	$2008{ }^{\text {f, }} \mathrm{h}$	178	3.4	41.0	46.6	7.3	1.7	56.2
	$2009{ }^{\text {f, }} \mathrm{h}$	180	8.9	62.8	25.6	2.2	0.6	42.2
	$2010^{\text {f, h }}$	180	20.6	57.8	17.8	3.3	0.6	68.9
	$2011{ }^{\text {f, }} \mathrm{h}$	531	1.3	52.2	41.1	5.5	0.0	51.0
	2012 ${ }^{\text {g }}$	-	-	-	-	-	-	-
Average ${ }^{\mathrm{i}}$ (1986-2011)			4.1	55.7	36.2	3.9	0.2	43.6
5 yr Average ${ }^{\text {i }}$ (2007-2011)			8.2	56.0	31.2	4.0	0.6	52.0
Odd Year Average ${ }^{\text {i }}$			3.5	66.4	27.1	3.0	0.1	40.0
Even Year Average ${ }^{\text {i }}$			4.0	46.5	44.0	4.6	0.3	47.2

-continued-

Table 10.-Page 2 of 4.

-continued-

Table 10.-Page 3 of 4.

Project	Year	Sample Size ${ }^{a}$	Percent (\%)					
			Age					Female ${ }^{\text {b }}$
			3 yr	4 yr	5 yr	6 yr	7 yr	
			(0.2)	(0.3)	(0.4)	(0.5)	(0.6)	
Sheenjek River ${ }^{\text {f,j }}$	1986	442	8.1	41.2	50.0	0.7	0.0	55.3
	1987	430	2.1	89.8	7.2	0.9	0.0	65.6
	1988	120	2.5	68.3	29.2	0.0	0.0	82.0
	1989	231	3.5	82.7	13.0	0.9	0.0	59.1
	1990	143	2.8	70.6	25.2	1.4	0.0	-
	1991	147	0.0	59.2	39.5	1.4	0.0	46.1
	1992	134	0.0	17.9	80.6	1.5	0.0	53.6
	$1993{ }^{\text {k }}$	192	0.5	64.1	33.9	1.6	0.0	44.3
	1994	173	1.2	56.1	40.5	2.3	0.0	50.8
	1995	118	0.8	51.7	39.8	7.6	0.0	51.4
	1996	191	1.6	33.0	61.8	3.7	0.0	44.5
	$1997{ }^{\text {g }}$	-	-	-	-	-	-	-
	$1998{ }^{\text {g }}$	-	-	-	-	-	-	-
	1999 g	-	-	-	-	-	-	-
	2000 g	-	-	-	-	-	-	-
	2001	71	0.0	36.6	63.4	0.0	0.0	46.6
	2002	31	0.0	61.3	38.7	0.0	0.0	37.1
	2003	84	1.2	82.1	15.5	1.2	0.0	45.6
	2004	104	0.0	11.5	61.5	25.0	1.9	38.3
	2005	194	0.0	92.3	6.7	1.0	0.0	46.3
	2006	179	1.1	23.0	73.2	2.7	0.0	53.8
	2007	76	0.0	52.6	35.5	11.8	0.1	41.7
	2008	192	0.5	46.9	45.3	6.8	0.5	45.1
	2009 g	-	-	-	-	-	-	-
	2010	64	17.2	60.9	17.2	3.1	1.6	53.1
	2011	179	2.8	58.1	36.3	2.8	0.0	51.4
	2012	180	0.0	56.7	38.9	4.4	0.0	53.3
Average ${ }^{\text {i }}$ (1986-2011)			2.2	55.2	38.8	3.6	0.2	50.6
5 yr Average ${ }^{\text {i }}$ (2006-2008,2010-2011)			4.3	48.3	41.5	5.4	0.4	49.0
Odd Year Average ${ }^{\text {i }}$			1.1	66.9	29.1	2.9	0.0	49.8
Even Year Average ${ }^{\text {i }}$			3.2	44.6	47.6	4.3	0.4	51.4

Table 10.-Page 4 of 4.

[^4]Table 11.-Yukon River coho salmon age and female percentages, from commercial and test fishery projects, 2012.

Project Type	Sample Size	Percent (\%)			Female
		Brood Year (Age)			
		2009	2008	2007	
Location (gear)		(1.1)	(2.1)	(3.1)	
Commercial					
District 1 (gillnet) ${ }^{\text {a }}$	458	25.1	68.5	6.4	49.2
Test Fishery					
Big Eddy (6.0" drift gillnet)	122	32.8	63.1	4.1	41.8
Middle Mouth (6.0" drift gillnet)	272	29.4	61.4	9.2	51.5
Mountain Village ($57 / 8 \mathrm{l}$ drift gillnet)	114	39.5	52.6	7.9	43.9
Test Fishery Average ${ }^{\text {b }}$		33.9	59.0	7.1	45.7
Total	966				

${ }^{\text {a }}$ All commercial fishing periods were restricted to 6.0 in or smaller mesh gillnets.
b Averages are not weighted by sample size.

Table 12.-Yukon River coho salmon mean length (mm) by sex, project, gear, and age, 2012.

Sex	Project	Project Type and (Gear)	Brood Year (Age)		
			2009	2008	2007
	Location		(1.1)	(2.1)	(3.1)
Male	District $1^{\text {a }}$	Com ($\leq 6{ }^{\prime \prime} \mathrm{GN}$)	554	541	556
	Big Eddy	TF (6.0" DGN)	558	557	549
	Middle Mouth	TF (6.0" DGN)	559	554	555
	Mt. Village	TF (5 7/8" DGN)	535	555	530
		Male Average ${ }^{\text {b }}$	552	552	548
Female	District $1^{\text {a }}$	Com ($\leq 6^{\prime \prime} \mathrm{GN}$)	540	542	531
	Big Eddy	TF (6.0" DGN)	558	561	573
	Middle Mouth	TF (6.0" DGN)	556	554	558
	Mt. Village	TF (5 ¹/8" DGN)	551	552	549
		Female Average ${ }^{\text {b }}$	551	552	553

Note: Com is commercial, and TF is test fish. GN is gillnet, DGN is drift gillnet preceded by mesh size.
a Commercial fishing gear was restricted to 6.0 in or smaller mesh gillnets.
b Averages were not weighted by sample size.

Figure 1.-Yukon River drainage in Alaska and Canada.

Figure 2.-Yukon River district and subdistrict map.

APPENDIX A: CHINOOK SALMON

Appendix A1.-Yukon River District 1 Chinook salmon incidental commercial gillnet harvest, age and sex composition, and mean length (mm), 2012.

Sample Dates	SampleSize		Brood Year (Age)																	Total	
			$\begin{aligned} & \hline 2009 \\ & \hline(1.1) \end{aligned}$		2008			2007			2006		2005			2004					
					(1.2)	(2.1)		(1.3)	(2.2)		(1.4)	(2.3)	(1.5)	(2.4)		(1.6)		(2.5)			
			N	\%	N \%	N	\%	N \%	N		N \%	N \%	N \%	N	\%	N	\%	N	\%	N	\%
	621	Male	0	0.0	33818.5	0	0.0	78042.7	3	0.2	1598.7	30.2	$0 \quad 0.0$	0	0.0	0	0.0	0	0.0	1,283	70.2
6/29; 7/1-3,		Female	0	0.0	$6 \quad 0.3$	0	0.0	1387.6	0	0.0	38821.3	$\begin{array}{ll}0 & 0.0\end{array}$	$9 \quad 0.5$	3	0.2	0	0.0	0	0.0	544	29.8
5-7, 9-10, 13		Total	0	0.0	34418.8	0	0.0	91850.2	3		54730.0	30.2	$9 \quad 0.5$	3	0.2	0	0.0	0	0.0	1,827	100.0
		Male Mean Length		-	568		-	684		557	802	637	-		-		-		-		
Season		SE		-	4		-	4		-	10	-	-		-		-		-		
		Range		-	486-669		-	484-845		-	605-950	-	-		-		-		-		
		n		-	115		-	265		1	53	1	-		-		-		-		
		Female Mean Length		-	534		-	760		-	832	-	866		765		-		-		
		SE		-	-		-	7		-	4	-	36		-		-		-		
		Range		-	534-534		-	603-843		-	708-944	-	819-937		-		-		-		
		n		-	2		-	47		-	132	-	3		1		-		-		

Note: All commercial fishing periods were restricted to 6 .0 in or smaller mesh gillnets.

Appendix A2.-Yukon River District 2 Chinook salmon incidental commercial gillnet harvest, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample		Brood Year (Age)																			Total	
			$\begin{aligned} & \hline 2009 \\ & \hline(1.1) \end{aligned}$	2008			2007			2006				2005				2004					
				(1.2)		(2.1)	(1.3)		2.2)	(1.4)		(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
	Size			N \%	N	\%	N \%	N	\%														
7/2, 8, $11^{\text {a }}$	6	Male	$0 \quad 0.0$	233.3	0	0.0	$1 \begin{array}{ll}16.7\end{array}$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	3	50.0
Total		Female	$0 \quad 0.0$	00.0	0	0.0	233.3	0	0.0	1	16.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	3	50.0
		Total	$0 \quad 0.0$	233.3	0		350.0	0		1	16.7	0		0	0.0	0		0	0.0	0	0.0	6	100.0
		Male Mean Length	-	551		-	735		-		-		-		-								
		SE	-	17		-	-		-		-		-		-								
		Range	-	534-568		-	-		-		-		-		-						-		
		n	-	2		-	1		-		-		-		-						-		
		Female Mean Length	-	-		-	725		-		800		-		-						-		
		SE	-	-		-	49		-		-		-		-						-		
		Range	-	-		-	676-774		-		-		-		-						-		
		n	-	-		-	2		-		1		-		-						-		

Note: All commercial fishing periods were restricted to 6.0 in or smaller mesh gillnets.
a Only fish from Periods 1, 2, and 3 were sampled. Not representative of entire harvest.

Appendix A3.-Yukon River District 1 (Kotlik) Chinook salmon subsistence gillnet harvest, age and sex composition, and mean length (mm), 2012.

Sample Dates	$\begin{aligned} & \text { Sample } \\ & \text { Size } \end{aligned}$		Brood Year (Age)																						Total	
			$\frac{2009}{(1.1)}$		2008				2007				2006				2005				2004					
					(1.2)		(2.1)		(1.3)		(2.2)		(1.4)		(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
			N	\%	N \%																					
6/19, 30	6	Male	0	0.0	0	0.0	0	0.0	4	66.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	4	66.7
6" Mesh		Female	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2	33.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2	33.3
Drift Gillnet		Subtotal	0	0.0	0	0.0	0	0.0	4	66.7	0	0.0	2	33.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	6	100.0
		Male Mean Length		-		-		-		694		-		-				-				-				
		SE		-		-		-		30		-		-	-	-		-		-		-		-		
		Range		-		-		-		-4-732		-		-		-		-				-				
		n		-		-		-		4		-		-		-		-				-		-		
		Female Mean Length		-		-		-		-		-		806		-		-				-				
		SE		-		-		-		-		-		16		-		-				-				
		Range		-		-		-		_		-		90-821		-		-				-				
		n		-		-		-		-		-		2	-	-		-		-		-		-		
7/7-8, 10-11	6	Male	0	0.0	0	0.0	0	0.0	4	66.7	0	0.0	1	16.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	5	83.3
$6{ }^{\prime \prime}$ Mesh		Female	0	0.0	0	0.0	0	0.0	1	16.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1	16.7
Set Gillnet		Subtotal	0	0.0	0	0.0	0	0.0	5	83.3	0	0.0	1	16.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	6	100.0
		Male Mean Length		-		-		-		688		-		730		-		-		-		-		-		
		SE		-		-		-		11		-		-		-		-		-		-				
		Range		-		-		-		6-710		-		-				-				-				
				-		-		-		4		-		1	-	-		-				-		-		
		Female Mean Length		-		-		-		770		-		-		-		-				-				
		SE		-		-		-		-		-		-	-	-		-				-		-		
		Range		-		-		-		-		-		-	-	-		-				-				
		n		-		-		-		1		-		-		-		-				-				
Total 6" Mesh	12	Male		0.0				0.0	8				1				0	0.0	0	0.0	0	0.0	0	0.0	9	75.0
		Female			0		0		1	8.3	0	0.0	2	16.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	3	25.0
		Subtotal	0	0.0	0	0.0	0	0.0	9	75.0	0	0.0	3	25.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	12	100.0
		Male Mean Length		-		-		-		691		-		730		-		-				-		-		
		SE		-		-		-		15		-		-	-	-		-		-		-		-		
		Range		-		-		-		-4-732		-		-		-		-				-		-		
		n		-		-		-		8		-		1	-	-		-				-		-		
		Female Mean Length		-		-		-		770		-		806	-	-		-				-		-		
		SE		-		-		-		-		-		16	-	-		-				-		-		
		Range		-		-		-		-		-		-821	-	-		-				-		-		
		n		-		-		-		1		-		2		-		-				-		-		

Appendix A3.-Page 2 of 2.

Sample Dates	SampleSize		Brood Year (Age)																						Total	
			2009		2008				2007				2006				2005				2004					
					(1.2)		(2.1)		(1.3)		(2.2)		(1.4)		(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
			N	\%	N \%																					
6/18	1	Male	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1	100.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1	100.0
7.5" Mesh		Female	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Set Gillnet		Subtotal	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1	100.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1	100.0
		Male Mean Length		-		-		-		-		-		854		-		-		-		-		-		
		SE		-		-		-		-		-		-		-		-		-		-		-		
		Range		-		-		-		-		-		-		-		-		-		-		-		
		n		-		-		-		-		-		1		-		-		-		-		-		
		Female Mean Length		-		-		-		-		-		-		-		-		-		-		-		
		SE		-		-		-		-		-		-		-		-		-		-		-		
		Range		-		-		-		-		-		-		-		-		-				-		
		n				-		-		-		-		-		-		-		-		-		-		
All Gear	13	Male	0	0.0	0	0.0	0	0.0	8	61.5	0	0.0	2	15.4	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	10	76.9
		Female	0	0.0	0	0.0	0	0.0	1	7.7	0	0.0	2	15.4	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	3	23.1
		Subtotal	0	0.0	0	0.0	0	0.0	9	69.2	0	0.0	4	30.8	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	13	100.0
						-		-		691		-				-		-		-		-		-		
		SE		_		-		-		15		-		62.00		-		-		-		-		-		
		Range		-		-		-		04-732		-		730-854		-		-		-		-		-		
		n		-		-		-		8		-		2		-		-		-		-		-		
		Female Mean Length		-		-		-		770		-		806		-		-		-		-		-		
		SE		-		-		-		-		-		16		-		-		-		-		-		
		Range		-		-		-		1		-		790-821		-		-		-		-		-		
		n		-		-		-		1		-		2		-		-		-		-		-		

Appendix A4.-Yukon River District 1 (Alakanuk) Chinook salmon subsistence gillnet harvest, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)																		Total	
			$\frac{2009}{(1.1)}$	2008		2007			2006				2005				2004					
				(1.2)	(2.1)	(1.3)	(2.2)		(1.4)		(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
			N \%	N \%	N \%	N \%	N	\%	N	\%	N \%		N	\%	N \%		N	\%	N	\%	N \%	
$\begin{aligned} & \text { 6/12, 14-15, } \\ & \text { 6" Mesh } \\ & \text { Drift Gillnet } \end{aligned}$	15	Male	00.0	426.7	00.0	1066.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	14	93.3
		Female	$\begin{array}{ll}0 & 0.0\end{array}$	$0 \quad 0.0$	$\begin{array}{lll}0 & 0.0\end{array}$	$0 \quad 0.0$	0	0.0	1	6.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1	6.7
		Subtotal	$0 \quad 0.0$	426.7	$0 \quad 0.0$	1066.7	0	0.0	1	6.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	15	100.0
		Male Mean Length	-	544	-	686		-		-		-		-		-		-				
		SE	-	13	-	21		-		-		-		-	-	-		-				
		Range	-	522-580	-	603-851		-		-		-		-		-		-				
		n	-	4	-	10		-		-		-		-		-		-				
		Female Mean Length	-	-	-	-		-		745		-		-		-		-				
		SE	-	-	-	-		-		-		-		-		-		-		-		
		Range	-	-	-	-		-		-		-		-		-		-				
		n	-	-	-	-		-		1		-		-		-		-				
6/6, 15	15	Male	$0 \quad 0.0$	16.7	00.0	640.0	0	0.0	2	13.3	1	6.7	0	0.0	0	0.0	0	0.0	0	0.0	10	66.7
7.5" Mesh		Female	$0 \quad 0.0$	$\begin{array}{lll}0 & 0.0\end{array}$	$\begin{array}{lll}0 & 0.0\end{array}$	16.7	0	0.0	4	26.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	5	33.3
Drift Gillnet		Subtotal	$0 \quad 0.0$	16.7	$0 \quad 0.0$	746.7	0	0.0	6	40.0	1	6.7	0	0.0	0	0.0	0	0.0	0	0.0	15	100.0
		Male Mean Length	-	558	-	677		-		790		58		-	-	-		-		-		
		SE	-	-	-	14		-		106		-		-		-		-				
		Range	-	-	-	625-710		-		-896		-		-		-		-				
		n	-	1	-	6		-		2		1		-				-				
		Female Mean Length	-	-	-	860		-		853		-		-	-	-		-				
			-	-	-	-		-		27		-		-		-		-				
		Range	-	-	-	-		-		-893		-		-	-	-		-				
		n	-	-	-	1		-		4		-		-	-	-		-		-		
6/13	28	Male	$0 \quad 0.0$	27.1	$0 \quad 0.0$	1450.0	0	0.0	2	7.1			1	3.6	0	0.0	0	0.0	0	0.0	20	71.4
7.5" Mesh		Female	$\begin{array}{ll}0 & 0.0\end{array}$	$\begin{array}{ll}0 & 0.0\end{array}$	$\begin{array}{lll}0 & 0.0\end{array}$	13.6	0	0.0	7	25.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	8	28.6
Set Gillnet		Subtotal	$0 \quad 0.0$	27.1	$0 \quad 0.0$	1553.6	0	0.0	9	32.1	1	3.6	1	3.6	0	0.0	0	0.0	0	0.0	28	100.0
		Male Mean Length	-	620	-	679		-		745		70		10	-	-		-		-		
		SE	-	70	-	14		-		25		-		-		-		-				
		Range	-	550-690	-	590-800		-		0-770		-		-	-	-		-				
		n	-	2	-	14		-		2		1		1	-	-		-				
		Female Mean Length	-	-	-	840		-		836		-		-	-	-		-		-		
		SE	-	-	-	-		-		21		-		-	-	-		-				
		Range	-	-	-	-		-		0-920		-		-	-	-		-		-		
		n	-	-	-	1		-		7		-		-	-	-		-		-		

Appendix A4.-Page 2 of 2.

Appendix A5.-Yukon River District 1 (Emmonak) Chinook salmon subsistence gillnet harvest, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)																					Total	
			2009	2008				2007				2006				2005				2004					
				(1.2)		(2.1)		(1.3)		(2.2)		(1.4)		(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
			N \%	N	\%	N \%																			
6/30	2	Male	000	0	0.0	0	0.0	1	50.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1	50.0
5.5" Mesh		Female	$0 \quad 0.0$	0	0.0	0	0.0	0	0.0	0	0.0	1	50.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1	50.0
Drift Gillnet		Subtotal	$0 \quad 0.0$	0	0.0	0	0.0	1	50.0	0	0.0	1	50.0	0	0.0	0	0.0	0		0	0.0	0	0.0	2	100.0
		Male Mean Length	-		-		-		620		-		-		-		-		-		-		-		
		SE	-		-		-		-		-		-		-		-		-		-		-		
		Range	-		-		-		-		-		-		-		-		-		-		-		
		n	-		-		-		1		-		-		-		-		-		-		-		
		Female Mean Length	-		-		-		-		-		836		-		-		-		-		-		
		SE	-		-		-		-		-		-		-		-		-		-		-		
		Range	-		-		-		-		-		-		-		-		-		-		-		
		n	-		-		-		-		-		1		-		-		-		-		-		
$\begin{gathered} \text { 6/19; 7/6 } \\ \text { 5.5" Mesh } \\ \text { Set Gillnet } \end{gathered}$	6	Male	00.0	1	16.7	0	0.0	4	66.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	5	83.3
		Female	$\begin{array}{ll}0 & 0.0\end{array}$	0	0.0	0		0	0.0	0	0.0	1	16.7	0	0.0	0		0		0		0	0.0	1	16.7
		Subtotal	$0 \quad 0.0$	1	16.7	0	0.0	4	66.7	0	0.0	1	16.7	0	0.0	0	0.0	0	0.0	0		0	0.0	6	100.0
		Male Mean Length	-		602		-		670		-		-		-		-		-		-		-		
		SE	-		-		-		7		-		-		-		-		-		-		-		
		Range	-		-		-		55-685		-		-		-		-		-		-		-		
		n	-		1		-		4		-		-		-		-		-		-		-		
		Female Mean Length	-		-		-		-		-		819		-		-		-		-		-		
		SE	-		-		-		-		-		-		-		-		-		-		-		
		Range	-		-		-		-		-		-		-		-		-		-		-		
		n	-		-		-		-		-		1		-		-		-		-		-		
Total 5.5" Mesh	8	Male	$\begin{array}{ll}0 & 0.0\end{array}$	1	12.5	0	0.0	5	62.5	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	6	75.0
		Female	$\begin{array}{ll}0 & 0.0\end{array}$	0	0.0	0	0.0	0	0.0	0	0.0	2	25.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2	25.0
		Total	0	1	12.5	0		5	62.5	0	0.0	2	25.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	8	100.0
		Male Mean Length			602		-		660		-		-		-		-		-		-		-		
		SE	-		-		-		12		-		_		-		-		-		_		-		
		Range	-		-		-		20-685		-		-		-		-		-		-		-		
		n	-		1		-		5		-		-		-		-		-		-		-		
		Female Mean Length	_		-		-		-		-		828		-		-		-		-		-		
		SE	-		-		-		-		-		9		-		-		-		-		-		
		Range	-		-		-		-		-		9-836		-		-		-		-		-		
		n	-		-		-		-		-		2		-		-		-		-		-		

Appendix A5.-Page 2 of 4.

Appendix A5.-Page 3 of 4.

Sample Dates	Sample Size		Brood Year (Age)																					Total	
			2009					2007				2006				2005				2004					
			(1.1)	(1.2)		(2.1)		(1.3)		(2.2)		(1.4)		(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
			N \%	N	N \%	N	\%																		
6/13-15	14	Male	$0 \quad 0.0$	0	0.0	0	0.0	10	71.4	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	10	71.4
7.5" Mesh		Female	$\begin{array}{lll}0 & 0.0\end{array}$	0	0.0	0	0.0	2	14.3	0	0.0	2	14.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	4	28.6
Drift Gillnet		Subtotal	$0 \quad 0.0$	0	0.0	0	0.0	12	85.7	0	0.0	2	14.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	14	100.0
		Male Mean Length	-		-		-		703		-		-		-		-		-		-				
		SE	-		-		-		13		-		-		-		-		-		-				
		Range	-		-		-		67-794		-		-		-				-		-				
		n	-		-		-		10		-		-		-		-		-		-				
		Female Mean Length	-		-		-		787		-		810		-		-		-		-				
		SE	-		-		-		11		-		25		-		-		-		-				
		Range	-		-		-		6-797		-		85-834		-		-		-		-				
		n	-		-		-		2		-		2		-		-		-		-				
6/11, 14	14	Male	$\begin{array}{ll}0 & 0.0\end{array}$	0	0.0	0	0.0	3	21.4	0	0.0	6	42.9	0	0.0	0	0.0	1	7.1	0	0.0	0	0.0	10	71.4
7.5" Mesh		Female	$\begin{array}{lll}0 & 0.0\end{array}$	0	0.0	0	0.0	3	21.4	0	0.0	1	7.1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	4	28.6
Set Gillnet		Subtotal	$\begin{array}{lll}0 & 0.0\end{array}$	0	0.0	0	0.0	6	42.9	0	0.0	7	50.0	0	0.0	0	0.0	1	7.1	0	0.0	0	0.0	14	100.0
		Male Mean Length	-		-		-		666		-		788		-		-		10		-				
		SE	-		-		-		41		-		31		-		-		-		-				
		Range	-		-		-		01-742		-		00-900		-				-		-				
		n	-		-		-		3		-		6		-		-		1		-				
		Female Mean Length	-		-		-		732		-		900		-		-		-		-				
		SE	-		-		-		27		-		-		-		-		-		-				
		Range	-		-		-		-3-785		-		-		-		-		-		-				
		n	-		-		-		3		-		1		-		-		-		-				
Total 7.5" Mesh	28	Male	$0 \quad 0.0$	0		0	0.0	13		0	0.0	6		0	0.0	0	0.0		3.6	0	0.0	0		20	71.4
		Female	$\begin{array}{lll}0 & 0.0\end{array}$	0	0.0	0	0.0	5	17.9	0	0.0	3	10.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	8	28.6
		Total	$\begin{array}{lll}0 & 0.0\end{array}$	0	0.0	0	0.0	18	64.3	0	0.0	9	32.1	0	0.0	0	0.0	1	3.6	0	0.0	0	0.0	28	100.0
		Male Mean Length	-		-		-		694		-		788		-		-		10		-		-		
		SE	-		-		-		13		-		31		-		-		-		-				
		Range	-		-		-		-1-794		-		-000		-		-		-		-				
		n	-		-		-		13		-		6		-		-		1		-		-		
		Female Mean Length	-		_		-		754		-		840		-		-		-		-				
		SE	-		-		-		20		-		33		-		-		-		-		-		
		Range	-		_		-		-3-797		-		85-900		-		-		-		-				
		n	-		-		-		5		-		3		-		-		-		-		-		

-continued-

Appendix A5.-Page 4 of 4.

Appendix A6.-Yukon River District 2 (Mountain Village) Chinook salmon subsistence gillnet harvest, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)																					Total	
			2009	2008				2007				2006				2005				2004					
			(1.1)	(1.2)		(2.1)		(1.3)		(2.2)		(1.4)		(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
			N \%	N	\%	N \%																			
6/20	6	Male	00.0	0	0.0	0	0.0	3	50.0	0	0.0	2	33.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	5	83.3
6" Mesh		Female	$\begin{array}{lll}0 & 0.0\end{array}$	0	0.0	0	0.0	0	0.0	0	0.0	1	16.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1	16.7
Drift Gillnet		Subtotal	$0 \quad 0.0$	0	0.0	0	0.0	3	50.0	0	0.0	3	50.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	6	100.0
		Male Mean Length	-		-		-		680		-		779		-		-		-				-		
		SE	-		-		-		14		-		11		-		-		-						
		Range	-		-		-		65-707		-		8-789		-		-		-				-		
		n	-		-		-		3		-		2		-		-		-				-		
		Female Mean Length	-		-		-		-		-		759		-		-		-				-		
		SE	-		-		-		-		-		-		-		-		-				-		
		Range	-		-		-		-		-		-		-		-		-				-		
		n	-		-		-		-		-		1		-		-		-				-		
6/19	12	Male	$\begin{array}{ll}0 & 0.0\end{array}$	0	0.0	0	0.0	5	41.7	0	0.0	4	33.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	9	75.0
7" Mesh		Female	$\begin{array}{lll}0 & 0.0\end{array}$	0	0.0	0	0.0	2	16.7	0	0.0	1	8.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	3	25.0
Drift Gillnet		Subtotal	$0 \quad 0.0$	0	0.0	0	0.0	7	58.3	0	0.0	5	41.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	12	100.0
		Male Mean Length	-		-		-		731		-		811		-		-		-				-		
		SE	-		-		-		24		-		14		-		-		-				-		
		Range	-		-		-		89-807		-		6-842		-		-		-				-		
		n	-		-		-		5		-		4		-		-		-				-		
		Female Mean Length	-		-		-		791		-		700		-		-		-				-		
		SE	-		-		-		74		-		-		-		-		-				-		
		Range	-		-		-		7-864		-		-		-		-		-				-		
		n	-		-		-		2		-		1		-		-		-				-		
$\begin{gathered} \text { 6/13-14, 16-17, } \\ \text { 7.5" Mesh } \\ \text { Drift Gillnet } \end{gathered}$	50	Male	00.0	0	0.0	0	0.0	27	54.0	0	0.0	6	12.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	33	66.0
		Female	$\begin{array}{ll}0 & 0.0\end{array}$	0	0.0	0	0.0	4	8.0	0	0.0	12	24.0	0	0.0	1	2.0	0	0.0	0	0.0	0	0.0	17	34.0
		Subtotal	$0 \quad 0.0$	0	0.0	0	0.0	31	62.0	0	0.0	18	36.0	0	0.0	1	2.0	0	0.0	0	0.0	0	0.0	50	100.0
		Male Mean Length	-		-		-		708		-		789		-		-		-				-		
		SE	-		-		-		5		-		29		-		-		-				-		
		Range	-		-		-		60-763		-		3-905		-		-		-				-		
		n	-		-		-		27		-		6		-		-		-				-		
		Female Mean Length	-		-		-		799		-		849		-		859		-				-		
		SE	-		-		-		11		-		10		-		-		-				-		
		Range	-		-		-		7-823		-		5-909		-		-		-				-		
		n	-		-		-		4		-		12		-		1		-				-		

Appendix A6.-Page 2 of 2.

Sample Dates	Sample Size		Brood Year (Age)																						Total	
			$\begin{aligned} & \hline 2009 \\ & \hline(1.1) \end{aligned}$		2008				2007				2006				2005				2004					
					(1.2)		(2.1)		(1.3)		(2.2)		(1.4)		(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
			N	\%	TotalN $\quad \%$																					
6/14	4	Male	0	0.0	0	0.0	0	0.0	1	25.0	0	0.0	1	25.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2	50.0
8.5" Mesh		Female	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2	50.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2	50.0
Drift Gillnet ${ }^{\text {a }}$		Subtotal	0	0.0	0	0.0	0	0.0	1	25.0	0	0.0	3	75.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	4	100.0
		Male Mean Length		-		-		-		769		-		846		-		-				-				
		SE		-		-		-		-		-		-		-		-				-				
		Range		-		-		-		-		-		-		-		-				-				
		n		-		-		-		1		-		1		-		-				-		-		
		Female Mean Length		-		-		-		-		-		844		-		-				-				
		SE		-		-		-		-		-		34		-		-				-		-		
		Range		-		-		-		-		-		10-878		-		-				-				
		n		-		-		-		-		-		2		-		-				-		-		
べN All Gear	72	Male	0	0.0	0	0.0	0	0.0	36	50.0	0	0.0	13	18.1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	49	68.1
		Female	0		0	0.0	0	0.0	6	8.3	0	0.0	16	22.2	0	0.0	1	1.4	0	0.0	0	0.0	0	0.0	23	31.9
		Total	0	0.0	0	0.0	0	0.0	42	58.3	0	0.0	29	40.3	0	0.0	1	1.4	0	0.0	0	0.0	0	0.0	72	100.0
		Male Mean Length		-		-		-		711		-		798		-		-				-		-		
		SE		-		-		-		6		_		14		-		-				-				
		Range		-		-		-		6-807		-		-3-905		-		-				-		-		
		n		-		-		-		36		-		13		-		-				-				
		Female Mean Length		-		-		-		796		-		833		-		859				-				
		SE		-		-		-		20		-		13		-		-				-				
		Range		-		-		-		7-864		-		00-909		-		-				-				
		n		-		-		-		6		-		16		-		1				-		-		

[^5]Appendix A7.-Yukon River District 2 (St. Mary's) Chinook salmon subsistence gillnet harvest, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)																					Total	
			$\frac{2009}{(1.1)}$	2008				2007				2006				2005				2004					
				(1.2)		(2.1)		(1.3)		(2.2)		(1.4)		(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
			N \%	N	\%	N \%																			
6/20	2	Male	00.0	1	50.0	0	0.0	1	50.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2	100.0
5.5" Mesh Drift Gillnet		Female	$\begin{array}{lll}0 & 0.0\end{array}$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
		Subtotal	$0 \quad 0.0$	1	50.0	0	0.0	1	50.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2	100.0
		Male Mean Length	-		540		-		731		-		-								-				
		SE	-		-		-		-		-		-								-				
		Range	-		-		-		-		-		-								-				
		n	-		1		-		1		-		-						-		-		-		
		Female Mean Length	-		-		-		-		-		-												
		SE	-		-		-		-		-		-								-				
		Range	-		-		-		-		-		-												
		n	-		-		-		-		-		-										-		
6/13-14, 17;	18	Male	$\begin{array}{ll}0 & 0.0\end{array}$	6	33.3	0	0.0	10	55.6	0	0.0	1	5.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	17	94.4
6" Mesh		Female	$\begin{array}{lll}0 & 0.0\end{array}$	0	0.0	0	0.0	1	5.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1	5.6
Drift Gillnet		Subtotal	$0 \quad 0.0$	6	33.3	0	0.0	11	61.1	0	0.0	1	5.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	18	100.0
		Male Mean Length	-		545		-		712		-		730		-										
		SE	-		14		-		14		-		-												
		Range	-		93-572		-		-778		-		-												
			-		6		-		10		-		1		-										
		Female Mean Length	-		-		-		755		-		-												
		SE	-		-		-		-		-		-												
		Range	-		-		-		-		-		-		-						-				
		n	-		-		-		1		-		-		-			-	-		-		-		
$\begin{gathered} \text { 6/10-11, 13- } \\ \text { 15, 17-18 } \\ \text { 7.5" Mesh } \\ \text { Drift Gillnet } \end{gathered}$	198	Male	$\begin{array}{ll}0 & 0.0\end{array}$	1	0.5	0	0.0	98	49.5	1	0.5	39	19.6	1	0.5	1	0.5	0	0.0	0	0.0	0	0.0	141	71.2
		Female	$\begin{array}{lll}0 & 0.0\end{array}$	0	0.0	0		7	3.5	0	0.0	48	24.1	0	0.0	2	1.0	0	0.0	0	0.0	0	0.0	57	28.8
		Subtotal	00.0	1	0.5	0	0.0	106	53.0	1	0.5	87	43.7	1	0.5	3	1.5	0	0.0	0	0.0	0	0.0	198	100.0
		Male Mean Length	-		578		-		716		33		809		80				-		-		-		
		SE	-		-		-		5		-		8												
		Range	-		-		-		8-898		-		8-905		-						-		-		
		n	-		1		-		98		1		39		1						-		-		
		Female Mean Length	-		-		-		773		-		830		-			-	-		-		-		
		SE	-		-		-		12		-		5		-			-							
		Range	-		-		-		-810		-		4-946		-	824	831	-	-		-				
		n	-		-		-		7		-		48		-				-		-		-		

[^6]Appendix A7.-Page 2 of 2.

Sample Dates	Sample Size		Brood Year (Age)																Total	
			$\begin{aligned} & 2009 \\ & \hline(1.1) \end{aligned}$	2008			2007			2006		2005			2004					
				(1.2)	(2.1)			(2.2)		(1.4)	(2.3)	(1.5)	(2.4)		(1.6)		(2.5)			
			N \%	N \%	N	\%	N \%	N	\%	N \%	N \%	N \%	N	\%	N	\%	N	\%	N	\%
All Gear	218	Male	$\begin{array}{ll}0 & 0.0\end{array}$	$8 \quad 3.7$	0	0.0	10950.0	1	0.5	$40 \quad 18.3$	10.5	10.5	0	0.0	0	0.0	0	0.0	160	73.4
		Female	$\begin{array}{lll}0 & 0.0\end{array}$	$0 \quad 0.0$	0	0.0	$8 \quad 3.7$	0	0.0	$48 \quad 21.9$	$0 \quad 0.0$	20.9	0	0.0	0	0.0	0	0.0	58	26.6
		Total	$\begin{array}{ll}0 & 0.0\end{array}$	$8 \quad 3.7$	0	0.0	11853.9	1	0.5	$88 \quad 40.2$	10.5	31.4	0	0.0	0	0.0	0	0.0	218	100.0
		Male Mean Length	-	548		-	716		633	807	680	1000		-		-		-		
		SE	-	11		-	5		-	8	-	-		-		-		-		
		Range	-	493-578		-	618-898		-	708-905	-	-		-		-		-		
		n	-	8		-	109		1	40	1	1		-		-		-		
		Female Mean Length	-	-		-	771		-	830	-	828		-		-		-		
		SE	-	-		-	11		-	5	-	4		-		-		-		
		Range	-	-		-	709-810		-	744-946	-	824-831		-		-		-		
		n	-	-		-	8		-	48	-	2		-		-		-		

Appendix A8.-Yukon River District 2 (Marshall) Chinook salmon subsistence gillnet harvest, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)															Total	
			$\begin{aligned} & \hline 2009 \\ & \hline(1.1) \end{aligned}$	2008		2007			2006		2005			2004					
				(1.2)	(2.1)	(1.3)	(2.2)		(1.4)	(2.3)	(1.5)		(2.4)	(1.6)		(2.5)			
			N \%	N \%	N \%	N \%	N	\%	N \%	N \%	N	\%	N \%	N	\%	N	\%	N \%	
6/20	7	Male	00.0	342.9	00.0	457.1	0	0.0	00.0	00.0	0	0.0	$0 \quad 0.0$	0	0.0	0	0.0	7	100.0
5.25" Mesh		Female	$0 \quad 0.0$	00.0	$0 \quad 0.0$	00.0	0	0.0	00.0	$0 \quad 0.0$	0	0.0	$0 \quad 0.0$	0	0.0	0	0.0	0	0.0
Drift Gillnet		Subtotal	$0 \quad 0.0$	$3 \quad 42.9$	$0 \quad 0.0$	$4 \quad 57.1$	0		00.0	$0 \quad 0.0$	0	0.0	$0 \quad 0.0$	0	0.0	0	0.0	7	100.0
		Male Mean Length	-	560	-	606		-	-	-		-	-		-		-		
		SE	-	4	-	29		-	-	-		-	-		-		-		
		Range	-	555-568	-	544-683		-	-	-		-	-		-		-		
		n	-	3	-	4		-	-	-		-	-		-		-		
		Female Mean Length	-	-	-	-		-	-	-		-	-		-		-		
		SE	-	-	-	-		-	-	-		-	-		-		-		
		Range	-	-	-	-		-	-	-		-	-		-		-		
		n	-	-	-	-		-	-	-		-	-		-		-		
6/17-19	96	Male	00.0	$2 \quad 2.1$	$0 \quad 0.0$	$55 \quad 57.3$	0	0.0	$20 \quad 20.8$	11.0	0	0.0	11.0	0	0.0	0	0.0	79	82.3
7.5" Mesh		Female	$\begin{array}{ll}0 & 0.0\end{array}$	00.0	00.0	11.0	0	0.0	$15 \quad 15.6$	00.0	1	1.0	0	0		0	0.0	17	17.7
Drift Gillnet		Subtotal	$\begin{array}{ll}0 & 0.0\end{array}$	$2 \quad 2.1$	$0 \quad 0.0$	$56 \quad 58.3$	0		$35 \quad 36.5$	11.0	1		11.0	0		0		96	100.0
		Male Mean Length	-	589	-	708		-	800	695		-	727		-		-		
		SE	-	28	-	7		-	14	-		-	-		-		-		
		Range	-	561-617	-	583-816		-	687-903	-		-	-		-		-		
		n	-	2	-	55		-	20	1		-	1		-		-		
		Female Mean Length	-	-	-	800		-	840	-		903	-		-		-		
		SE	-	-	-	-		-	9	-		-	-		-		-		
		Range	-	-	-	-		-	774-911	-		-	-		-		-		
		n	-	-	-	1		-	15	-		1	-		-		-		
All Gear	103	Male	$0 \quad 0.0$	$5 \quad 4.9$	$0 \quad 0.0$	5957.3	0	0.0	$20 \quad 19.4$	11.0	0	0.0	11.0	0	0.0	0	0.0	86	83.5
		Female	$\begin{array}{ll}0 & 0.0\end{array}$	00.0	$\begin{array}{ll}0 & 0.0\end{array}$	11.0	0	0.0	1514.6	00.0	1	1.0	0	0		0	0.0	17	16.5
		Total	$\begin{array}{ll}0 & 0.0\end{array}$	54.9	$0 \quad 0.0$	$60 \quad 58.3$	0		$35 \quad 34.0$	11.0	1		11.0	0		0		103	100.0
		Male Mean Length	-	571	-	701		-	800	695		-	727		-		-		
		SE	-	12	-	7		-	14	-		-	-		-		-		
		Range	-	555-617	-	544-816		-	687-903	-		-	-		-		-		
		n	-	5	-	59		-	20	1		-	1		-		-		
		Female Mean Length	-	-	-	800		-	840	-		903	-		-		-		
		SE	-	-	-	-		-	9	-		-	-		-		-		
		Range	-	-	-	-		-	774-911	-		-	-		-		-		
		n	-	-	-	1		-	15	-		1	-		-		-		

Appendix A9.-Yukon River Subdistrict 4-A (Anvik) Chinook salmon subsistence gillnet harvest, age and sex composition, and mean length (mm), 2012.

Appendix A9.-Page 2 of 3.

Sample Dates	Sample Size		Brood Year (Age)																			Total	
			$\begin{aligned} & \hline 2009 \\ & \hline(1.1) \end{aligned}$	2008				2007			2006			2005				2004					
				(1.2)		(2.1)		(1.3)	(2.2)		(1.4)	(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
			N \%	N	\%	N	\%	N \%	N	\%	N \%	N	\%	N \%									
6/25-26	8	Male	00.0	0	0.0	0	0.0	675.0	0	0.0	00.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	6	75.0
7.5" Mesh Drift		Female	$\begin{array}{lll}0 & 0.0\end{array}$	0	0.0	0	0.0	$0 \quad 0.0$	0	0.0	225.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2	25.0
Gillnet		Subtotal	$\begin{array}{ll}0 & 0.0\end{array}$	0	0.0	0	0.0	$6 \quad 75.0$	0	0.0	225.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	8	100.0
		Male Mean Length	-		-		-	703		-	-		-		-								
		SE	-		-		-	16		-	-		-		-		-		-		-		
		Range	-		-		-	630-740		-	-		-		-				-				
		n	-		-		-	6		-	-		-		-		-		-		-		
		Female Mean Length	-		-		-	-		-	820		-		-		-		-				
		SE	-		-		-	-		-	30		-		-		-		-		-		
		Range	-		-		-	-		-	790-850		-		-		-		-				
		n	-		-		-	-		-	2		-		-		-		-		-		
6/25-26	35	Male	$\begin{array}{ll}0 & 0.0\end{array}$	0	0.0	0	0.0	$12 \quad 34.3$	0	0.0	$7 \quad 20.0$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	19	54.3
7.5" Mesh		Female	$\begin{array}{ll}0 & 0.0\end{array}$	0	0.0	0	0.0	$8 \quad 22.9$	0	0.0	$7 \quad 20.0$	1	2.9	0	0.0	0	0.0	0	0.0	0	0.0	16	45.7
Set Gillnet		Subtotal	$\begin{array}{lll}0 & 0.0\end{array}$	0	0.0	0	0.0	$20 \quad 57.1$	0	0.0	1440.0	1	2.9	0	0.0	0	0.0	0	0.0	0	0.0	35	100.0
		Male Mean Length	-		-		-	722		-	809		-		-		-		-				
		SE	-		-		-	8		-	14		-		-		-		-				
		Range	-		-		-	680-770		-	750-870		_		-		-		-				
		n	-		-		-	12		-	7		-		-		-		-				
		Female Mean Length	-		-		-	740		-	886		760		-		-		-		-		
		SE	-		-		-	8		-	23		-		-		-		-		-		
		Range	$-$		-		-	710-780		-	780-970		-		-				-				
		n	_		-		-	8		-	7		1		-		-		-				
Total	43	Male	$\begin{array}{ll}0 & 0.0\end{array}$	0	0.0	0	0.0	1841.9	0	0.0	$7 \quad 16.3$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	25	58.1
7.5" Mesh		Female	$\begin{array}{lll}0 & 0.0\end{array}$	0	0.0	0	0.0	818.6	0	0.0	$9 \quad 20.9$	1		0	0.0	0	0.0	0	0.0	0	0.0	18	41.9
		Total	$0 \quad 0.0$	0	0.0	0	0.0	$26 \quad 60.5$	0	0.0	1637.2	1		0	0.0	0	0.0	0	0.0	0	0.0	43	100.0
		Male Mean Length			-		-	715		-	809		-		-		-		-		-		
		SE	_		_		-	8		-	14		_		-		-		-				
		Range	-		-		-	630-770		-	750-870		-		-		-		-		-		
		n	-		-		-	18		-	7		-		-		-		-				
		Female Mean Length	-		-		-	740		-	871		760		-		-		-		-		
		SE	-		-		-	8		-	21		-		-		-		-				
		Range	-		-		-	710-780		-	780-970		-		-		-		-				
		n	-		-		-	8		-	9		1		-		-		-		-		

[^7]Appendix A9.-Page 3 of 3.

Sample Dates	Sample Size		Brood Year (Age)																		Total	
			$\begin{aligned} & 2009 \\ & \hline(1.1) \end{aligned}$		2008			2007			2006		2005				2004					
					(1.2)	(2.1)		(1.3)	(2.2)		(1.4)	(2.3)	(1.5)		(2.4)		(1.6)		(2.5)			
			N	\%	N \%	N	\%	N \%	N	\%	N \%	N \%	N	\%								
All Gear	60	Male	0	0.0	35.0	0	0.0	2745.0	0	0.0	$7 \quad 11.7$	$2 \quad 3.3$	0	0.0	0	0.0	0	0.0	0	0.0	39	65.0
		Female	0	0.0	$0 \quad 0.0$	0	0.0	915.0	0	0.0	1118.3	$1 \begin{array}{ll}1 & 1.7\end{array}$	0	0.0	0	0.0	0	0.0	0	0.0	21	35.0
		Total	0		35.0	0	0.0	$36 \quad 60.0$	0	0.0	$18 \quad 30.0$	35.0	0	0.0	0	0.0	0	0.0	0	0.0	60	100.0
		Male Mean Length		-	558		-	704		-	809	705		-		-		-		-		
		SE		-	2		-	10		-	14	25		-		-		-		-		
		Range		-	555-560		-	535-770		-	750-870	680-730		-		-		-		-		
		n		-	3		-	27		-	7	2		-		-		-		-		
		Female Mean Length		-	-		-	738		-	862	760		-		-		-		-		
		SE		-	-		-	7		-	18	-		-		-		-		-		
		Range		-	-		-	710-780		-	780-970	-		-		-		-		-		
		n		-	-		-	9		-	11	1		-		-		-		-		

Appendix A10.-Yukon River Subdistrict 4-A (Kaltag) Chinook salmon subsistence 7.5 in mesh drift gillnet harvest, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)																						Total	
			$\begin{aligned} & 2009 \\ & \hline(1.1) \end{aligned}$		2008				2007				2006				2005				2004					
					(1.2)		(2.1)		(1.3)		(2.2)		(1.4)		(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
			N	\%	N		N	\%	N \%																	
Total	45	Male	0	0.0	1	2.2	0	0.0	29	64.4	0	0.0	3	6.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	33	73.3
		Female	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	12	26.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	12	26.7
		Total	0	0.0	1	2.2	0	0.0	29	64.4	0	0.0	15	33.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	45	100.0
		Male Mean Length		-		552		-		724		-		853		-		-		-		-		-		
		SE		-		-		-		7		-		22		-		-		-		-		-		
		Range		-		-		-		60-832		-		2-896		-		-		-		-		-		
		n		-		1		-		29		-		3		-		-		-		-		-		
		Female Mean Length		-		-		-		-		-		839		-		-		-		-		-		
		SE		-		-		-		-		-		15		-		-		-		-		-		
		Range		-		-		-		-		-		8-937		-		-		-		-		-		
		n		-		-		-		-		-		12		-		-		-		-		-		

Appendix A11.-Yukon River Subdistricts 4-B and 4-C (Galena) Chinook salmon subsistence gillnet harvest, age and sex composition, and mean length (mm), 2012.

Appendix A12.-Yukon River Subdistricts 4-B and 4-C (Ruby) Chinook salmon subsistence 7.5 in mesh set gillnet harvest, age and sex composition, and mean length (mm), 2012.

	Sample Dates	Sample Size		Brood Year (Age)																						Total	
				$\begin{aligned} & 2009 \\ & \hline(1.1) \end{aligned}$		2008				2007				2006				2005				2004					
						(1.2)		(2.1)		(1.3)		(2.2)		(1.4)		(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
				N	\%																						
	Total	32	Male	0	0.0	6	18.8	0	0.0	20	62.5	0	0.0	1	3.1	0	0.0	0	0.0	1	3.1	0	0.0	0	0.0	28	87.5
			Female	0	0.0	0	0.0	0	0.0	1	3.1	0	0.0	3	9.4	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	4	12.5
			Total	0	0.0	6	18.8	0	0.0	21	65.6	0	0.0	4	12.5	0	0.0	0	0.0	1	3.1	0	0.0	0	0.0	32	100.0
			Male Mean Length		-		611		-		694		-		797		-		-		30		-		-		
			SE		-		17		-		7		-		-		-		-		-		-		-		
			Range		-		-655		-		20-740		-		-		-		-		-		-		-		
			n		-		6		-		20		-		1		-		-		1		-		-		
			Female Mean Length		-		-		-		750		-		813		-		-		-		-		-		
			SE		-		-		-		-		-		14		-		-		-		-		-		
A			Range		-		-		-		-		-		-839		-		-		-		-		-		
			n		-		-		-		1		-		3		-		-		-		-		-		

Appendix A13.-Yukon River Subdistrict 5-B (Rampart Rapids) Chinook salmon subsistence harvest, sex composition, and mean length (mm), 2012.

-continued-

Appendix A13.-Page 2 of 2.

Appendix A14.-Yukon River Subdistrict 5-D (Fort Yukon) Chinook salmon subsistence fish wheel harvest, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)																	Total	
			$\begin{aligned} & \hline 2009 \\ & \hline(1.1) \end{aligned}$	2008			2007			2006		2005				2004					
				(1.2)	(2.1)		(1.3)	(2.2)		(1.4)	(2.3)	(1.5)		(2.4)		(1.6)		(2.5)			
			N \%	N \%	N	\%	N \%	N	\%	N \%	N \%	N	\%	N		N	\%	N	\%	N \%	
Total	160	Male	10.6	148.8	0	0.0	$70 \quad 43.8$	1	0.6	$20 \quad 12.5$	$5 \quad 3.1$	0	0.0	1	0.6	0	0.0	0	0.0	112	70.0
		Female	00.0	10.6	0	0.0	$11 \quad 6.9$	0		$34 \quad 21.3$	$\begin{array}{ll}0 & 0.0\end{array}$		0.6	1		0	0.0	0	0.0	48	30.0
		Total	10.6	159.4	0	0.0	$81 \quad 50.6$	1	0.6	$54 \quad 33.8$	$5 \quad 3.1$	1	0.6	2		0	0.0	0	0.0	160	100.0
		Male Mean Length	370	546		-	703		660	823	690		-		20		-				
		SE	-	12		-	7		-	12	51		-		-		-				
		Range	-	445-620		-	540-930		-	740-945	570-880		-		-		-				
		n	1	14		-	70		1	20	5		-		1		-		-		
		Female Mean Length	-	640		-	700		-	850	-		900		50		-		-		
		SE	-	-		-	15		-	6	-		-		-		-		-		
		Range	-	-		-	630-770		-	780-920	-		-		-		-		-		
		n	-	1		-	11		-	34	-		1		1		-		-		

Appendix A15.-Lower Yukon River test fishery (Big Eddy site) Chinook salmon 8.25 in mesh drift gillnet, age and sex composition, and mean length (mm), 2012.
\varnothing

-continued-

Appendix A15.-Page 2 of 2.

Sample Dates	Sample Size		Brood Year (Age)																Total	
			$\begin{aligned} & 2009 \\ & \hline(1.1) \end{aligned}$	2008		2007		2006			2005				2004					
				(1.2)	(2.1)	(1.3)	(2.2)	(1.4)	(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
			N \%	N		N	\%													
6/27-7/6, 8,	70	Male	$\begin{array}{lll}0 & 0.0\end{array}$	$0 \quad 0.0$	00.0	$12 \quad 17.1$	$\begin{array}{lll}0 & 0.0\end{array}$	$6 \quad 8.6$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	18	25.7
10-13		Female	$\begin{array}{lll}0 & 0.0\end{array}$	$0 \quad 0.0$	$0 \quad 0.0$	57.1	$\begin{array}{lll}0 & 0.0\end{array}$	$47 \quad 67.1$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	52	74.3
stratum 3		Subtotal	$\begin{array}{ll}0 & 0.0\end{array}$	$0 \quad 0.0$	$0 \quad 0.0$	$17 \quad 24.3$	$\begin{array}{ll}0 & 0.0\end{array}$	$53 \quad 75.7$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	70	100.0
		Male Mean Length	-	-	-	735	-	846		-		-		-		-		-		
		SE	-	-	-	19	-	11		-		-		-		-		-		
		Range	-	-	-	618-850	-	799-871		-		-		-		-		-		
		n	-	-	-	12	-	6		-		-		-		-		-		
		Female Mean Length	-	-	-	787	-	839		-		-		-		-		-		
		SE	-	-	-	11	-	6		-		-		-		-		-		
		Range	-	-	-	755-816	-	757-943		-		-		-		-		-		
		n	-	-	-	5	-	47		-		-		-		-		-		
Total	219	Male	$\begin{array}{lll}0 & 0.0\end{array}$	$4 \quad 1.8$	$0 \quad 0.0$	$52 \quad 23.7$	10.5	$26 \quad 11.9$	0	0.0	0	0.0	2	0.9	0	0.0	0	0.0	85	38.8
		Female	$\begin{array}{lll}0 & 0.0\end{array}$	$0 \quad 0.0$	$0 \quad 0.0$	$17 \quad 7.8$	$\begin{array}{ll}0 & 0.0\end{array}$	11552.5	0		0		2	0.9	0	0.0	0	0.0	134	61.2
		Total		41.8	$0 \quad 0.0$	6931.5		14164.4	0		0		4		0		0		219	100.0
		Male Mean Length	-	571	-	716	569	815		-		-		818		-		-		
		SE	-	4	-	7	-	9		-		-		23		-		-		
		Range	-	561-581	-	606-850	-	688-880		-		-		-841		-		-		
		n	-	4	-	52	1	26		-		-		2		-		-		
		Female Mean Length	-	-	-	791	-	833		-		-		816		-		-		
		SE	-	-	-	8	-	4		-		-		2		-		-		
		Range	-	-	-	706-837	-	753-943		-		-		-818		-		-		
		n	-	-	-	17	-	115		-		-		2		-		-		

Appendix A16.-Lower Yukon River test fishery (Big Eddy site) Chinook salmon 8.5 in mesh set gillnet, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)																Total	
			$\begin{aligned} & \hline 2009 \\ & \hline(1.1) \end{aligned}$	2008		2007			2006				2005		2004					
				(1.2)	(2.1)	(1.3)		2.2)				(3)	(1.5)	(2.4)		.6)		(2)		
			N \%	N \%	N \%	N \%	N	\%	N	\%	N	\%	N \%	N \%	N	\%	N	\%	N	\%
6/11, 13-25	195	Male	00.0	42.1	00.0	3719.0	0	0.0	41	21.0	0	0.0	10.5	$0 \quad 0.0$	0	0.0	0	0.0	83	42.6
Quartile 1		Female	$\begin{array}{ll}0 & 0.0\end{array}$	$0 \quad 0.0$	00.0	$7 \quad 3.6$	0	0.0	102	52.3	0	0.0	21.0	10.5	0	0.0	0	0.0	112	57.4
		Subtotal	00.0	42.1	$0 \quad 0.0$	4422.6	0	0.0	143	73.3	0	0.0	31.5	10.5	0	0.0	0	0.0	195	100.0
		Male Mean Length	-	567	-	732		-				-	822	-		-		-		
		SE	-	19	-	10		-				-	-	-		-		-		
		Range	-	511-595	-	597-816		-		-996		-	-	-		-		-		
		n	-	4	-	37		-				-	1	-		-		-		
		Female Mean Length	-	-	-	785		-				-	907	827		-		-		
		SE	-	-	-	7		-				-	2	-		-		-		
		Range	-	-	-	757-812		-		-949		-	905-909	-		-				
		n	-	-	-	7		-		02		-	2	1		-		-		
6/26-7/1	147	Male	$\begin{array}{ll}0 & 0.0\end{array}$	10.7	00.0	2919.7	0	0.0	25	17.0	0	0.0	$0 \quad 0.0$	$0 \quad 0.0$	0	0.0	0	0.0	55	37.4
Quartile 2		Female	$\begin{array}{lll}0 & 0.0\end{array}$	$0 \quad 0.0$	00.0	$9 \quad 6.1$	0	0.0	77	52.4	0	0.0	$4 \quad 2.7$	21.4	0	0.0	0	0.0	92	62.6
		Subtotal	$0 \quad 0.0$	10.7	$0 \quad 0.0$	3825.9	0	0.0	102	69.4	0	0.0	$4 \quad 2.7$	21.4	0	0.0	0	0.0	147	100.0
		Male Mean Length	-	597	-	764		-		82		-	-	-		-		-		
		SE	-	-	-	8		-				-	-	-		-		-		
		Range	-	-	-	672-868		-		-902		-	-	-		-				
		n	-	1	-	29		-				-	-	-		-		-		
		Female Mean Length	-	-	-	803		-				-	877	755		-		-		
		SE	-	-	-	8		-		4		-	9	4		-		-		
		Range	-	-	-	771-847		-		-928		-	854-900	751-759		-		-		
		n	-	-	-	9		-		7		-	4	2		-		-		
7/2, 4	2	Male	$\begin{array}{ll}0 & 0.0\end{array}$	$0 \quad 0.0$	00.0	$0 \quad 0.0$	0	0.0	0	0.0	0	0.0	$0 \quad 0.0$	$0 \quad 0.0$	0	0.0	0	0.0	0	0.0
Quartile 3		Female	$\begin{array}{ll}0 & 0.0\end{array}$	$0 \quad 0.0$	$\begin{array}{lll}0 & 0.0\end{array}$	$0 \quad 0.0$	0	0.0	2	100.0	0	0.0	$0 \quad 0.0$	$0 \quad 0.0$	0	0.0	0	0.0	2	100.0
		Subtotal	$0 \quad 0.0$	$0 \quad 0.0$	$0 \quad 0.0$	$0 \quad 0.0$	0	0.0	2	100.0	0	0.0	$0 \quad 0.0$	$0 \quad 0.0$	0	0.0	0	0.0	2	100.0
		Male Mean Length	-	-	-	-		-		-		-	-	-		-		-		
		SE	-	-	-	-		-				-	-	-		-		-		
		Range	-	-	-	-		-				-	-	-		-		-		
		n	-	-	-	-		-				-	-	-		-		-		
		Female Mean Length	-	-	-	-		-		14		-	-	-		-		-		
		SE	-	-	-	-		-				-	-	-		-		-		
		Range	-	-	-	-		-		-877		-	-	-		-		-		
		n	-	-	-	-		-		2		-	-	-		-		-		

Appendix A16.-Page 2 of 2.

Appendix A17.-Lower Yukon River test fishery (Middle Mouth site) Chinook salmon 8.5 in mesh set gillnet, age and sex composition, and mean length (mm), 2012.

Sample Dates	$\begin{aligned} & \text { Sample } \\ & \text { Size } \\ & \hline \end{aligned}$		Brood Year (Age)																	Total	
			2009	2008		2007			2006			2005				2004					
			(1.1)	(1.2)	(2.1)	(1.3)	(2.2)		(1.4)	(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
			N \%	N \%	N \%	N \%	N	\%	N \%	N	\%	N \%									
$\begin{gathered} \hline 6 / 13-14,16- \\ \text { Quartile } 1 \end{gathered}$	101	Male	$0 \quad 0.0$	22.0	00.0	2726.7	0	0.0	$20 \quad 19.8$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	49	48.5
		Female	$\begin{array}{lll}0 & 0.0\end{array}$	$0 \quad 0.0$	00.0	$5 \quad 5.0$	0	0.0	$46 \quad 45.5$	0	0.0	0	0.0	1	1.0	0	0.0	0	0.0	52	51.5
		Subtotal	$0 \quad 0.0$	22.0	$0 \quad 0.0$	3231.7	0	0.0	$66 \quad 65.3$	0	0.0	0	0.0	1	1.0	0	0.0	0	0.0	101	100.0
		Male Mean Length	-	559	-	750		-	808		-		-		-		-		-		
		SE	-	8	-	13		-	8		-		-		-		-		-		
		Range	-	551-567	-	610-852		-	740-878		-		-		-		-		-		
		n	-	2	-	27		-	20		-		-		-		-		-		
		Female Mean Length	-	-	-	788		-	834		-		-		834		-		-		
		SE	-	-	-	9		-	5		-		-		-		-		-		
		Range	-	-	-	759-815		-	773-896		-		-		-		-		-		
		n	-	-	-	5		-	46		-		-		1		-		-		
6/26-7/1	114	Male	$0 \quad 0.0$	10.9	00.0	1916.7	0	0.0	1815.8	0	0.0	1	0.9	0	0.0	0	0.0	0	0.0	39	34.2
Quartile 2		Female	$\begin{array}{lll}0 & 0.0\end{array}$	$0 \quad 0.0$	$0 \quad 0.0$	1614.0	0	0.0	$57 \quad 50.0$	0	0.0	0	0.0	2	1.8	0	0.0	0	0.0	75	65.8
		Subtotal	$0 \quad 0.0$	10.9	$0 \quad 0.0$	$35 \quad 30.7$	0	0.0	$75 \quad 65.8$	0	0.0	1	0.9	2	1.8	0	0.0	0	0.0	114	100.0
		Male Mean Length	-	548	-	753		-	807		-		949		-		-		-		
		SE	-	-	-	12		-	11		-		-		-		-		-		
		Range	-	-	-	626-864		-	762-900		-		-		-		-		-		
		n	-	1	-	19		-	18		-		1		-		-		-		
		Female Mean Length	-	-	-	793		-	843		-		-		855		-		-		
		SE	-	-	-	11		-	4		-		-		2		-		-		
		Range	-	-	-	656-846		-	770-905		-		-		-857		-		-		
		n	-	-	-	16		-	57		-		-		2		-		-		
$\begin{gathered} 7 / 2-6 \\ \text { Quartile } 3 \end{gathered}$	123	Male				2822.8			129.8	0	0.0	1				0	0.0	0	0.0	44	
		Female	$\begin{array}{ll}0 & 0.0\end{array}$	$0 \quad 0.0$	$\begin{array}{ll}0 & 0.0\end{array}$	1613.0	0	0.0	$63 \quad 51.2$	0	0.0	0		0		0	0.0	0	0.0	79	64.2
		Subtotal	00.0	21.6	$0 \quad 0.0$	4435.8	0	0.0	7561.0	0	0.0	1		1	0.8	0	0.0	0	0.0	123	100.0
		Male Mean Length	-	501	-	759		-	808		-		945		830		-		-		
		SE	-	50	-	11		-	17		-		-		-		-		-		
		Range	-	451-551	-	619-883		-	736-925		-		-		-		-		-		
		n	-	2	-	28		-	12		-		1		1		-		-		
		Female Mean Length	-	-	-	807		-	838		-		-		-		-		-		
		SE	-	-	-	7		-	5		-		-		-		-		-		
		Range	-	-	-	759-855		-	751-929		-		-		-		-		-		
		n	-	-	-	16		-	63		-		-		-		-		-		

[^8]Appendix A17.-Page 2 of 2.

Appendix A18.-Lower Yukon River test fishery (combined Big Eddy and Middle Mouth sites) Chinook salmon 8.5 in mesh set gillnet, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)																Total	
			$\begin{aligned} & \hline 2009 \\ & \hline(1.1) \end{aligned}$	2008		2007			2006				2005		2004					
				(1.2)	(2.1)	(1.3)		2.2)	(1.4)		(2.3)		(1.5)	(2.4)	(1.6)		(2.5)			
			N \%	N \%	N \%	N \%	N	\%	N	\%	N	\%	N \%	N \%	N	\%	N	\%	N	\%
6/11, 13-25	296	Male	$0 \quad 0.0$	$6 \quad 2.0$	$0 \quad 0.0$	6421.6	0	0.0	61	20.6	0	0.0	10.3	$0 \quad 0.0$	0	0.0	0	0.0	132	44.6
Quartile 1		Female	$0 \quad 0.0$	$0 \quad 0.0$	$0 \quad 0.0$	124.1	0	0.0	148	50.0	0	0.0	20.7	$2 \quad 0.7$	0	0.0	0	0.0	164	55.4
		Subtotal	$0 \quad 0.0$	$6 \quad 2.0$	$0 \quad 0.0$	$76 \quad 25.7$	0	0.0	209	70.6	0	0.0	31.0	20.7	0	0.0	0	0.0	296	100.0
		Male Mean Length	-	565	-	740		-	81			-	822	-		-				
		SE	-	13	-	8		-	6			-	-	-		-				
		Range	-	511-595	-	597-852		-	735	996		-	-	-		-				
		n	-	6	-	64		-	6			-	1	-		-				
		Female Mean Length	-	-	-	786		-	83			-	907	831		-				
		SE	-	-	-	6		-	3			-	2	4		-				
		Range	-	-	-	757-815		-	772	949			905-909	827-834		-				
		n	-	-	-	12		-	14			-	2	2		-				
$\begin{array}{ll} & 6 / 26-7 / 1 \\ \searrow & \text { Quartile } 2\end{array}$	261	Male	$0 \quad 0.0$	20.8	$0 \quad 0.0$	$48 \quad 18.4$	0	0.0	43	16.5	0	0.0	10.4	$0 \quad 0.0$	0	0.0	0	0.0	94	36.0
		Female	$0 \quad 0.0$	$0 \quad 0.0$	$0 \quad 0.0$	259.6	0	0.0	134	51.3	0	0.0	$4 \quad 1.5$	41.5	0	0.0	0	0.0	167	64.0
		Subtotal	$0 \quad 0.0$	20.8	$0 \quad 0.0$	$73 \quad 28.0$	0	0.0	177	67.8	0	0.0	51.9	41.5	0	0.0	0	0.0	261	100.0
		Male Mean Length	-	573	-	759		-	81			-	949	-		-		-		
		SE	-	25	-	7		-	7			-	-	-		-				
		Range	-	548-597	-	626-868		-	745	902		-	-	-		-				
		n	-	2	-	48		-	4			-		-		-				
		Female Mean Length	-	-	-	797		-	84			-	877	805		-				
		SE	-	-	-	7		-	3			-	9	29		-				
		Range	-	-	-	656-847		-	749	928		-	854-900	751-857		-				
		n	-	-	-	25		-	13			-	4	4		-		-		
$\begin{gathered} \text { 7/2-6 } \\ \text { Quartile } 3 \end{gathered}$	125	Male	$0 \quad 0.0$	21.6	$0 \quad 0.0$	$28 \quad 22.4$	0	0.0	12	9.6	0	0.0	10.8	$1 \quad 0.8$	0	0.0	0	0.0	44	35.2
		Female	$\begin{array}{ll}0 & 0.0\end{array}$	$0 \quad 0.0$	$0 \quad 0.0$	1612.8	0	0.0	65	52.0	0	0.0	$0 \quad 0.0$	$\begin{array}{ll}0 & 0.0\end{array}$	0	0.0	0	0.0	81	64.8
		Subtotal	$0 \quad 0.0$	21.6	$0 \quad 0.0$	4435.2	0	0.0	77	61.6	0	0.0	10.8	10.8	0	0.0	0	0.0	125	100.0
		Male Mean Length	-	501	-	759		-	80			-	945	830		-		-		
		SE	-	50	-	11		-	1				-	-		-				
		Range	-	451-551	-	619-883		-	736	925		-	-	-		-				
		n	-	2	-	28		-	12			-	1	1		-				
		Female Mean Length	-	-	-	807		-	83			-	-	-		-		-		
		SE	-	-	-	7		-	5			-	-	-		-				
		Range	-	-	-	759-855		-	750	929		-	-	-		-				
		n	-	-	-	16		-	6			-	-	-		-		-		

[^9]Appendix A18.-Page 2 of 2.

Appendix A19.-Yukon River Mountain Village test fishery Chinook salmon 7.5 in mesh drift gillnet, age and sex composition, and mean length (mm), 2012.

[^10]Appendix A19.-Page 2 of 2.

Sample Dates	Sample Size		Brood Year (Age)																Total	
			$\begin{aligned} & \hline 2009 \\ & \hline(1.1) \end{aligned}$	2008			2007		2006				2005		2004					
				(1.2)	(2.1)		(1.3)	(2.2)	(1.4)		(2.3)		(1.5)	(2.4)	(1.6)		(2.5)			
			N \%	N \%	N	\%	N \%	N \%	N	\%	N	\%	N \%	N \%	N	\%	N	\%	N	\%
7/1-11	117	Male	$\begin{array}{ll}0 & 0.0\end{array}$	32.6	0	0.0	$33 \quad 28.2$	10.9	14	12.0	0	0.0	$0 \quad 0.0$	$0 \quad 0.0$	0	0.0	0	0.0	51	43.6
Quartile 4		Female	$\begin{array}{ll}0 & 0.0\end{array}$	$0 \quad 0.0$	0	0.0	$12 \quad 10.3$	00.0	49	41.9	0	0.0	21.7	$3 \quad 2.6$	0	0.0	0	0.0	66	56.4
		Subtotal	00.0	32.6	0	0.0	$45 \quad 38.5$	10.9	63	53.8	0	0.0	21.7	32.6	0	0.0	0	0.0	117	100.0
		Male Mean Length	-	559		-	728	607		21		-	-	-		-		-		
		SE	-	12		-	9	-		7		-	-	-		-		-		
		Range	-	537-578		-	645-846	-	672	-934		-	-	-		-		-		
		n	-	3		-	33	1		4		-	-	-		-		-		
		Female Mean Length	-	-		-	783	-		88		-	922	808		-		-		
		SE	-	-		-	11	-		5		-	8	16		-		-		
		Range	-	-		-	733-841	-	749	-909		-	914-930	780-835		-		-		
		n	-	-		-	12	-		9		-	2	3		-		-		
Total	405	Male	00.0	71.7	0	0.0	14836.5	10.2	65	16.0	0	0.0	10.2	41.0	0	0.0	0	0.0	226	55.8
		Female	$\begin{array}{ll}0 & 0.0\end{array}$	$0 \quad 0.0$	0	0.0	338.1	$\begin{array}{ll}0 & 0.0\end{array}$	134	33.1	0	0.0	41.0	$7 \quad 1.7$	0	0.0	1		179	44.2
		Total	$0 \quad 0.0$	71.7	0	0.0	18144.7	10.2	199	49.1	0	0.0	$5 \quad 1.2$	$11 \quad 2.7$	0	0.0	1	0.2	405	100.0
		Male Mean Length	-	584		-	720	607		9		-	984	824		-		-		
		SE	-	10		-	4	-				-	-	26		-		-		
		Range	-	537-611		-	590-873	-	672	-994		-	-	755-875		-		-		
		n	-	7		-	148	1		5		-	1	4		-		-		
		Female Mean Length	-	-		-	780	-		83		-	913	809		-		64		
		SE	-	-		-	8	-		3		-	8	8		-		-		
		Range	-	-		-	700-850	-	725	-925		-	892-930	780-835		-		-		
		n	-	-		-	33	-		34		-	4	7		-		1		

Appendix A20.-Yukon River Pilot Station sonar test fishery Chinook salmon variable mesh drift gillnet, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)																Total	
			2009	2008		2007			2006			2005			2004					
			(1.1)	(1.2)	(2.1)	(1.3)	(2.2)		(1.4)		(2.3)	(1.5)		(2.4)	(1.6)		(2.5)			
			N \%	N \%	N \%	N \%	N	\%	N	\%	N \%	N	\%	N \%	N	\%	N	\%	N \%	
$\begin{gathered} \hline 6 / 24,28 \\ 2.75 " \text { Mesh } \end{gathered}$	2	Male	$0 \quad 0.0$	$0 \quad 0.0$	00.0	00.0	0	0.0	2	100.0	00.0	0	0.0	00.0	0	0.0	0	0.0	2	100.0
		Female	$0 \quad 0.0$	$0 \quad 0.0$	00.0	$0 \quad 0.0$	0	0.0	0	0.0	00.0	0	0.0	00.0	0	0.0	0	0.0	0	0.0
		Subtotal	$0 \quad 0.0$	$0 \quad 0.0$	00.0	$0 \quad 0.0$	0	0.0	2	100.0	00.0	0	0.0	00.0	0	0.0	0	0.0	2	100.0
		Male Mean Length	-	-	-	-		-		828	-		-	-		-		-		
		SE	-	-	-	-		-		9	-		-	-		-		-		
		Range	-	-	-	-		-		19-836	-		-	-		-		-		
		n	-	-	-	-		-		2	-		-	-		-		-		
		Female Mean Length	-	-	-	-		-		-	-		-	-		-		-		
		SE	-	-	-	-		-		-	-		-	-		-		-		
		Range	-	-	-	-		-		-	-		-	-		-		-		
		n	-	-	-	-		-		-	-		-	-		-		-		
$\begin{gathered} \text { 6/15-17, 19-20, 22- } \\ \text { 23, 27, 29; 7/4, 6, 9, } \\ \text { 4" Mesh } \end{gathered}$	17	Male	317.6	$4 \quad 23.5$	$0 \quad 0.0$	$4 \quad 23.5$	0	0.0	1	5.9	$0 \quad 0.0$	0	0.0	00.0	0	0.0	0	0.0	12	70.6
		Female	$0 \quad 0.0$	$0 \quad 0.0$	00.0	211.8	0	0.0	3	17.6	$0 \quad 0.0$	0	0.0	00.0	0	0.0	0	0.0	5	29.4
		Subtotal	317.6	423.5	00.0	635.3	0	0.0	4	23.5	$0 \quad 0.0$	0	0.0	$0 \quad 0.0$	0	0.0	0	0.0	17	100.0
		Male Mean Length	364	584	-	661		-		891	-		-	-		-		-		
		SE	7	25	-	16		-		-	-		-	-		-		-		
		Range	355-379	517-635	-	624-693		-		-	-		-	-		-		-		
		n	3	4	-	4		-		1	-		-	-		-		-		
		Female Mean Length	-	-	-	755		-		860	-		-	-		-		-		
		SE	-	-	-	15		-		30	-		-	-		-		-		
		Range	-	-	-	740-770		-		-2-900	-		-	-		-		-		
		n	-	-	-	2		-		3	-		-	-		-		-		
$\begin{gathered} \text { 6/17-18, 25-7/4, } 7, \\ 9-10,12,17 \\ 5.25 " \text { Mesh } \end{gathered}$	23	Male	$0 \quad 0.0$	$5 \quad 21.7$	00.0	1043.5	0	0.0	2	8.7	00.0	0	0.0	00.0	0	0.0	0	0.0	17	73.9
		Female	$0 \quad 0.0$	$0 \quad 0.0$	00.0	28.7	0	0.0	3	13.0	14.3	0	0.0	00.0	0	0.0	0	0.0	6	26.1
		Subtotal	$0 \quad 0.0$	521.7	$0 \quad 0.0$	1252.2	0	0.0	5	21.7	14.3	0	0.0	$0 \quad 0.0$	0	0.0	0	0.0	23	100.0
		Male Mean Length	-	548	-	687		-		914	-		-	-		-		-		
		SE	-	15	-			-		104	-		-	-		-		-		
		Range	-	518-600	-	641-754		-		0-1017	-		-	-		-		-		
		n	-	5	-	10		-		2	-		-	-		-		-		
		Female Mean Length	-	-	-	775		-		836	747		-	-		-		-		
		SE	-	-	-	55		-		10	-		-	-		-		-		
		Range	-	-	-	720-830		-		17-852	-		-	-		-		-		
		n	-	-	-	2		-		3	1		-	-		-		-		

[^11]Appendix A20.-Page 2 of 3.

Sample Dates	Sample Size		Brood Year (Age)																				Total	
			2009	2008			2007				2006				2005				2004					
			(1.1)	(1.2)	(2.1)		(1.3)		(2.2)		(1.4)		(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
			N \%	N \%	N	\%	N \%																	
	1	Male	00.0	00.0	0	0.0	0	0.0	0	0.0	1	100.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1	100.0
5.75" Mesh		Female	$\begin{array}{lll}0 & 0.0\end{array}$	$0 \quad 0.0$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
		Subtotal	00.0	$0 \quad 0.0$	0	0.0	0	0.0	0	0.0	1	100.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1	100.0
		Male Mean Length	-	-		-		-		-		790		-		-		-		-		-		
		SE	-	-		-		-		-		-		-		-		-		-		-		
		Range		-		-		-		-		-		-		-				-		-		
		n	-	-		-		-		-		1		-		-		-		-		-		
		Female Mean Length	-	-		-		-		_		-		_		-				-		_		
		SE	-	-		-		-		-		-		-		-				-		-		
		Range	-	-		-		-		-		-		-		-				-		-		
		n	-	-		-		-		-		-		-		-				-		-		
6/13, 16-21, 23-7/8,	85	Male	00.0	$5 \quad 5.9$	0	0.0	30	35.3	0	0.0	11	12.9	1	1.2	0	0.0	1	1.2	0	0.0	0	0.0	48	56.5
$10-11,13-14,18-21$		Female	$\begin{array}{ll}0 & 0.0\end{array}$	$0 \quad 0.0$	0		10	11.8	0	0.0	25	29.4	0	0.0	1	1.2	1	1.2	0	0.0	0	0.0	37	43.5
6.5" Mesh		Subtotal	00.0	$5 \quad 5.9$			40	47.1	0	0.0	36	42.4	1	1.2	1	1.2	2	2.4	0	0.0	0	0.0	85	100.0
		Male Mean Length	-	561		-		693		-		811		09		-		04		-		-		
		SE	$-$	10		-		10		-				-		-				-		-		
		Range	-	531-590		-		-800		-		02-900		-		-		-		-		-		
		n	-	5		-		30		-		11		1		-		1		-		-		
		Female Mean Length	-	-		-		745		-		813		-		89		86		-		-		
		SE	-	-		-		14		-		7		-		-		-		-		-		
		Range	-	-		-	664	-788		-		43-887		-		-		-		-		-		
		n	-	-		-		10		-		25		-		1		1		-		-		
$\begin{gathered} \text { 6/13-14, 16-7/8, 10- } \\ 17,20-21,27,29 \\ 7.5^{\prime \prime} \text { Mesh } \end{gathered}$	168	Male	00.0	31.8	0	0.0		48.2	0	0.0	25	14.9	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	109	64.9
		Female	$\begin{array}{ll}0 & 0.0\end{array}$	$0 \quad 0.0$	0			10.7	0	0.0	39	23.2	0	0.0	0	0.0	2	1.2	0	0.0	0	0.0	59	35.1
		Subtotal	$0 \quad 0.0$	31.8		0.0		58.9	0	0.0	64	38.1	0	0.0	0	0.0	2	1.2	0	0.0	0	0.0	168	100.0
		Male Mean Length	-	606		-		705		-		795		-		-		-		-		-		
		SE	-	27		-		5		-		9		-		-				-		-		
		Range	-	568-659		-	587	-808		-		94-900		-		-		-		-		-		
		n	-	3		-		81		-		25		-		-		-		-		-		
		Female Mean Length	-	-		-		751		-		821		-		-		88		-		-		
		SE	-	-		-		11		-		8		-		-		8		-		-		
		Range	-	-		-		-827		-		00-892		-		-	760	-815		-		-		
		n	-	-		-		18		-		39		-		-		2		-		-		

-continued-

Appendix A20.-Page 3 of 3.

Appendix A21.-Yukon River Eagle sonar test fishery Chinook salmon variable mesh drift gillnet, age and sex composition, and mean length (mm), 2012.

-continued-

Appendix A21.-Page 2 of 2.

Appendix A22.-Andreafsky River (East Fork) weir Chinook salmon escapement, age and sex composition, and mean length (mm), 2012.

Sample Dates (Strata Dates)	Sample Size		Brood Year (Age)																	Total	
			2009	2008		2007			2006			2005				2004					
			(1.1)	(1.2)	(2.1)	(1.3)	(2.2)		(1.4)	(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
			N \%	N \%	N \%	N \%	N	\%	N \%	N	\%										
$\begin{gathered} \hline 7 / 1-8 \\ (6 / 30-7 / 8) \end{gathered}$	131	Male	20.8	6420.6	00.0	16452.7	0	0.0	144.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	245	78.6
		Female	$\begin{array}{ll}0 & 0.0\end{array}$	$2 \quad 0.8$	$0 \quad 0.0$	$31 \quad 9.9$	0	0.0	3310.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	67	21.4
		Subtotal	20.8	$67 \quad 21.4$	$0 \quad 0.0$	19562.6	0	0.0	$48 \quad 15.3$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	312	100.0
		Male Mean Length	377	512	-	644		-	798	-	-		-						-		
		SE	-	7	-	6		-	28	-	-		-		-		-		-		
		Range	-	430-615	-	539-749		-	728-930				-								
		n	1	27	-	69		-	6	-	-		-		-				-		
		Female Mean Length	-	592	-	677		-	807	-	-		-		-				-		
		SE	-	-	-	15		-	16	-	-		-		-				-		
		Range	-	-	-	603-779		-	730-895				-								
		n	-	1	-	13		-	14	-	-		-		-				-		
7/9-15	140	Male	40.7	$51 \quad 10.0$	00.0	29056.4	0	0.0	$48 \quad 9.3$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	393	76.4
(7/9-15)		Female	$\begin{array}{ll}0 & 0.0\end{array}$	$4 \quad 0.7$	$0 \quad 0.0$	$40 \quad 7.9$	0	0.0	$77 \quad 15.0$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	121	23.6
		Subtotal	40.7	$55 \quad 10.7$	00.0	$330 \quad 64.3$	0	0.0	$125 \quad 24.3$	0	0.0	0	0.0	0	0.0	0	0.0	0		514	100.0
		Male Mean Length	342	524	-	666		-	785				-								
		SE	-	15	-	6		-	18	-	-		-		-				-		
		Range	-	441-614	-	513-810		-	714-926				-								
		n	1	14	-	79		-	13	-	-		-		-		-		-		
		Female Mean Length	-	598	-	694		-	817				-								
		SE	-	-	-	19		-	12	-	-		-						-		
		Range	-	-	-	605-789		-	713-937				-								
		n	-	1	-	11		-	21	-	-		-		-				-		
7/16-20, 22	150	Male	$\begin{array}{ll}0 & 0.0\end{array}$	$94 \quad 8.7$	00.0	60656.0	0	0.0	797.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	779	72.0
(7/16-22)		Female	$\begin{array}{lll}0 & 0.0\end{array}$	$7 \quad 0.7$	$0 \quad 0.0$	10810.0	0	0.0	18016.7	0	0.0	7		0	0.0	0	0.0	0	0.0	303	28.0
		Subtotal	00.0	1019.3	00.0	71466.0	0	0.0	$260 \quad 24.0$	0	0.0	7		0	0.0	0	0.0	0	0.0	1,082	100.0
		Male Mean Length	-	545	-	672		-	817	-	-		-		-				-		
		SE	-	9	-	5		-	19	-	-		-		-				-		
		Range	-	499-591	-	571-800		-	719-889	-	-		-						-		
		n	-	13	-	84		-	11	-	-		-		-				-		
		Female Mean Length	-	621	-	755		-	810	-	-		51		-				-		
		SE	-	-	-	7		-	9	-	-		-		-		-		-		
		Range	-	-	-	691-800		-	730-871	-	-		-						-		
		n	-	1	-	15		-	25	-	-		1		-		-		-		

[^12]Appendix A22.-Page 2 of 2.

Sample Dates (Strata Dates)	Sample Size		Brood Year (Age)																				Total	
			$\begin{aligned} & \hline 2009 \\ & \hline(1.1) \end{aligned}$	2008			2007				2006				2005				2004					
				(1.2)	(2.1)		(1.3)		(2.2)		(1.4)		(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
				N \%	N	\%	N \%																	
7/23-29	151	Male	00.0	$56 \quad 9.3$	0	0.0	307	50.3	0	0.0	28	4.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	391	64.2
(7/23-8/1)		Female	$0 \quad 0.0$	$0 \quad 0.0$	0	0.0	81	13.2	0	0.0	137	22.5	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	218	35.8
		Subtotal	00.0	$56 \quad 9.3$	0	0.0	387	63.6	0	0.0	165	27.2	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	609	100.0
		Male Mean Length	-	561		-	69			-	78			-		-		-		-		-		
		SE	-	12		-	7			-	8			-		-		-		-		-		
		Range	-	486-632		-	573			-	741	-807		-		-		-				-		
		n	-	14		-	76			-	7			-		-		-		-		-		
		Female Mean Length	-	-		-	76			-	80			-		-		-				-		
		SE	-	-		-	8			-	8			-		-		-		-		-		
		Range	-	-		-	693			-	731	-905		-		-				-		-		
		n	-	-		-	2			-	3			-		-		-		-		-		
Season	572	Male	60.2	26610.6	0	0.0	1,367	54.3	0	0.0	170	6.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1,808	71.8
		Female	$\begin{array}{ll}0 & 0.0\end{array}$	130.5	0	0.0	260	10.3	0	0.0		17.0	0	0.0	7	0.3	0	0.0	0	0.0	0	0.0	709	28.2
		Total	60.2	27911.1	0	0.0	1,627	64.6	0	0.0	597	23.7	0	0.0	7	0.3	0	0.0	0	0.0	0	0.0	2,517	100.0
		Male Mean Length	355	541		-	67			-	79			-		-		-		-		-		
		SE	-	6		-	3			-				-		-		-				-		
		Range	-	430-632		-	513-81			-	714	-930		-		-		-		-		-		
		n	2	68		-	30			-	3			-		-		-		-		-		
		Female Mean Length	-	610		-	73			-	81			-		51		-		-		-		
		SE	-	-		-				-				-		-		-		-		-		
		Range	-	592-621		-	603			-	713	937		-		-		-		-		-		
		n	-	3		-	5			-	9			-		1		-		-		-		

Appendix A23.-Anvik River Chinook salmon escapement, age and sex composition, and mean length (mm), 2012.

[^13]Appendix A24.-Chena River carcass survey Chinook salmon, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)																			Total	
			$\frac{2009}{(1.1)}$	2008			2007			2006				2005				2004					
				(1.2)	(2.1)		(1.3)	(2.2)		(1.4)		(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
				N \%	N	\%	N \%	N	\%														
8/8-10, 13-14	198	Male	10.5	105.1	0	0.0	$56 \quad 28.3$	0	0.0	21	10.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	88	44.4
Total		Female	$\begin{array}{ll}0 & 0.0\end{array}$	$0 \quad 0.0$	0	0.0	$34 \quad 17.2$	0	0.0	76	38.4	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	110	55.6
		Subtotal		105.1	0	0.0	$90 \quad 45.5$	0	0.0	97	49.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	198	100.0
		Male Mean Length	340	538		-	707		-		815		-		-		-		-		-		
		SE	-	16		-	7		-		14		-		-		-		-		-		
		Range	-	425-600		-	570-835		-		-950		-		-		-		-		-		
		n	1	10		-	56		-		21		-		-		-		-		-		
		Female Mean Length	-	-		-	741		-		820		-		-		-		-		-		
		SE	-	-		-	7		-		5		-		-		-		-		-		
		Range	-	-		-	645-800		-		-955		-		-		-		-		-		
		n	-	-		-	34		-		76		-		-		-		-		-		

Appendix A25.-Gisasa River weir Chinook salmon escapement, age and sex composition, and mean length (mm), 2012.

SampleDates(Strata Dates)	Sample Size		Brood Year (Age)																		Total	
			$\begin{aligned} & \hline 2009 \\ & \hline(1.1) \end{aligned}$	2008			2007			2006				2005			2004					
				(1.2)	(2.1)		(1.3)	(2.2)		(1.4)		(2.3)		(1.5)		(2.4)	(1.6)		(2.5)			
			N \%	N \%	N	\%	N \%	N	\%	N	\%	N	\%	N	\%	N \%	N	\%	N	\%	N \%	
$\begin{gathered} 7 / 2-9 \\ (6 / 26-7 / 9) \end{gathered}$	123	Male	00.0	85.7	0	0.0	$39 \quad 26.8$	0	0.0	4	2.4	0	0.0	0	0.0	$0 \quad 0.0$	0	0.0	0	0.0	50	35.0
		Female	$\begin{array}{lll}0 & 0.0\end{array}$	21.6	0	0.0	7451.2	0	0.0	16	11.4	0	0.0	1	0.8	$0 \quad 0.0$	0	0.0	0	0.0	94	65.0
		Subtotal	$0 \quad 0.0$	117.3	0	0.0	11278.0	0	0.0	20	13.8	0	0.0	1	0.8	$0 \quad 0.0$	0	0.0	0	0.0	144	100.0
		Male Mean Length	-	536		-	682		-			-				-						
		SE	-	10		-	10		-			-			-	-		-		-		
		Range	-	500-575		-	585-820		-	735	790	-				-						
		n	-	7		-	33		-			-			-	-		-				
		Female Mean Length	-	573		-	678		-			-			0	-		-				
		SE	-	18		-	6		-			-			-	-		-				
		Range	-	555-590		-	590-800		-	605	1020	-				-						
		n	-	2		-	63		-			-			1	-		-				
$\begin{gathered} \text { 7/10-11, 15-17 } \\ (7 / 10-17) \end{gathered}$	125	Male	00.0	$60 \quad 11.2$	0	0.0	27250.4	4	0.8	39	7.2	0	0.0	0	0.0	$0 \quad 0.0$	0	0.0	0	0.0	376	69.6
		Female	$\begin{array}{lll}0 & 0.0\end{array}$	$0 \quad 0.0$	0	0.0	7313.6	0	0.0	82	15.2	0	0.0	4	0.8	$4 \quad 0.8$	0	0.0	0	0.0	164	30.4
		Subtotal	00.0	$60 \quad 11.2$	0	0.0	34664.0	4	0.8	121	22.4	0	0.0	4	0.8	$4 \quad 0.8$	0	0.0	0	0.0	540	100.0
		Male Mean Length	-	537		-	691		00			-				-		-				
		SE	-	14		-	8		-			-			-	-		-				
		Range	-	430-620		-	550-860		-	715	870	-				-						
		n	-	14		-	63		1			-			-	-		-				
		Female Mean Length	-	-		-	672		-			-			30	760						
		SE	-	-		-	15		-			-				-		-		-		
		Range	-	-		-	600-810		-	760	990	-			-	-						
		n	-	-		-	17		-			-			1	1		-		-		
$\begin{gathered} 7 / 18-20,21 \\ (7 / 18-22) \end{gathered}$	122	Male	00.0	$46 \quad 13.9$	0	0.0	19659.0	0	0.0	30	9.0	0	0.0	0	0.0	$0 \quad 0.0$	0	0.0	0	0.0	272	82.0
		Female	$\begin{array}{ll}0 & 0.0\end{array}$	$0 \quad 0.0$	0	0.0	113.3	0	0.0	49	14.8	0	0.0	0	0.0	$\begin{array}{lll}0 & 0.0\end{array}$	0	0.0	0	0.0	60	18.0
		Subtotal	$0 \quad 0.0$	$46 \quad 13.9$	0	0.0	20762.3	0		79	23.8	0	0.0	0	0.0	$0 \quad 0.0$	0	0.0	0	0.0	332	100.0
		Male Mean Length	-	526		-	681		-			-			-	-		-				
		SE	-	9		-	6		-			-			-	-		-				
		Range	-	455-585		-	570-780		-	740	825	-			-	-		-				
		n	-	17		-	72		-			-			-	-		-		-		
		Female Mean Length	-	-		-	665		-			-				-						
		SE	-	-		-	41		-			-				-		-		-		
		Range	-	-		-	590-740		-	760	910	-				-						
		n	-	-		-	4		-			-			-	-		-		-		

[^14]Appendix A25.-Page 2 of 2.

Appendix A26.-Henshaw Creek weir Chinook salmon escapement, age and sex composition, and mean length (mm), 2012.

SampleDates(Strata Dates)	$\begin{aligned} & \text { Sample } \\ & \text { Size } \end{aligned}$		Brood Year (Age)																			Total	
			$\begin{aligned} & \hline 2009 \\ & \hline(1.1) \end{aligned}$	2008			2007				2006			2005				2004					
				(1.2)	(2.1)		(1.3)		(2.2)		(1.4)	(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
			N \%	N \%	N	\%	N	\%	N	\%	N \%	N	\%	N \%									
7/6-8, 11-14	41	Male	00.0	167.3	0	0.0	126	58.5	0	0.0	$21 \quad 9.8$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	163	75.6
(6/24-7/14)		Female	$0 \quad 0.0$	$0 \quad 0.0$	0	0.0	26	12.2	0	0.0	$26 \quad 12.2$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	52	24.4
		Subtotal	$0 \quad 0.0$	167.3	0	0.0	152	70.7	0	0.0	$47 \quad 22.0$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	215	100.0
		Male Mean Length	-	569		-	67			-	784		-		-		-		-		-		
		SE	-	15		-	9			-	34		-		-		-		-		-		
		Range	-	542-594		-	583	764		-	744-885		-		-		-		-				
		n	-	3		-				-	4		-		-		-		-		-		
		Female Mean Length	-	-		-				-	842		-		-		-		-		-		
		SE	-	-		-	3			-	18		-		-		-		-		-		
		Range	-	-		-	554	791		-	790-887		-		-				-		-		
		n	-	-		-				-	5		-		-		-		-		-		
7/15-19	94	Male	$0 \quad 0.0$	5426.6	0	0.0	67	33.0	0	0.0	$7 \quad 3.2$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	128	62.8
(7/15-19)		Female	$0 \quad 0.0$	$4 \quad 2.1$	0	0.0		14.9	0	0.0	4120.2	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	76	37.2
		Subtotal	$0 \quad 0.0$	5928.7	0	0.0	98	47.9	0	0.0	$48 \quad 23.4$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	204	100.0
		Male Mean Length	-	562		-				-	820		-		-		-		-		-		
		SE	-	10		-				-	-		-		-		-		-		-		
		Range	-	492-690		-	556	791		-	-		-		-		-		-		-		
		n	-	25		-				-	1		-		-		-		-		-		
		Female Mean Length	$-$	558		-				-	814		-		-				-		-		
		SE	-	2		-				-	13		-		-		-		-		-		
		Range	-	556-560		-	568	852		-	717-925		-		-		-		-		-		
		n	-	2		-		4		-	19		-		-		-		-		-		
7/20-23	82	Male	$0 \quad 0.0$	$55 \quad 20.7$	0	0.0	87	32.9	0	0.0	$16 \quad 6.1$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	158	59.8
(7/20-23)		Female	00.0	$0 \quad 0.0$	0			11.0	0	0.0	$74 \quad 28.0$	0	0.0	3	1.2	0	0.0	0	0.0	0	0.0	107	40.2
		Subtotal	$0 \quad 0.0$	5520.7	0	0.0	116		0	0.0	$90 \quad 34.1$	0	0.0	3	1.2	0	0.0	0	0.0	0	0.0	265	100.0
		Male Mean Length	-	557		-				-	826		-		-		-		-		-		
		SE	-	7		-				-	31		-		-		-		-		-		
		Range	-	491-620		-	565	809		-	755-930		-		-		-		-		-		
		n	-	17		-				-	5		-		-		-		-		-		
		Female Mean Length	-	-		-	77			-	822		-		15		-		-		-		
		SE	-	-		-				-	9		-		-		-		-		-		
		Range	-	-		-	729	850		-	747-902		-		-		-		-		-		
		n	-	-		-				-	23		-		1		-		-		-		

[^15]Appendix A26.-Page 2 of 2.

Appendix A27.-Salcha River carcass survey Chinook salmon escapement, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)																				Total	
			2009	2008			2007				2006				2005				2004					
				(1.2)	(2.1)		(1.3)		(2.2)		(1.4)		(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
			N \%	N \%	N	\%	N \%																	
$\begin{gathered} \text { 8/6-9 } \\ \text { stratum } 1 \end{gathered}$	265	Male	10.4	217.9	0	0.0	66	24.9	0	0.0	42	15.8	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	130	49.1
		Female	$\begin{array}{ll}0 & 0.0\end{array}$	$0 \quad 0.0$	0	0.0	25	9.4	0	0.0	105	39.6	0	0.0	5	1.9	0	0.0	0	0.0	0	0.0	135	50.9
		Subtotal	10.4	217.9	0	0.0	91	34.3	0	0.0	147	55.5	0	0.0	5	1.9	0	0.0	0	0.0	0	0.0	265	100.0
		Male Mean Length	366	568		-				-	81											-		
		SE	-	7		-				-	8			-						-		-		
		Range	-	500-628		-	619	830		-	703	907												
		n	1	21		-				-				-				-		-		-		
		Female Mean Length	-	-		-				-										-				
		SE	-	-		-				-				-				-		-		-		
		Range	-	-		-	650	821		-	740	940			833	930								
		n	-	-		-				-				-				-		-		-		
$\begin{gathered} 8 / 14-15,17 \\ \text { stratum } 2 \end{gathered}$	155	Male	$\begin{array}{ll}0 & 0.0\end{array}$	42.6	0	0.0	20	12.9	0	0.0	15	9.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	39	25.2
		Female	$\begin{array}{ll}0 & 0.0\end{array}$	$0 \quad 0.0$	0	0.0		17.4	0	0.0	87	56.1	0	0.0	2	1.3	0	0.0	0	0.0	0	0.0	116	74.8
		Subtotal	$\begin{array}{ll}0 & 0.0\end{array}$	42.6	0	0.0	47	30.3	0	0.0	102	65.8	0	0.0	2	1.3	0	0.0	0	0.0	0	0.0	155	100.0
		Male Mean Length	-	574		-				-										-		-		
		SE	-	24		-				-				-										
		Range	-	511-624		-	597	849		-	715	990								-		-		
		n	-	4		-				-				-				-		-		-		
		Female Mean Length	-	-		-				-				-				-		-		-		
		SE	-	-		-				-				-				-		-		-		
		Range	-	-		-	709	841		-	724	930			869	876						-		
		n	-	-		-				-				-				-		-		-		
Total	420	Male	10.2	256.0	0	0.0	86	20.5	0	0.0	57	13.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	169	40.2
		Female	$\begin{array}{ll}0 & 0.0\end{array}$	$0 \quad 0.0$		0.0	52	12.4	0	0.0	192	45.7	0		7	1.7	0	0.0	0	0.0	0	0.0	251	59.8
		Total	10.2	256.0	0	0.0	138	32.9	0	0.0	249	59.3	0	0.0	7	1.7	0	0.0	0	0.0	0	0.0	420	100.0
		Male Mean Length	366							-				-				-		-		-		
		SE	-	7		-				-				-				-				-		
		Range	-	500-628		-	597	849		-	703	990		-				-		-		-		
		n	1	25		-				-				-				-		-		-		
		Female Mean Length	-	-		-				-				-				-		-		-		
		SE	-	-		-				-				-				-		-		-		
		Range	-	-		-	650	841		-	724	940		-	833	930		-		-		-		
		n	-	-		-				-				-				-		-		-		

Appendix A28.-Yukon River Pilot Station acoustic tagging Chinook salmon, age and sex composition, and mean length (mm), 2012.

-continued-

Appendix A28.-Page 2 of 2.

Appendix A29.-Nulato River genetic sampling Chinook salmon, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)																					Total	
			$\begin{aligned} & \hline 2009 \\ & \hline(1.1) \end{aligned}$		2008				2007			2006				2005				2004					
					(1.2)		(2.1)		(1.3)	(2.2)		(1.4)		(2.3)		(1.5)		(2.4)		(1.6)		(2.5)			
			N	\%	N	\%	N	\%	N \%	N	\%	N \%													
8/5-9	35	Male	0	0.0	2	5.7	0	0.0	$20 \quad 57.1$	0	0.0	1	2.9	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	23	65.7
Hook and Line		Female	0	0.0	0	0.0	0	0.0	38.6	0	0.0	9	25.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	12	34.3
		Subtotal	0	0.0	2	5.7	0	0.0	2365.7	0	0.0	10	28.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	35	100.0
		Male Mean Length		-		86		-	705		-		840	-	-		-		-		-				
		SE		-		32		-	12		-		-	-	-		-	-	-		-		-		
		Range		-	554	-618		-	645-813		-		-		-		-				-				
		n		-		2		-	20		-		1	-	-		-	-	-		-		-		
		Female Mean Length		-		-		-	757		-		837	-	-		-		-		-		-		
		SE		-		-		-	17		-		11	-	-		-	-	-		-		-		
		Range		-		-		-	732-790		-		-1-898	-	-		-	-			-				
		n		-		-		-	3		-		9	-	-		-	-			-		-		
8/5-8	13	Male	0	0.0	1	7.7	0	0.0	646.2	0	0.0	2	15.4	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	9	69.2
Carcass		Female	0	0.0	0	0.0	0	0.0	17.7	0	0.0	3	23.1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	4	30.8
		Subtotal	0	0.0	1	7.7	0	0.0	$7 \quad 53.8$	0	0.0	5	38.5	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	13	100.0
		Male Mean Length		-		56		-	680		-		789		-		-				-				
		SE		-		-		-	27		-		22	-	-		-		-		-		-		
		Range		-		-		-	585-770		-		67-810		-		-				-		-		
		n		-		1		-	6		-		2	-	-		-	-	-		-		-		
		Female Mean Length		-		-		-	716		-		792	-	-		-				-				
		SE		_		-		-	,		-		29	-	-		-	-	-		-		-		
		Range		-		-		-	-		-		62-850	-	-		-				-		-		
		n		-		-		-	1		-		3		-		-	-			-		-		
8/6, 8	2	Male	0	0.0	0	0.0	0	0.0	$0 \quad 0.0$	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Dip Net		Female	0	0.0	0	0.0	0	0.0	150.0	0	0.0	1	50.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2	100.0
		Subtotal	0	0.0	0	0.0	0	0.0	150.0	0	0.0	1	50.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2	100.0
		Male Mean Length		-		-		-	-		-		-	-	-		-	-	-		-		-		
		SE		-		-		-	-		-		_		-		-	-			-		-		
		Range		-		-		-	-		-		-	-	-		-	-	-		-		-		
		n		-		-		-	-		-		-		-		-	-			-		-		
		Female Mean Length		-		-		-	793		-		860	-	-		-	-			-		-		
		SE		-		-		-	-		-		-		-		-	-			-		-		
		Range		-		-		-	-		-		-	-	-		-	-			-		-		
		n		-		-		-	1		-		1		-		-	-			-		-		

[^16]Appendix A29.-Page 2 of 2.

APPENDIX B: SUMMER CHUM SALMON

Appendix B1.-Yukon River District 1 summer chum salmon commercial gillnet harvest, age and sex composition, and mean length (mm), 2012.

-continued-

Appendix B1.-Page 2 of 2.

					d Year (Age)				
			2009	2008	2007	2006	2005		
Sample	Sample		(0.2)	(0.3)	(0.4)	(0.5)	(0.6)	Tot	
Dates	Size			N \%	N \%	N \%	N \%	N	\%
7/10, 13	158	Male	00.0	2,757 25.3	1,172 10.8	3453.2	00.0	4,273	39.2
Periods 9, 10		Female	690.6	4,825 44.3	1,723 15.8	00.0	00.0	6,617	60.8
		Subtotal	690.6	7,582 69.6	2,895 26.6	3453.2	00.0	10,890	100.0
		Male Mean Length	-	554	574	560	-		
		SE	-	4	5	15	-		
		Range	-	519-604	531-611	517-596	-		
		n	-	40	17	5	-		
		Female Mean Length	496	538	559	-	-		
		SE	-	2	5	-	-		
		Range	-	498-590	511-622	-	-		
		n	1	70	25	-	-		
Season	787	Male	00.0	57,956 38.4	17,479 11.6	3,534 2.3	00.0	78,969	52.4
		Female	690.0	50,872 33.7	16,350 10.8	4,541 3.0	00.0	71,831	47.6
		Total	690.0	108,827 72.2	33,829 22.4	8,075 5.4	00.0	150,800	100.0
		Male Mean Length	-	563	580	575	-		
		SE	-	1	3	4	-		
		Range	-	496-644	523-655	517-622	-		
		n	-	285	93	22	-		
		Female Mean Length	496	545	561	558	-		
		SE	-	2	3	8	-		
		Range	-	492-607	488-622	492-599	-		
		n	1	272	94	20	-		

Note: All commercial fishing periods were restricted to 6.0 in or smaller mesh gillnets.

Appendix B2.-Yukon River District 2 summer chum salmon commercial gillnet harvest, age and sex composition, 2012.

		Brood Year (Age)											
		2009		2008		2007		2006		2005			
Sample		(0.2)		(0.3)		(0.4)		(0.5)		(0.6)		Total	
Dates		N	\%										
Period $1^{\text {a }}$	Male	0	0.0	2,731	37.2	1,083	14.7	330	4.5	0	0.0	4,144	56.4
	Female	0	0.0	2,119	28.8	848	11.5	235	3.2	0	0.0	3,202	43.6
	Subtotal	0	0.0	4,850	66.0	1,931	26.3	565	7.7	0	0.0	7,346	100.0
Period $2{ }^{\text {b }}$	Male	0	0.0	3,396	46.8	872	12.0	92	1.3	0	0.0	4,360	60.1
	Female	0	0.0	2,157	29.7	642	8.9	92	1.3	0	0.0	2,891	39.9
	Subtotal	0	0.0	5,553	76.6	1,514	20.9	184	2.5	0	0.0	7,251	100.0
Period $3{ }^{\text {c }}$	Male	0	0.0	5,026	37.8	1,363	10.3	170	1.3	0	0.0	6,559	49.4
	Female	0	0.0	4,855	36.5	1,448	10.9	426	3.2	0	0.0	6,729	50.6
	Subtotal	0	0.0	9,881	74.4	2,811	21.2	596	4.5	0	0.0	13,288	100.0
Period $4{ }^{\text {d }}$	Male	0	0.0	2,990	25.9	1,240	10.8	365	3.2	0	0.0	4,594	39.9
	Female	73	0.6	5,105	44.3	1,458	12.7	292	2.5	0	0.0	6,928	60.1
	Subtotal	73	0.6	8,095	70.3	2,698	23.4	656	5.7	0	0.0	11,522	100.0
Period $5{ }^{\text {e }}$	Male	0	0.0	1,496	25.3	636	10.8	187	3.2	0	0.0	2,320	39.2
	Female	37	0.6	2,619	44.3	935	15.8	0	0.0	0	0.0	3,591	60.8
	Subtotal	37	0.6	4,115	69.6	1,571	26.6	187	3.2	0	0.0	5,911	100.0
Total ${ }^{\text {f }}$	Male	0	0.0	20,659	36.2	6,741	11.8	1,595	2.8	0	0.0	28,996	50.8
	Female	72	0.1	19,717	34.6	6,814	11.9	1,450	2.5	0	0.0	28,053	49.2
	Subtotal	72	0.1	40,376	70.8	13,555	23.8	3,045	5.3	0	0.0	57,049	100.0

Note: All commercial fishing periods were restricted to 6.0 in or smaller mesh gillnets.
a Age and sex proportions from District 1 Period 1 samples were applied to the harvest of this period to estimate composition.
b Age and sex proportions from District 1 Periods 5 and 7 samples were applied to the harvest of this period to estimate composition.
c Age and sex proportions from District 1 Periods 7 and 8 samples were applied to the harvest of this period to estimate composition.
d Age and sex proportions from District 1 Periods 8 and 9 samples were applied to the harvest of this period to estimate composition.
e Age and sex proportions from District 1 Periods 9 and 10 samples were applied to the harvest of this period to estimate composition.
f Age and sex proportions from all District 1 samples were applied to the total harvest to estimate composition.

Appendix B3.-Yukon River Subdistrict 4-A summer chum salmon commercial fish wheel harvest, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample		Brood Year (Age)						
			2009	2008	2007	2006	2005		
			(0.2)	(0.3)	(0.4)	(0.5)	(0.6)	Tota	
	Size		N \%	N	\%				
7/8-10Periods 7, 8, 9	77	Male	00.0	1,332 11.7	4443.9	00.0	00.0	1,776	15.6
		Female	00.0	7,547 66.2	1,776 15.6	2962.6	00.0	9,618	84.4
		Subtotal	00.0	8,878 77.9	2,220 19.5	2962.6	00.0	11,394	100.0
		Male Mean Length		563	600	-	-		
		SE	-	9	11	-	-		
		Range	-	511-613	578-616	-	-		
		n	-	9	3	-			
		Female Mean Length	-	535	537	544			
		SE	-	4	9	5	-		
		Range	-	481-633	502-606	539-549	-		
		n	-	51	12	2	-		
7/11-13	79	Male	00.0	$0 \quad 0.0$	$0 \quad 0.0$	00.0	00.0	$0 \quad 0.0$	
Periods 10, 11, 12		Female	00.0	10,478 84.8	1,720 13.9	1561.3	00.0	$12,355100.0$$12,355100.0$	
		Subtotal	00.0	10,478 84.8	1,720 13.9	1561.3	00.0		
		Male Mean Length	-	-	-	-	-		
		SE	-	-	-	-	-		
		Range	-	-	-	-	-		
		n	-	-	-	-	-		
		Female Mean Length	-	522	538	519	-		
		SE	-	3	7	-	-		
		Range	-	475-581	507-572	-	_		
		n	-	67	11	1	-		
$\begin{gathered} 7 / 14-16,18-20, \\ 22-24 \\ \text { Period } 13 \end{gathered}$	219		$\begin{array}{r} 00.0 \\ 386 \\ 0.5 \\ 386 \\ 0.5 \\ \hline \end{array}$	$0 \quad 0.0$	$0 \quad 0.0$	$\begin{array}{r} 00.0 \\ 2,3142.7 \\ 2,314 \\ \hline \end{array}$	00.0	$0 \quad 0.0$	
				69,044 81.7	12,729 15.1		$\begin{array}{ll} 0 & 0.0 \\ 0 & 0.0 \\ \hline \end{array}$	0 84,473	100.0
				69,044 81.7	12,729 15.1			84,473 100.0	
		Male Mean Length	-	-	-	-	-		
		SE	-	-	-	-	-		
		Range	-	-	-	-	-		
		n	-	-	-	-	-		
		Female Mean Length	497	522	537	550	-		
		SE	-	2	5	10	-		
		Range	-	444-582	472-588	519-581	-		
		n	1	179	33	6	-		
Season	375	Male	00.0	1,332 1.2	4440.4	00.0	00.0	1,776	1.6
		Female	3860.4	87,069 80.5	16,225 15.0	2,767 2.6	00.0	106,446	98.4
		Total	3860.4	88,401 81.7	16,669 15.4	2,767 2.6	00.0	108,222	100.0
		Male Mean Length	-	563	600	-	-		
		SE	-	9	11	-	-		
		Range	-	511-613	578-616	-	-		
		n	-	9	3	-	-		
		Female Mean Length	497	524	537	546	-		
		SE	-	1	4	8	-		
		Range	-	444-633	472-606	519-581	-		
		n	1	297	56	9	-		

Note: Period 7 is only period that males were bought.

Appendix B4.-Yukon River District 6 summer chum salmon commercial fish wheel harvest, age and sex composition, and mean length (mm), 2012.

Note: Fish were only harvested during Periods $1,2,4$, and 6.

Appendix B5.-Coastal District Dall Point test fishery summer chum salmon 5.5 in mesh drift gillnet, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)								Total	
			$\begin{aligned} & \hline 2009 \\ & \hline(0.2) \end{aligned}$	2008		2007		2006	2005			
				(0.3)		(0.4)		(0.5)	(0.6)			
			N \%	N	\%	N \%		N \%	N	\%	N	\%
6/16-19	109	Male	00.0	38	34.9		17.4	54.6	0	0.0	62	56.9
Quartile 1		Female	00.0	23	321.1		18.3	43.7	0	0.0	47	43.1
		Subtotal	00.0	61	56.0	39	35.8	98.3	0	0.0	109	100.0
		Male Mean Length	-		560		583	593		-		
		SE	-		4		8	13		-		
		Range	-		505-610		526-667	544-619		-		
		n	-		38		19	5	-			
	Female Mean								-			
		Length	-		552		571	561				
		SE	-		5		6	11	-			
		Range	-		505-592		521-627	530-584	-			
		n	-		23		20	4	-			
6/21-23, 25-26	114	Male	$0 \quad 0.0$		$52 \quad 45.6$		$19 \quad 16.7$	43.5	0	0.0	75	65.8
Quartile 2		Female	$0 \quad 0.0$		$20 \quad 17.5$		$14 \quad 12.3$	$5 \quad 4.4$	0	0.0	39	34.2
		Subtotal	$0 \quad 0.0$		$72 \quad 63.2$		$33 \quad 28.9$	$9 \quad 7.9$	0	0.0	114	100.0
		Male Mean Length	-		561		599	598	-			
		SE	-		3		7	14	-			
		Range	-		508-612		537-651	568-633	-			
		n	-		52		19	4	-			
		Female Mean										
		Length	-		552		573	581	-			
		SE	-		6		6	21	-			
		Range	-		503-636		517-619	539-651	-			
		n	-		20		14	5	-			
6/27-7/1	105	Male	$0 \quad 0.0$		$46 \quad 43.8$		$21 \quad 20.0$	32.9	0	0.0	70	66.7
Quartile 3		Female	$0 \quad 0.0$		$17 \quad 16.2$		$15 \quad 14.3$	$3 \quad 2.9$	0	0.0	35	33.3
		Subtotal	$0 \quad 0.0$		$63 \quad 60.0$		$36 \quad 34.3$	$6 \quad 5.7$	0	0.0	105	100.0
		Male Mean Length	-		572		592	607	-			
		SE	-		4		8	1	-			
		Range	-		518-643		496-664	606-608	-			
		n	-		46		21	3	-			
		Female Mean										
		Length	-		550		571	568	-			
		SE	-		5		4	9	-			
		Range	-		521-585		536-591	555-585	-			
		n	-		17		15	3	-			
7/3-6, 9	103	Male	$0 \quad 0.0$		$39 \quad 37.9$		$18 \quad 17.5$	21.9	0	0.0	59	57.3
Quartile 4		Female	$0 \quad 0.0$		3029.1		$12 \quad 11.7$	21.9	0	0.0	44	42.7
		Subtotal	$0 \quad 0.0$		$69 \quad 67.0$		$30 \quad 29.1$	$4 \quad 3.9$	0	0.0	103	100.0
		Male Mean Length	-		566		595	550		-		
		SE	-		4		8	10		-		
		Range	-		490-616		538-651	540-560		-		
		n	-		39		18	2		-		
		Female Mean										
		Length	-		549		573	555		-		
		SE	-		4		8	7		-		
		Range	-		510-607		538-630	548-561		-		
		n	-		30		12	2		-		

Appendix B6.-Lower Yukon River test fishery (Big Eddy site) summer chum salmon 5.5 in mesh drift gillnet, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)										Total	
			$\begin{aligned} & \hline 2009 \\ & \hline(0.2) \end{aligned}$		$\begin{aligned} & 2008 \\ & \hline(0.3) \end{aligned}$		2007(0.4)				2005			
					(0.5)				(0.6)					
			N	\%			N	\%						
$\begin{gathered} \text { 6/9-10, 13-22 } \\ \text { Quartile } 1 \end{gathered}$	299	Male	0	0.0	86	28.8	55	18.4	11	3.7	0	0.0	152	50.8
		Female	0	0.0	68	22.7	65	21.7	14	4.7	0	0.0	147	49.2
		Subtotal	0	0.0	154	51.5	120	40.1	25	8.4	0	0.0	299	100.0
		Male Mean Length		-	56		59		58			-		
		SE		-	3		4		11			-		
		Range		-	510-	623	523-		531-63	631		-		
		n		-	8		55		11			-		
		Female Mean Length		-	54		56		56			-		
		SE		-	2		3		7			-		
		Range		-	509-	603	506-	612	521-6	618				
		n	-	-	6		65		14			-		
6/23-30 Quartile 2	238	Male	0	0.0	76	31.9	27	11.3	1	0.4	0	0.0	104	43.7
		Female	0	0.0	99	41.6	27	11.3	8	3.4	0	0.0	134	56.3
		Subtotal	0	0.0	175	73.5	54	22.7	9	3.8	0	0.0	238	100.0
		Male Mean Length		-	55		59		55			-		
		SE	-	-	3		6		-			-		
		Range			507-	630	531-		-					
		n		-	7		27		1			-		
		Female Mean Length		-	54		56		56			-		
		SE		-	2		4		7			-		
		Range	-	-	502	600	530-	625	543-6	603		-		
		n	-	-	9		27		8			-		
7/1-5 Quartile 3	148	Male	0	0.0	51	34.5	13	8.8	3	2.0	0	0.0	67	45.3
		Female	0	0.0	57	38.5	16	10.8	8	5.4	0	0.0	81	54.7
		Subtotal	0	0.0		73.0	29	19.6	11	7.4	0	0.0	148	100.0
		Male Mean Length		-	55		57		58			-		
		SE	-	-	3		7		18			-		
		Range			504	604	547-		551-6	614		-		
		n	-	-	5		13		3			-		
		Female Mean Length	-	-	53		55		54			-		
		SE		-	3		5		10			-		
		Range	-	-	491-	589	526-		516-	598		-		
		n	-	-	5		16		8			-		
7/6-15 Quartile 4	274	Male	0	0.0	86	31.4	16	5.8	2	0.7	0	0.0	104	38.0
		Female	0	0.0		44.2	41	15.0	8	2.9	0		170	62.0
		Subtotal	0	0.0	207	75.5	57	20.8	10	3.6	0	0.0	274	100.0
		Male Mean Length	-	-	55		57		57			-		
		SE		-	3		6		23			-		
		Range		-	490-	624	510-		548-			-		
		n	-	-	8		16		2			-		
		Female Mean Length		-	54		55		56			-		
		SE	-	-	2		4		6			-		
		Range	-	-	473-	610	502-		540-	589		-		
		n	-	-	12		41		8			-		

Appendix B6.-Page 2 of 2.

Sample Dates	Sample Size		Brood Year (Age)										Total	
			$\frac{2009}{(0.2)}$		$\frac{2008}{(0.3)}$		$\frac{2007}{(0.4)}$		$\frac{2006}{(0.5)}$		$\frac{2005}{(0.6)}$			
			N	\%										
Total	959	Male	0	0.0	299	31.2	111	11.6	17	1.8	0	0.0	427	44.5
		Female	0			36.0	149		38	4.0	0	0.0	532	55.5
		Total	0	0.0	644	67.2	260	27.1	55	5.7	0	0.0	959	100.0
		Male Mean Length		-	55		58		58			-		
		SE		-	1		3		8			-		
		Range		-	490	630	510	651	531-			-		
		n		-	29		11		17			-		
		Female Mean Length		-	54		55		56			-		
		SE		-	1		2		4			-		
		Range		-	473	610	502	625	516			-		
		n		-	34		14		38			-		

Appendix B7.-Lower Yukon River test fishery (Middle Mouth site) summer chum salmon 5.5 in mesh drift gillnet, age and sex composition, and mean length (mm), 2012.

Appendix B7.-Page 2 of 2.

Appendix B8.-Lower Yukon River test fishery (combined Big Eddy and Middle Mouth sites) summer chum salmon 5.5 in mesh drift gillnet, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)								
			$\frac{2009}{(0.2)}$		$\begin{aligned} & \hline 2008 \\ & \hline(0.3) \end{aligned}$	$\begin{aligned} & \hline 2007 \\ & \hline(0.4) \end{aligned}$	$\begin{aligned} & \hline 2006 \\ & \hline(0.5) \end{aligned}$	$\begin{aligned} & \hline 2005 \\ & \hline(0.6) \end{aligned}$		Total	
			N	\%	N \%	N \%	N \%	N	\%	N	\%
$\begin{gathered} \text { 6/9-10, 13-22 } \\ \text { Quartile } 1 \end{gathered}$	449	Male	0	0.0	12828.5	$77 \quad 17.1$	143.1	0	0.0	219	48.8
		Female	0	0.0	10022.3	11024.5	204.5	0	0.0	230	51.2
		Subtotal	0	0.0	22850.8	18741.6	347.6	0	0.0	449	100.0
		Male Mean Length	-		570	594	583		-		
		SE	-		2	3	9		-		
		Range	-		510-623	523-651	531-631		-		
		n	-		128	77	14		-		
		Female Mean Length	-		548	566	568		-		
		SE	-		2	2	6		-		
		Range	-		509-603	506-612	521-618		-		
		n	-		100	110	20		-		
6/23-30 Quartile 2	407	Male	0	0.0	13733.7	$41 \quad 10.1$	$3 \quad 0.7$	0	0.0	181	44.5
		Female	0	0.0	16640.8	4912.0	112.7	0		226	55.5
		Subtotal		0.0	30374.4	$90 \quad 22.1$	143.4	0	0.0	407	100.0
		Male Mean Length	-		556	582	580		-		
		SE	-		2	5	13		-		
		Range	-		507-676	496-649	558-602		-		
		n	-		137	41	3		-		
		Female Mean Length	-		543	562	570		-		
		SE	-	-	1	3	5		-		
		Range	-	-	502-600	530-625	543-603		-		
		n	-	-	166	49	11		-		
7/1-5 Quartile 3	265	Male	0	0.0	$91 \quad 34.3$	$20 \quad 7.5$	51.9	0	0.0	116	43.8
		Female	0	0.0	11141.9	$27 \quad 10.2$	114.2	0		149	56.2
		Subtotal	0	0.0	20276.2	$47 \quad 17.7$	166.0	0	0.0	265	100.0
		Male Mean Length	-	-	552	580	567		-		
		SE	-	-	2	6	15		-		
		Range	-		504-604	547-659	525-614		-		
		n	-	-	91	20	5		-		
		Female Mean Length	-	-	539	557	552		-		
		SE	-	-	2	4	9		-		
		Range	-	-	491-589	526-600	516-598		-		
		n	-	-	111	27	11		-		
7/6-15 Quartile 4	455	Male	0	0.0	13930.5	214.6	$7 \quad 1.5$	0	0.0	167	36.7
		Female	0	0.0	21146.4	6313.8	143.1	0		288	63.3
		Subtotal	0	0.0	35076.9	8418.5	214.6	0		455	100.0
		Male Mean Length	-	-	555	576	578		-		
		SE	-	-	2	6	10		-		
		Range	-	-	490-624	510-624	546-625		-		
		n	-	-	139	21	7		-		
		Female Mean Length	-	-	541	554	567		-		
		SE	-	-	1	3	6		-		
		Range	-	-	473-610	502-622	538-600		-		
		n	-		211	63	14		-		

Appendix B8.-Page 2 of 2.

Sample Dates	Sample Size		Brood Year (Age)											
			$\begin{aligned} & \hline 2009 \\ & \hline(0.2) \end{aligned}$		$\begin{aligned} & \hline 2008 \\ & \hline(0.3) \end{aligned}$		2007				$\begin{aligned} & \hline 2005 \\ & \hline(0.6) \end{aligned}$		Total	
					(0.									
			N	\%			N	\%						
Total	1,576	Male	0	0.0	495	31.4	159	10.1	29	1.8	0	0.0	683	43.3
		Female	0	0.0	588	37.3	249	15.8	56	3.6	0	0.0	893	56.7
		Total	0	0.0	1,083	68.7	408	25.9	85	5.4	0	0.0	1,576	100.0
		Male Mean Length		-	559		58		57			-		
		SE		-	1		2		6			-		
		Range		-	490-6		496	659	525	631		-		
		n		-	495		15		2			-		
		Female Mean Length		-	542		56		56			-		
		SE		-	1		2		3			-		
		Range		-	473-61		502	625	516	618		-		
		n		-	588		24		5			-		

Appendix B9.-Andreafsky River (East Fork) weir summer chum salmon escapement, age and sex composition, and mean length (mm), 2012.

Sample	Sample		Brood Year (Age)						Total	
			2009	2008	2007	2006		005		
Dates (Strata Dates)			(0.2)	(0.3)	(0.4)	(0.5)		.6)		
	Size		N \%	N \%	N \%	N \%	N	\%	N	\%
$\begin{gathered} 7 / 1-4 \\ (6 / 30-7 / 6) \end{gathered}$	151	Male	00.0	7,845 33.1	5,021 21.2	9414.0	0		13,807	58.3
		Female	1570.7	5,962 25.2	3,452 14.6	3141.3	0		9,885	41.7
		Subtotal	1570.7	13,807 58.3	8,473 35.8	1,255 5.3	0		23,692	100.0
		Male Mean Length	-	565	594	602		-		
		SE	-	4	5	17		-		
		Range	-	479-625	540-670	548-652		-		
		n	-	50	32	6		-		
		Female Mean Length	452	527	549	569		-		
		SE	-	3	6	21		-		
		Range	-	488-574	491-593	548-590		-		
		n	1	38	22	2		-		
$\begin{gathered} 7 / 8-11 \\ (7 / 7-13) \end{gathered}$	152	Male	1020.7	4,813 30.9	1,741 11.2	6143.9	0		7,270	46.7
		Female	$0 \quad 0.0$	6,656 42.8	1,536 9.9	1020.7	0		8,295	53.3
		Subtotal	1020.7	11,469 73.7	3,277 21.1	7174.6	0		15,565	100.0
		Male Mean Length	539	546	569	586		-		
		SE	-	7	8	18		-		
		Range	-	479-785	490-610	510-628		-		
		n	1	47	17	6		-		
		Female Mean Length	-	514	538	530		-		
		SE	-	3	7	-		-		
		Range	-	448-573	497-592	-		-		
		n	-	65	15	1		-		
$\begin{gathered} 7 / 15-18 \\ (7 / 14-20) \end{gathered}$	154	Male	$0 \quad 0.0$	4,802 40.9	1,372 11.7	760.6	0		6,250	53.2
		Female	760.6	4,802 40.9	$610 \quad 5.2$	$0 \quad 0.0$	0		5,488	46.8
		Subtotal	760.6	9,604 81.8	1,982 16.9	760.6	0		11,738	100.0
		Male Mean Length	-	543	568	573		-		
		SE	-	4	10	-		-		
		Range	-	482-605	499-625	-		-		
		n	-	63	18	1		-		
		Female Mean Length	533	517	540	-		-		
		SE	-	4	11	-		-		
		Range	-	436-578	498-583	-		-		
		n	1	63	8	-		-		
$\begin{gathered} 7 / 22-26 \\ (7 / 21-8 / 1) \end{gathered}$	149	Male	$0 \quad 0.0$	1,717 30.2	$534 \quad 9.4$	1142.0	0		2,366	41.6
		Female	$0 \quad 0.0$	2,594 45.6	64911.4	761.3	0		3,319	58.4
		Subtotal	$0 \quad 0.0$	4,311 75.8	1,183 20.8	1913.4	0		5,685	100.0
		Male Mean Length	-	550	551	607		-		
		SE	-	5	11	7		-		
		Range	-	471-631	470-605	598-620		-		
		n	-	45	14	3		-		
		Female Mean Length	-	512	520	546		-		
		SE	-	3	7	14		-		
		Range	-	447-580	478-571	532-559		-		
		n	-	68	17	2		-		

Appendix B9.-Page 2 of 2.

Sample	Sample Size		Brood Year (Age)					Total	
			2009	2008	2007	2006	2005		
Dates (Strata Dates)			(0.2)	(0.3)	(0.4)	(0.5)	(0.6)		
			N \%	N	\%				
Season	606	Male	1020.2	19,177 33.8	8,668 15.3	1,746 3.1	00.0	29,693	52.4
		Female	2330.4	20,015 35.3	6,246 11.0	4930.9	00.0	26,987	47.6
		Total	3360.6	39,191 69.1	14,914 26.3	2,239 4.0	00.0	56,680	100.0
		Male Mean Length	539	554	578	592	-		
		SE	-	3	4	11	-		
		Range	-	471-785	470-670	510-652	-		
		n	1	205	81	16	-		
		Female Mean Length	479	520	541	553	-		
		SE	-	2	4	17	-		
		Range	452-533	436-580	478-593	530-590	-		
		n	2	234	62	5	-		

Appendix B10.-Anvik River sonar summer chum salmon escapement, age and sex composition, and mean length (mm), 2012.

Appendix B11.-Gisasa River weir summer chum salmon escapement, age and sex composition, and mean length (mm), 2012.

-continued-

Appendix B11.-Page 2 of 2.

Sample			Brood Year (Age)							
			2009	2008	2007	2006	2005		Total	
Dates	Sample		(0.2)	(0.3)	(0.4)	(0.5)		0.6)		
(Strata Dates)	Size		N \%	N \%	N \%	N \%	N	\%	N	\%
Season	687	Male	00.0	30,530 36.6	7,998 9.6	8261.0	0	0.0	39,354	47.2
		Female	1760.2	35,045 42.0	8,212 9.8	6350.8	0	0.0	44,069	52.8
		Total	1760.2	65,576 78.6	16,210 19.4	1,461 1.8	0		83,423	100.0
		Male Mean Length	-	562	582	595		-		
		SE	-	2	4	10		-		
		Range	-	460-680	515-660	530-625		-		
		n	-	254	80	10		-		
		Female Mean Length	460	529	549	572		-		
		SE	-	2	4	12		-		
		Range	-	435-625	480-610	535-600		-		
		n	1	270	65	7		-		

Appendix B12.-Henshaw Creek weir summer chum salmon escapement, age and sex composition, and mean length (mm), 2012.

Sample	Sample		Brood Year (Age)					Total	
			2009	2008	2007	2006	2005		
Dates (Strata Dates)			(0.2)	(0.3)	(0.4)	(0.5)	(0.6)		
	Size			N \%	N \%	N \%	N \%	N	\%
$\begin{gathered} 7 / 10,12,15-16 \\ (6 / 24-7 / 17) \end{gathered}$	136	Male	7640.7	52,699 50.7	12,984 12.5	1,528 1.5	00.0	67,974	65.4
		Female	00.0	28,259 27.2	5,346 5.1	2,291 2.2	00.0	35,896	34.6
		Subtotal	7640.7	80,958 77.9	18,330 17.6	3,819 3.7	00.0	103,870	100.0
		Male Mean Length	503	565	584	603	-		
		SE	-	3	6	12	-		
		Range	-	505-625	537-613	591-615	-		
		n	1	69	17	2	-		
		Female Mean Length	-	554	558	572	-		
		SE	-	4	3	14	-		
		Range	-	490-608	540-565	557-600	-		
		n	-	37	7	3	-		
$\begin{gathered} \text { 7/19-21, } 23 \\ (7 / 18-23) \end{gathered}$	127	Male	00.0	31,444 34.6	5,003 5.5	7150.8	00.0	37,162	40.9
		Female	1,429 1.6	43,593 48.0	7,861 8.7	7150.8	00.0	53,598	59.1
		Subtotal	1,429 1.6	75,038 82.7	12,864 14.2	1,429 1.6	00.0	90,760	100.0
		Male Mean Length	-	560	573	571	-		
		SE	-	4	10	-	-		
		Range	-	521-645	540-610	-	-		
		n	-	44	7	1	-		
		Female Mean Length	515	540	548	573	-		
		SE	5	3	11	-	-		
		Range	510-520	477-595	469-610	-	-		
		n	2	61	11	1	-		
$\begin{gathered} 7 / 24,26-27,29 \\ (7 / 24-29) \end{gathered}$	97	Male	00.0	17,439 27.8	3,229 5.2	00.0	00.0	20,669	33.0
		Female	00.0	40,046 63.9	1,938 3.1	00.0	00.0	41,983	67.0
		Subtotal	00.0	57,485 91.8	5,167 8.2	00.0	00.0	62,652	100.0
		Male Mean Length	-	555	563	-	-		
		SE	-	5	7	-	-		
		Range	-	520-641	545-587	-	-		
		n	-	27	5	-	-		
		Female Mean Length	-	523	520	-	-		
		SE	-	4	38	-	-		
		Range	-	426-593	457-588	-	-		
		n	-	62	3	-	-		

-continued-

Appendix B12.--Page 2 of 2.

Sample Dates (Strata Dates)	Sample Size		Brood Year (Age)						
			2009	2008	2007	2006	2005		
			(0.2)	(0.3)	(0.4)	(0.5)	(0.6)	Tot	
				N \%	N \%	N \%	N \%	N	\%
Season	478	Male	7640.3	114,559 39.2	21,806 7.5	2,242 0.8	00.0	139,370	47.7
		Female	1,724 0.6	131,067 44.9	16,915 5.8	3,006 1.0		152,712	52.3
		Total	2,488 0.9	245,626 84.1	38,720 13.3	5,248 1.8		292,082	100.0
		Male Mean Length	503	560	575	588	-		
		SE	-	2	6	12	-		
		Range	-	495-665	537-613	571-615	-		
		n	1	184	31	3	-		
		Female Mean Length	512	542	546	572	-		
		SE	5	2	9	14	-		
		Range	503-520	426-612	457-632	557-600	-		
		n	3	225	27	4	-		

Appendix B13.-Salcha River carcass survey summer chum salmon escapement, age and sex composition, and mean length (mm), 2012.

Sample Dates	SampleSize		Brood Year (Age)											
			$\begin{aligned} & 2009 \\ & \hline(0.2) \end{aligned}$		$\begin{aligned} & 2008 \\ & \hline(0.3) \end{aligned}$		$\begin{aligned} & 2007 \\ & \hline(0.4) \end{aligned}$		$\begin{aligned} & 2006 \\ & \hline(0.5) \end{aligned}$		$\begin{aligned} & 2005 \\ & \hline(0.6) \end{aligned}$		Total	
			N	\%										
$\begin{gathered} 8 / 20,30 \\ \text { Total } \end{gathered}$	159	Male	0	0.0	31	19.5	19	11.9	5	3.1	0	0.0	55	34.6
		Female	2	1.3	71	44.7	28	17.6	3	1.9	0	0.0	104	65.4
		Total	2	1.3	102	64.2	47	29.6	8	5.0	0		159	100.0
		Male Mean Length			54			590				-		
		SE	-		4			6				-		
		Range	-		505-			41-645	595-			-		
		n	-		31			19	5			-		
		Female Mean Length	51		52			562				-		
		SE	1		3			5				-		
		Range	495-	525	470			-620	570			-		
		n	2		71			28	3			-		

Note: Ages determined from vertebrae.

APPENDIX C: FALL CHUM SALMON

Appendix C1.-Yukon River District 1 fall chum salmon commercial gillnet harvest, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)							
			$\begin{aligned} & \hline 2009 \\ & \hline(0.2) \end{aligned}$	$\begin{aligned} & 2008 \\ & \hline(0.3) \end{aligned}$	2007	$\begin{aligned} & \hline 2006 \\ & \hline(0.5) \end{aligned}$	$\begin{aligned} & \hline 2005 \\ & \hline(0.6) \end{aligned}$		Total	
			N \%	N \%	N \%	N \%	N	\%	N	\%
$\begin{gathered} \text { 7/16, } 19 \\ \text { Periods 1, } 2 \end{gathered}$	158	Male	00.0	8,715 31.6	2,615 9.5	6972.5	0	0.0	12,027	43.7
		Female	00.0	11,853 43.0	3,312 12.0	3491.3		0.0	15,513	56.3
		Subtotal	$0 \quad 0.0$	20,568 74.7	5,926 21.5	1,046 3.8	0	0.0	27,540	100.0
		Male Mean Length	-	559	590	590		-		
		SE	-	3	6	6		-		
		Range	-	479-600	559-637	573-601		-		
		n	-	50	15	4		-		
		Female Mean Length	-	557	573	572		-		
		SE	-	3	6	9		-		
		Range	-	503-602	525-622	563-581		-		
		n	-	68	19	2		-		
$\begin{gathered} 7 / 23,26 \\ \text { Periods 3, } 4 \end{gathered}$	159	Male	00.0	9,458 29.6	2,012 6.3	2010.6			11,672	36.5
		Female	00.0	14,690 45.9	5,031 15.7	6041.9			20,325	63.5
		Subtotal	00.0	24,149 75.5	7,043 22.0	8052.5			31,997	100.0
		Male Mean Length	-	570	581	612		-		
		SE	-	3	12	-		-		
		Range	-	529-622	534-675	-		-		
		n	-	47	10	1		-		
		Female Mean Length	-	558	570	573		-		
		SE	-	3	4	12		-		
		Range	-	488-670	537-600	556-595		-		
		n	-	73	25	3		-		
$\begin{gathered} \text { 7/30; 8/2 } \\ \text { Periods 5, } 6 \end{gathered}$	159	Male	00.0	7,524 29.6	2,081 8.2	4801.9			10,085	39.6
		Female	1600.6	11,846 46.5	3,041 11.9	3201.3			15,367	60.4
		Subtotal	1600.6	19,369 76.1	5,122 20.1	8003.1			25,452	100.0
		Male Mean Length	-	570	582	618		-		
		SE	-	3	8	9		-		
		Range	-	520-619	546-628	609-636		-		
		n	-	47	13	3		-		
		Female Mean Length	525	562	567	560		-		
		SE	-	3	4	8		-		
		Range	-	522-677	530-597	552-568		-		
		n	1	74	19	2		-		
$\begin{gathered} 8 / 5,9 \\ \text { Periods 7, } 8 \end{gathered}$	158	Male	1000.6	5,910 37.3	1,402 8.9	00.0			7,413	46.8
		Female	2001.3	6,912 43.7	1,102 7.0	2001.3			8,414	53.2
		Subtotal	3011.9	12,822 81.0	2,504 15.8	2001.3			15,827	100.0
		Male Mean Length	539	569	571	-		-		
		SE	-	3	4	-		-		
		Range	-	523-603	542-596	-		-		
		n	1	59	14	-		-		
		Female Mean Length	537	551	559	565		-		
		SE	9	3	5	8		-		
		Range	528-545	499-603	530-589	557-572		-		
		n	2	69	11	2		-		

Appendix C1.-Page 2 of 2.

			Brood Year (Age)						
			2009	2008	2007	2006	2005		
Sample	Sample		(0.2)	(0.3)	(0.4)	(0.5)	(0.6)	Tota	
Dates	Size			N \%	N \%	N \%	N \%	N	\%
8/18, 20	159	Male	00.0	12,758 49.7	1,776 6.9	1610.6	00.0	14,696	57.2
Periods 9, 10		Female	00.0	9,689 37.7	1,292 5.0	00.0	00.0	10,981	42.8
		Subtotal	00.0	22,447 87.4	3,068 11.9	1610.6	00.0	25,677	100.0
		Male Mean Length	-	569	567	582	-		
		SE	-	3	9	-	-		
		Range	-	512-637	499-604	-	-		
		n	-	79	11	1	-		
		Female Mean Length	-	554	565	-	-		
		SE	-	3	9	-	-		
		Range	-	498-607	536-601	-	-		
		n	-	60	8	-	-		
8/23, 27, 30	228	Male	1170.9	6,675 50.0	5854.4	590.4	00.0	7,436	55.7
Periods 11, 12, 13		Female	1761.3	5,504 41.2	1761.3	590.4	00.0	5,913	44.3
		Subtotal	2932.2	12,178 91.2	7615.7	1170.9	00.0	13,349	100.0
		Male Mean Length	545	573	576	572	-		
		SE	20	2	12	-	-		
		Range	525-565	520-638	501-628	-	-		
		n	2	114	10	1	-		
		Female Mean Length	557	553	540	573	-		
		SE	17	6	21	-	-		
		Range	540-590	58-610	505-578	-	-		
		n	3	94	3	1	-		
Season	1,021	Male	2170.2	51,039 36.5	10,472 7.5	1,599 1.1	00.0	63,327	45.3
		Female	5360.4	60,493 43.3	13,954 10.0	1,531 1.1	00.0	76,515	54.7
		Total	7530.5	111,533 79.8	24,426 17.5	3,130 2.2	00.0	139,842	100.0
		Male Mean Length	542	568	579	598	-		
		SE	20	1	4	5	-		
		Range	525-565	479-638	499-675	572-636	-		
		n	3	396	73	10	-		
		Female Mean Length	536	557	565	569	-		
		SE	9	1	3	5	-		
		Range	525-590	58-677	505-622	552-595	-		
		n	6	438	85	10	-		

Note: All commercial fishing periods were restricted to 6.0 in or smaller mesh gillnets.

Appendix C2.-Yukon River District 2 fall chum salmon commercial gillnet harvest, age and sex composition, 2012.

		Brood Year (Age)											
		2009		2008		2007		2006		2005		Total	
Sample		(0.2)		(0.3)		(0.4)		(0.5)		(0.6)			
Dates		N	\%										
Period $1^{\text {a }}$	Male	0	0.0	4,247	31.6	1,274	9.5	340	2.5	0	0.0	5,861	43.7
	Female	0	0.0	5,776	43.0	1,614	12.0	170	1.3	0	0.0	7,560	56.3
	Subtotal	0	0.0	10,023	74.7	2,888	21.5	510	3.8	0	0.0	13,421	100.0
Period $2{ }^{\text {b }}$	Male	0	0.0	949	31.0	291	9.5	0	0.0	0	0.0	1,240	40.5
	Female	0	0.0	1,356	44.3	407	13.3	58	1.9	0	0.0	1,821	59.5
	Subtotal	0	0.0	2,305	75.3	697	22.8	58	1.9	0	0.0	3,061	100.0
Period $3{ }^{\text {c }}$	Male	0	0.0	5,126	29.6	1,091	6.3	109	0.6	0	0.0	6,326	36.5
	Female	0	0.0	7,962	45.9	2,727	15.7	327	1.9	0	0.0	11,015	63.5
	Subtotal	0	0.0	13,088	75.5	3,817	22.0	436	2.5	0	0.0	17,341	100.0
Period $4{ }^{\text {d }}$	Male	0	0.0	3,726	28.1	828	6.3	248	1.9	0	0.0	4,802	36.3
	Female	83	0.6	5,961	45.0	2,153	16.3	248	1.9	0	0.0	8,445	63.8
	Subtotal	83	0.6	9,687	73.1	2,981	22.5	497	3.8	0	0.0	13,247	100.0
Period $5{ }^{\text {e }}$	Male	0	0.0	3,201	29.6	885	8.2	204	1.9	0	0.0	4,290	39.6
	Female	68	0.6	5,039	46.5	1,294	11.9	136	1.3	0	0.0	6,538	60.4
	Subtotal	68	0.6	8,240	76.1	2,179	20.1	341	3.1	0	0.0	10,828	100.0
Period $6{ }^{\text {f }}$	Male	96	0.6	5,000	32.9	1,154	7.6	96	0.6	0	0.0	6,346	41.8
	Female	0	0.0	7,019	46.2	1,634	10.8	192	1.3	0	0.0	8,845	58.2
	Subtotal	96	0.6	12,018	79.1	2,788	18.4	288	1.9	0	0.0	15,191	100.0
Period 7 g	Male	0	0.0	18,793	48.4	3,661	9.4	244	0.6	0	0.0	22,698	58.5
	Female	488	1.3	14,156	36.5	1,464	3.8	0	0.0	0	0.0	16,108	41.5
	Subtotal	488	1.3	32,948	84.9	5,125	13.2	244	0.6	0	0.0	38,806	100.0
Period $8{ }^{\text {h }}$	Male	0	0.0	4,592	49.7	639	6.9	58	0.6	0	0.0	5,289	57.2
	Female	0	0.0	3,488	37.7	465	5.0	0	0.0	0	0.0	3,953	42.8
	Subtotal	0	0.0	8,079	87.4	1,104	11.9	58	0.6	0	0.0	9,242	100.0
Period $9^{\text {i }}$	Male	0	0.0	1,582	44.9	181	5.1	0	0.0	0	0.0	1,763	50.0
	Female	45	1.3	1,582	44.9	136	3.8	0	0.0	0	0.0	1,763	50.0
	Subtotal	45	1.3	3,164	89.7	316	9.0	0	0.0	0	0.0	3,526	100.0
Period $10{ }^{\text {j }}$	Male	18	0.6	1,280	47.4	140	5.2	0	0.0	0	0.0	1,438	53.2
	Female	53	1.9	1,157	42.9	35	1.3	18	0.6	0	0.0	1,262	46.8
	Subtotal	70	2.6	2,437	90.3	175	6.5	18	0.6	0	0.0	2,700	100.0
Period $11{ }^{\text {k }}$	Male	25	1.3	1,018	53.0	76	4.0	13	0.7	0	0.0	1,132	58.9
	Female	13	0.7	751	39.1	13	0.7	13	0.7	0		789	41.1
	Subtotal	38	2.0	1,768	92.1	89	4.6	25	1.3	0	0.0	1,921	100.0

-continued-

Appendix C2.-Page 2 of 2.

		Brood Year (Age)											
		2009		2008		2007		2006		2005		Total	
Sample		(0.2)		(0.3)		(0.4)		(0.5)		(0.6)			
Dates		N	\%	N \%									
Season ${ }^{1}$	Male	380	0.3	50,143	38.8	9,244	7.1	1,266	1.0	0	0.0	61,033	47.2
	Female	760	0.6	55,462	42.9	10,763	8.3	1,266	1.0	0	0.0	68,251	52.8
	Total	1,140	0.9	105,605	81.7	20,007	15.5	2,532	2.0	0	0.0	129,284	100.0

Note: All commercial fishing periods were restricted to 7.5 in or smaller mesh gillnets.
a Age and sex proportions from District 1 Periods 1 and 2 samples were applied to the harvest of this period to estimate composition.
b Age and sex proportions from District 1 Periods 2 and 3 samples were applied to the harvest of this period to estimate composition.
c Age and sex proportions from District 1 Periods 3 and 4 samples were applied to the harvest of this period to estimate composition.
d Age and sex proportions from District 1 Periods 4 and 5 samples were applied to the harvest of this period to estimate composition.
e Age and sex proportion from District 1 Periods 5 and 6 samples were applied to the harvest of this period to estimate composition.
f Age and sex proportions from District 1 Periods 6 and 7 samples were applied to the harvest of this period to estimate composition.
g Age and sex proportions from District 1 Periods 8 and 9 samples were applied to the harvest of this period to estimate composition.
${ }^{\text {h }}$ Age and sex proportions from District 1 Periods 9 and 10 samples were applied to the harvest of this period to estimate composition.
i Age and sex proportions from District 1 Periods 10 and 11 samples were applied to the harvest of this period to estimate composition.
j Age and sex proportions from District 1 Periods 11 and 12 samples were applied to the harvest of this period to estimate composition.
${ }^{k}$ Age and sex proportions from District 1 Periods 12 and 13 samples were applied to the harvest of this period to estimate composition.
1 Age and sex proportions from all District 1 commercial samples were applied to the total harvest to estimate composition.

Appendix C3.-Yukon River Subdistrict 4-A fall chum salmon commercial fish wheel harvest, age and sex composition, and mean length (mm), 2012.

Note: Samples were only taken from fish harvested during Period 4. Not considered representative of entire harvest.

Appendix C4.-Yukon River Subdistrict 5-C (Rampart) fall chum salmon subsistence fish wheel harvest, age and sex composition, and mean length (mm), 2012.

Appendix C5.-Lower Yukon River test fishery (Big Eddy site) fall chum salmon 6.0 in mesh drift gillnet, age and sex composition, and mean length (mm), 2012.

-continued-

Appendix C5.-Page 2 of 2.

Appendix C6.-Lower Yukon River test fishery (Middle Mouth site) fall chum salmon 6.0 in mesh drift gillnet, age and sex composition, and mean length (mm), 2012.

-continued-

Appendix C6.-Page 2 of 2.

Appendix C7.-Lower Yukon River test fishery (combined Big Eddy and Middle Mouth sites) fall chum salmon 6.0 in mesh drift gillnet, age and sex composition, and mean length (mm), 2012.

			Brood Year (Age)							
			2009	2008	2007	2006		05		
Sample	Sample		(0.2)	(0.3)	(0.4)	(0.5)		.6)		
Dates	Size		N \%	N \%	N \%	N \%	N	\%	N	\%
7/16-24	303	Male	20.7	12139.9	$36 \quad 11.9$	134.3	0	0.0	172	56.8
Quartile 1		Female	$0 \quad 0.0$	$74 \quad 24.4$	$48 \quad 15.8$	93.0	0	0.0	131	43.2
		Subtotal	20.7	19564.4	$84 \quad 27.7$	227.3	0	0.0	303	100.0
		Male Mean Length	569	571	582	603		-		
		SE	34	2	4	9		-		
		Range	535-602	502-617	502-619	551-668		-		
		n	2	121	36	13		-		
		Female Mean Length	-	561	579	566		-		
		SE	-	2	3	11		-		
		Range	-	526-618	526-641	520-631				
		n	-	74	48	9		-		
7/25-29, 31-8/4	348	Male	10.3	11533.0	288.0	51.4	0	0.0	149	42.8
Quartile 2		Female	$0 \quad 0.0$	13839.7	$61 \quad 17.5$	$0 \quad 0.0$	0	0.0	199	57.2
		Subtotal	10.3	25372.7	8925.6	51.4	0	0.0	348	100.0
		Male Mean Length	572	578	609	605		-		
		SE	-	2	5	10		-		
		Range	-	529-661	568-658	579-642		-		
		n	1	115	28	5		-		
		Female Mean Length	-	567	586	-		-		
		SE	-	3	3	-		-		
		Range	-	316-641	530-641	-		-		
		n	-	138	61	-		-		
8/5-16	225	Male	10.4	8136.0	$12 \quad 5.3$	20.9	0	0.0	96	42.7
Quartile 3		Female	10.4	10245.3	2310.2	31.3	0	0.0	129	57.3
		Subtotal	20.9	18381.3	$35 \quad 15.6$	$5 \quad 2.2$	0	0.0	225	100.0
		Male Mean Length	557	576	613	600		-		
		SE	-	3	10	31		-		
		Range	-	503-644	567-676	569-630		-		
		n	1	81	12	2		-		
		Female Mean Length	585	579	588	574		-		
		SE	-	2	4	22		-		
		Range	-	526-665	548-646	530-597		-		
		n	1	102	23	3		-		
8/17-22, 23-29,	319	Male	$4 \quad 1.3$	10432.6	$4 \quad 1.3$	10.3	0	0.0	113	35.4
31-9/2, 11-12		Female	41.3	18758.6	134.1	20.6	0		206	64.6
Quartile 4		Subtotal	82.5	29191.2	175.3	30.9	0	0.0	319	100.0
		Male Mean Length	551	578	588	569		-		
		SE	12	2	22	-		-		
		Range	520-576	520-645	552-648	-		-		
		n	4	104	4	1		-		
		Female Mean Length	591	572	581	582		-		
		SE	22	2	8	8		-		
		Range	547-653	500-635	528-633	574-590		-		
		n	4	187	13	2		-		

Appendix C7.-Page 2 of 2.

Sample Dates	Sample Size		Brood Year (Age)						Total	
			$\frac{2009}{(0.2)}$	$\frac{2008}{(0.3)}$	$\frac{2007}{(0.4)}$	$\frac{2006}{(0.5)}$	$\frac{2005}{(0.6)}$			
			N \%	N \%	N \%	N \%	N	\%	N	\%
Total	1,195	Male	80.7	42135.2	$80 \quad 6.7$	211.8	0		530	44.4
		Female	50.4	50141.9	14512.1	141.2	0		665	55.6
		Total	131.1	92277.2	22518.8	$35 \quad 2.9$	0		1,195	100.0
		Male Mean Length	559	576	597	601		-		
		SE	9	1	3	7		-		
		Range	520-602	502-661	502-676	551-668		-		
		n	8	421	80	21		-		
		Female Mean Length	590	570	583	570		-		
		SE	17	1	2	8		-		
		Range	547-653	316-665	526-646	520-631		-		
		n	5	501	145	14		-		

Appendix C8.-Yukon River Mountain Village test fishery fall chum salmon $5 / 8$ in mesh drift gillnet, age and sex composition, and mean length (mm) 2012.

Appendix C8.-Page 2 of 2.

	Sample		Brood Year (Age)											
			2009		2008		2007		2006		2005		Total	
Sample Dates				(0.2)	(0.			(0.4)	(0,			.6)		
	Size		N	\%										
Total	149	Male	0	0.0		33.6			2	1.3	0	0.0	71	47.7
		Female	0		63	42.3	13	8.7	2	1.3	0	0.0	78	52.3
		Total	0		113	75.8			4	2.7	0		149	100.0
		Male Mean Length		-	57			01	61			-		
		SE		-	3			6	2			-		
		Range		-	500-	622	562	-635	615	619		-		
		n		-	50			19	2			-		
		Female Mean Length		-	56			88	57			-		
		SE		-	3			6	2			-		
		Range		-	505-	612	559	-648	555	600		-		
		n		-	63			13	2			-		

Appendix C9.-Yukon River Eagle sonar test fishery fall chum salmon variable mesh drift gillnet, age and sex composition, and mean length (mm), 2012.

					Year (Age)					
			2009	2008	2007	2006		005		
Sample	Sample		(0.2)	(0.3)	(0.4)	(0.5)		.6)		tal
Dates	Size		N \%	N \%	N \%	N \%	N	\%	N	\%
8/3, 23, 28-9/12	373	Male	$0 \quad 0.0$	11430.6	5615.0	$3 \quad 0.8$	0	0.0	173	46.4
5.25" Mesh		Female	41.1	15742.1	$39 \quad 10.5$	00.0	0	0.0	200	53.6
		Subtotal	41.1	27172.7	$95 \quad 25.5$	$3 \quad 0.8$	0	0.0	373	100.0
		Male Mean Length	-	586	598	622		-		
		SE	-	3	3	10		-		
		Range	-	523-680	540-649	602-635		-		
		n	-	114	56	3		-		
		Female Mean Length	552	569	578	-		-		
		SE	10	2	3	-		-		
		Range	528-574	514-679	542-623	-		-		
		n	4	157	39	-		-		
8/28-29, 31-	100	Male	11.0	$53 \quad 53.0$	$37 \quad 37.0$	11.0	0	0.0	92	92.0
9/10, 12-15, 18		Female	$0 \quad 0.0$	$6 \quad 6.0$	22.0	$0 \quad 0.0$	0	0.0	8	8.0
7.5" Mesh		Subtotal	11.0	$59 \quad 59.0$	3939.0	11.0	0		100	100.0
		Male Mean Length	552	611	624	659		-		
		SE	-	4	5	-		-		
		Range	-	561-714	555-678	-		-		
		n	1	53	37	1		-		
		Female Mean Length	-	588	604	-		-		
		SE	-	11	6	-		-		
		Range	-	544-611	598-609	-		-		
		n	-	6	2	-		-		
Total	473	Male	10.2	16735.3	9319.7	$4 \quad 0.8$	0	0.0	265	56.0
		Female	$4 \quad 0.8$	16334.5	418.7	$0 \quad 0.0$	0		208	44.0
		Total	$5 \quad 1.1$	$330 \quad 69.8$	13428.3	$4 \quad 0.8$	0	0.0	473	100.0
		Male Mean Length	552	594	609	632		-		
		SE	-	3	3	12		-		
		Range	-	523-714	540-678	602-659		-		
		n	1	167	93	4		-		
		Female Mean Length	552	569	579	-		-		
		SE	10	2	3	-		-		
		Range	528-574	514-679	542-623	-		-		
		n	4	163	41	-		-		

Appendix C10.-Delta River carcass survey fall chum salmon escapement, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)									Total	
			$\begin{aligned} & 2009 \\ & \hline(0.2) \end{aligned}$	$\begin{aligned} & 2008 \\ & \hline(0.3) \end{aligned}$		$\begin{aligned} & 2007 \\ & \hline(0.4) \end{aligned}$		$\begin{aligned} & 2006 \\ & \hline(0.5) \end{aligned}$		$\begin{aligned} & 2005 \\ & \hline(0.6) \end{aligned}$			
			N \%	N	\%								
11/7, 21	180	Male	21.1	86	47.8	32	17.8	1	0.6	0	0.0	121	67.2
Total		Female	10.6	42	23.3	16	8.9	0		0		59	32.8
		Total	31.7	128	71.1	48	26.7	1	0.6	0		180	100.0
		Male Mean Length	546	58			2		06		-		
		SE	8	3			5		-		-		
		Range	538-553	533-638		529	-648		-		-		
		n	2	86			2		1		-		
		Female Mean Length	542	55			88		-		-		
		SE	-	3			7		-		-		
		Range	-	508-		521	-635		-		-		
		n	1	42			6		-		-		

Note: Ages determined from vertebrae.

Appendix C11.-Sheenjek River sonar fall chum salmon beach seine, age and sex composition, and mean length (mm), 2012.

Note: Ages determined from vertebrae.

Appendix C12.-Toklat River carcass survey fall chum salmon escapement, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)																								
			$\begin{array}{\|l\|} \hline 2009 \\ \hline(0.2) \end{array}$		$\begin{aligned} & 2008 \\ & \hline(0.3) \end{aligned}$		$\begin{aligned} & 2007 \\ & \hline(0.4) \end{aligned}$		$\begin{aligned} & 2006 \\ & \hline(0.5) \end{aligned}$		$\frac{2005}{(0.6)}$		Total														
			N	\%																							
11/1	150		3	2.0	119	79.3	27	18.0	1	0.7	0	0.0	150	100.0													
Total 180																											

Note: A total of 180 fish were sampled, of the fish sampled 150 were sampled for vertebrae for age determination. Due to collection conditions age, sex, and length data cannot be paired.

Appendix C13.-Yukon River fall chum salmon mean length (mm) by project, sex, year, and age, 1973-2012.

Project and Sex	Year		Percent (\%)				
			Age				
			$\begin{aligned} & \hline 3 \mathrm{yr} \\ & (0.2) \end{aligned}$	$\begin{gathered} \hline 4 \mathrm{yr} \\ (0.3) \\ \hline \end{gathered}$	$\begin{aligned} & 5 \mathrm{yr} \\ & (0.4) \end{aligned}$	$\begin{gathered} \hline 6 \mathrm{yr} \\ (0.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 \mathrm{yr} \\ (0.6) \end{gathered}$
Chandalar River	1986	a	-	-	-	-	-
Male	1987		-	627	651	660	-
	1988	a	-	-	-	-	-
	1989		-	-	-	-	-
	1990		-	-	-	-	-
	1991	b	-	-	-	-	-
	1992	b	-	-	-	-	-
	1993	b	-	-	-	-	-
	1994	b	-	-	-	-	-
	1995		-	-	-	-	-
	1996		-	-	-	-	-
	1997	b	-	-	-	-	-
	1998	b	-	-	-	-	-
	1999	b	-	-	-	-	-
	2000	b	-	-	-	-	-
	2001	b	-	-	-	-	-
	2002	b	-	-	-	-	-
	2003	b	-	-	-	-	-
	2004	b	-	-	-	-	-
	2005	c	-	604	615	699	-
	2006		548	585	581	577	-
	2007		570	583	604	-	-
	2008		540	575	608	595	-
	2009		575	584	615	607	660
	2010		599	606	586	595	-
	2011		558	600	614	612	-
	2012	b	-	-	-	-	-
Average ${ }^{\text {d }}$ (1986-2011)			565	596	609	621	660
5 yr Average ${ }^{\text {d }}$ (2007-2011)			568	590	605	602	660
Odd Year Average ${ }^{\text {d }}$			568	600	620	644	660
Even Year Average ${ }^{\text {d }}$			562	589	592	589	-

-continued-

Appendix C13.-Page 2 of 8.

Project and Sex	Year		Percent (\%)				
			Age				
			$\begin{gathered} \hline 3 \mathrm{yr} \\ (0.2) \end{gathered}$	$\begin{aligned} & \hline 4 \mathrm{yr} \\ & (0.3) \end{aligned}$	$\begin{gathered} 5 \mathrm{yr} \\ (0.4) \end{gathered}$	$\begin{gathered} \hline 6 \mathrm{yr} \\ (0.5) \end{gathered}$	$\begin{gathered} \hline 7 \mathrm{yr} \\ (0.6) \end{gathered}$
Chandalar River	1986	a	-	-	-	-	-
Female	1987	a	-	608	635	700	-
	1988		-	-	-	-	-
	1989	a	-	-	-	-	-
	1990	a	-	-	-	-	-
	1991	b	-	-	-	-	-
	1992	b	-	-	-	-	-
	1993	b	-	-	-	-	-
	1994	b	-	-	-	-	-
	1995	a	-	-	-	-	-
	1996	a	-	-	-	-	-
	1997	b	-	-	-	-	-
	1998	b	-	-	-	-	-
	1999	b	-	-	-	-	-
	2000	b	-	-	-	-	-
	2001	b	-	-	-	-	-
	2002	b	-	-	-	-	-
	2003	b	-	-	-	-	-
	2004	b	-	-	-	-	-
	2005		-	575	566	-	-
	2006		540	546	555	568	-
	2007		543	551	564	607	-
	2008	c	543	552	578	560	593
	2009		553	557	565	590	-
	2010	c	545	558	568	585	630
	2011		531	562	582	594	-
	2012	b	-	-	-	-	-
Average ${ }^{\text {d }}$ (1986-2011)			542	564	577	601	612
5 yr Average ${ }^{\text {d }}$ (2007-2011)			543	556	571	587	612
Odd Year Average ${ }^{\text {d }}$			542	571	583	623	-
Even Year Average ${ }^{\text {d }}$			543	552	567	571	612

[^17]Appendix C13.-Page 3 of 8.

Project and Sex			Percent (\%)				
			Age				
	Year		$\begin{gathered} \hline 3 \mathrm{yr} \\ (0.2) \end{gathered}$	$\begin{aligned} & \hline 4 \mathrm{yr} \\ & (0.3) \\ & \hline \end{aligned}$	$\begin{array}{r} 5 \mathrm{yr} \\ (0.4) \\ \hline \end{array}$	$\begin{gathered} 6 \mathrm{yr} \\ (0.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 \mathrm{yr} \\ (0.6) \\ \hline \end{gathered}$
Delta River ${ }^{\text {c }}$	1973	e	-	-	-	-	-
Male	1974		551	601	560	-	-
	1975		530	602	632	-	-
	1976		508	553	607	-	-
	1977		600	624	611	-	-
	1978		570	608	643	-	-
	1979		-	-	-	-	-
	1980		516	592	621	-	-
	1981		-	-	-	-	-
	1982		583	610	621	655	-
	1983		555	598	621	595	-
	1984		569	584	628	-	-
	1985		611	601	636	590	-
	1986		545	588	616	-	-
	1987		588	610	641	643	-
	1988	e	-	-	-	-	-
	1989		572	603	612	640	-
	1990	e	-	-	-	-	-
	1991		543	586	594	-	-
	1992		-	599	624	617	-
	1993		535	586	600	597	-
	1994		530	547	584	578	-
	1995		-	-	584	592	596
	1996		595	613	634	636	-
	1997		545	599	635	640	-
	1998		579	591	603	630	-
	1999		603	591	609	660	-
	2000		558	593	625	-	-
	2001		555	606	625	-	-
	2002		581	613	635	665	-
	2003		-	612	607	620	-
	2004		-	565	595	610	-
	2005		-	575	604	589	-
	2006		561	577	597	565	-
	2007		580	598	619	653	-
	2008		-	605	624	634	-
	2009		558	602	614	633	-
	2010		588	596	601	618	598
	2011		548	607	619	626	-
	2012		546	582	592	606	-
	Average ${ }^{\text {d }}$ (1973-2011)		563	595	614	621	597
	5 yr Average ${ }^{\text {d }}$ (2007-2011)		569	602	615	633	598
	Odd Year Average ${ }^{\text {d }}$		566	600	615	621	596
	Even Year Average ${ }^{\text {d }}$		560	590	613	621	598

-continued-

Appendix C13.-Page 4 of 8.

Project and Sex			Percent (\%)				
			Age				
	Year		$\begin{gathered} 3 \mathrm{yr} \\ (0.2) \end{gathered}$	$\begin{aligned} & 4 \mathrm{yr} \\ & (0.3) \end{aligned}$	$\begin{gathered} 5 \mathrm{yr} \\ (0.4) \\ \hline \end{gathered}$	$\begin{gathered} 6 \mathrm{yr} \\ (0.5) \end{gathered}$	$\begin{aligned} & \hline 7 \mathrm{yr} \\ & (0.6) \\ & \hline \end{aligned}$
Delta River ${ }^{\text {c }}$	1973	e	-	-	-	-	-
Female	1974		542	578	570	-	-
	1975		524	582	618	-	-
	1976		528	539	583	615	-
	1977		592	602	612	-	-
	1978		543	586	637	-	-
	1979		-	-	-	-	-
	1980		543	586	-	-	-
	1981		-	-	-	-	-
	1982		561	592	608	625	-
	1983		533	576	591	555	-
	1984		512	559	571	-	-
	1985		566	572	587	-	-
	1986		536	568	585	605	-
	1987		553	584	618	620	-
	1988	e	-	-	-	-	-
	1989		543	567	581	-	-
	1990	e	-	-	-	-	-
	1991		490	565	571	565	-
	1992		-	572	595	615	-
	1993		-	567	571	585	-
	1994		-	547	567	-	-
	1995		-	545	570	572	582
	1996		568	590	600	625	-
	1997		470	574	596	570	-
	1998		550	557	562	583	-
	1999		575	564	581	-	-
	2000		535	561	598	605	-
	2001		535	565	597	560	-
	2002		544	584	606	-	-
	2003		556	581	591	-	-
	2004		-	547	563	576	550
	2005		-	-	573	599	-
	2006		531	535	562	578	-
	2007		557	569	591	-	-
	2008		573	578	596	614	625
	2009		548	563	578	588	585
	2010		555	568	571	605	580
	2011		515	577	607	599	-
	2012		542	556	568	-	-
	Average ${ }^{\text {d }}$ (1973-2011)		542	570	588	593	584
	5 yr Average ${ }^{\text {d }}$ (2007-2011)		550	571	589	601	597
	Odd Year Average ${ }^{\text {d }}$		540	572	590	581	583
	Even Year Average ${ }^{\text {d }}$		544	568	586	604	585

-continued-

Appendix C13.-Page 5 of 8.

Project and Sex	Year		Percent (\%)				
			Age				
			$\begin{aligned} & 3 \mathrm{yr} \\ & (0.2) \end{aligned}$	$\begin{gathered} 4 \mathrm{yr} \\ (0.3) \\ \hline \end{gathered}$	$\begin{gathered} 5 \mathrm{yr} \\ (0.4) \\ \hline \end{gathered}$	$\begin{gathered} 6 \mathrm{yr} \\ (0.5) \end{gathered}$	$\begin{aligned} & 7 \mathrm{yr} \\ & (0.6) \end{aligned}$
Sheenjek River	1974	c	555	618	674	-	-
Male	1975	c	599	592	663	-	-
	1976	c	-	609	640	-	-
	1977	c	569	615	622	-	-
	1978	c	584	624	668	-	-
	1979	b	-	-	-	-	-
	1980	b	-	-	-	-	-
	1981	${ }^{\text {f }}$	548	620	638	620	-
	1982	f	618	626	655	640	-
	1983	f	603	613	609	-	-
	1984	g	563	616	627	-	-
	1985	g	570	619	654	-	-
	1986	g	568	601	632	630	-
	1987	g	630	628	648	655	-
	1988	g	-	639	650	-	-
	1989	g	588	623	641	635	-
	1990	g	-	608	664	710	-
	1991	g	-	603	645	650	-
	1992	g	-	626	640	-	-
	1993	g.h	550	608	625	620	-
	1994	g	610	588	610	650	-
	1995	g	-	-	601	616	624
	1996	g	600	601	632	631	-
	1997	b	-	-	-	-	-
	1998	b	-	-	-	-	-
	1999	b	-	-	-	-	-
	2000	b	-	-	-	-	-
	2001	g	-	602	634	-	-
	2002	g	-	637	657	-	-
	2003	g	-	623	643	710	-
	2004	g	-	602	621	648	-
	2005	g	-	623	633	635	-
	2006	g	-	622	622	630	-
	2007	g	-	599	624	666	-
	2008	g	-	593	622	652	680
	2009	b	-	-	-	-	-
	2010	g	614	601	654	610	700
	2011	g	563	602	628	673	-
	2012	g	-	594	614	661	-
	2011)		584	613	638	646	668
5 yr Average ${ }^{\text {d }}$ (2006-2008, 2010-2011)			589	603	630	646	690
Odd Year Average ${ }^{\text {d }}$			580	612	634	648	624
Even Year Average ${ }^{\text {d }}$			589	613	642	645	690

-continued-

Appendix C13.-Page 6 of 8.

-continued-

Appendix C13.-Page 7 of 8.

Project and Sex	Year		Percent (\%)				
			Age				
			$\begin{gathered} \hline 3 \mathrm{yr} \\ (0.2) \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{yr} \\ (0.3) \\ \hline \end{gathered}$	$\begin{aligned} & 5 \mathrm{yr} \\ & (0.4) \end{aligned}$	$\begin{gathered} 6 \mathrm{yr} \\ (0.5) \end{gathered}$	$\begin{aligned} & \hline 7 \mathrm{yr} \\ & (0.6) \\ & \hline \end{aligned}$
Toklat River ${ }^{\text {c }}$	1974		551	601	560	-	-
Male	1975	b	-	-	-	-	-
	1976		528	533	603	-	-
	1977		590	597	613	-	-
	1978		545	567	629	-	-
	1979		581	603	622	-	-
	1980		556	602	601	-	-
	1981	b	-	-	-	-	-
	1982		562	590	630	-	-
	1983		550	609	623	575	-
	1984		540	580	608	-	-
	1985		590	594	604	598	-
	1986		505	576	603	555	-
	1987		542	586	620	-	-
	1988		513	587	616	653	-
	1989		505	584	564	600	-
	1990	e	-	-	-	-	-
	1991		565	580	617	-	-
	1992		527	578	608	675	-
	1993		520	557	570	535	-
	1994	e	-	-	-	-	-
	1995		-	543	560	571	608
	1996		-	585	600	610	-
	1997		543	565	589	590	-
	1998		540	574	591	605	-
	1999		-	523	576	-	-
	2000	b	-	-	-	-	-
	2001		534	581	595	-	-
	2002		550	598	631	-	-
	2003		570	595	589	585	-
	2004		-	558	579	593	545
	2005		540	593	597	-	-
	2006		-	561	586	560	-
	2007	i	580	564	565	581	-
	2008	b	-	-	-	-	-
	2009		538	572	603	572	570
	2010	${ }^{\text {b }}$	-	-	-	-	-
	2011	b	-	-	-	-	-
	2012	j	-	-	-	-	-
	2011)		547	578	598	591	574
5 yr Average ${ }^{\text {d }}$ (2004-2007, 2009)			553	570	586	576	558
Odd Year Average ${ }^{\text {d }}$			553	578	594	578	589
Even Year Average ${ }^{\text {d }}$			538	578	603	607	545

-continued-

Appendix C13.-Page 8 of 8.

Project and Sex	Year		Percent (\%)				
			Age				
			$\begin{aligned} & \hline 3 \mathrm{yr} \\ & (0.2) \end{aligned}$	$\begin{gathered} \hline 4 \mathrm{yr} \\ (0.3) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 5 \mathrm{yr} \\ & (0.4) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 6 \mathrm{yr} \\ (0.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 \mathrm{yr} \\ (0.6) \\ \hline \end{gathered}$
Toklat River ${ }^{\text {c }}$	1974		542	578	570	-	-
Female	1975	b	-	-	-	-	-
	1976		514	541	606	-	-
	1977		556	574	-	-	-
	1978		534	558	609	-	-
	1979		566	578	-	-	-
	1980		512	575	584	-	-
	1981	b	-	-	-	-	-
	1982		560	538	563	-	-
	1983		535	572	591	655	-
	1984		517	558	591	-	-
	1985		550	565	577	-	-
	1986		523	553	570	555	-
	1987		544	560	597	635	-
	1988		499	562	592	-	-
	1989		523	565	563	590	-
	1990	e	-	-	-	-	-
	1991		503	534	546	-	-
	1992		575	570	596	590	-
	1993		493	537	542	548	-
	1994		522	544	551	566	571
	1995		-	-	550	566	573
	1996		490	558	569	570	-
	1997		520	531	561	555	-
	1998		505	547	559	580	-
	1999		-	462	406	-	-
	2000	b	-	-	-	-	-
	2001		-	556	585	605	-
	2002		524	571	584	-	-
	2003		552	563	581	-	-
	2004		-	543	555	580	-
	2005		-	560	530	-	-
	2006		-	551	546	550	-
	2007	i	-	542	558	585	630
	2008	b	-	-	-	-	-
	2009		533	554	567	544	560
	2010	b	-	-	-	-	-
	2011	b	_	_	_	_	-
	2012	j	-	-	-	-	-
Average ${ }^{\text {d }}$ (1974-2011)			529	553	565	580	584
5 yr Average ${ }^{\text {d }}$ (2004-2007, 2009)			533	550	551	565	595
Odd Year Average ${ }^{\text {d }}$			534	550	554	587	588
Even Year Average ${ }^{\text {d }}$			524	556	576	570	571

a Missing information.
b No samples collected.
c Carcass samples collected on spawning grounds, unless otherwise noted.
d Averages not weighted by sample size.
e Samples aged. Missing information.
f Escapement samples taken with 5 7/8 in mesh gillnet.
g Escapement samples taken with beach seine.
h Samples taken predominantly late in run.
i Collection taken at the mouth of the Kantishna River of which the Toklat is a tributary producing the majority of fall chum salmon. Samples were collected from subsistence caught fish throughout the run based on historical timing at this site.
j Age, sex, and length data collected, but cannot be paired.

APPENDIX D: COHO SALMON

Appendix D1.-Yukon River District 1 coho salmon commercial gillnet harvest, age and sex composition, and mean length (mm), 2012.

Sample Dates	$\begin{gathered} \text { Sample } \\ \text { Size } \end{gathered}$		Brood Year (Age)						Total	
					2008		2007			
			(1.1)		(2.1)		(3.1)			
			N	\%	N	\%	N	\%	N	\%
$\begin{gathered} \text { 7/23, 26, 30; 8/9, } 18 \\ \text { Periods 1-9 } \end{gathered}$	190	Male	1,954	10.0	7,199	36.8	514	2.6	9,667	49.5
		Female	1,954	10.0	7,302	37.4	617	3.2	9,873	50.5
		Subtotal	3,908	20.0	14,501	74.2	1,131	5.8	19,540	100.0
		Male Mean Length	547		536		549			
		SE	6		3		15			
		Range	495-595		476-600		513-591			
		n	19		70		5			
		Female Mean Length	542		537		526			
		SE	5		3		5			
		Range	511-576		475-578		513-550			
		n	19		71		6			
Periods 10, 11	136	Male	2,101	16.2	4,201	32.4	573	4.4	6,875	52.9
		Female	1,623	12.5	3,915	30.1	573	4.4	6,111	47.1
		Subtotal	3,724	28.7	8,116	62.5	1,146	8.8	12,986	100.0
		Male Mean Length	563		549		548			
		SE	4		4		11			
		Range	525-598		489-604		516-588			
		n	22		44		6			
		Female Mean Length	535		546		528			
		SE	7		4		15			
		Range	463-572		486-584		475-579			
		n	17		41		6			
8/27, 30 Periods 12, 13	132	Male	1,205	16.7	2,410	33.3	55	0.8	3,670	50.8
		Female	1,150	15.9	2,191	30.3	219	3.0	3,561	49.2
		Subtotal	2,356	32.6	4,602	63.6	274	3.8	7,231	100.0
		Male Mean Length	556		540		590			
		SE	6		4		-			
		Range	505-595		487-593		-			
		n	22		44		1			
		Female Mean Length	547		547		550			
		SE	4		5		7			
		Range	512-594		474-599		537-568			
		n	21		40		4			
Season	458	Male	5,260	13.2	13,811	34.7	1,142	2.9	20,212	50.8
		Female	4,728	11.9	13,408	33.7	1,409	3.5	19,545	49.2
		Total	9,987	25.1	27,219	68.5	2,551	6.4	39,757	100.0
		Male Mean Length	554		541		556			
		SE	4		2		10			
		Range	495-598		476-604		513-591			
		n	63		158		12			
		Female Mean Length	540		542		531			
		SE	3		2		6			
		Range	463-594		474-599		475-579			
		n	57		152		16			

Note: All commercial fishing periods were restricted to 6.0 in or smaller mesh gillnets.

Appendix D2.-Lower Yukon River test fishery (Big Eddy site) coho salmon 6.0 in mesh drift gillnet, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)							
			2009		2008		2007		Total	
			(1.1)		(2.1)		(3.1)			
			N	N \%	N	N \%	N	\%	N	\%
7/30-8/7, 9-15	65	Male	16	1624.6	23	35.4	0	0.0	39	60.0
Quartile 1		Female	7	$7 \quad 10.8$	18	$8 \quad 27.7$	1	1.5	26	40.0
		Subtotal	23	35.4	41	$1 \quad 63.1$	1	1.5	65	100.0
		Male Mean Length	556		556		-			
		SE	7		5		-			
		Range	504-593		505-596		-			
		N	16		23		-			
		Female Mean Length	560		567		553			
		SE	7		4		-			
		Range	533-593		540-589		-			
		N	7		18		1			
8/16-18	35	Male	4	$4 \quad 11.4$	15	$5 \quad 42.9$	2	5.7	21	60.0
Quartile 2		Female	4	$4 \quad 11.4$	10	O 28.6	0	0.0	14	40.0
		Subtotal	8	- 22.9	25	$5 \quad 71.4$	2	5.7	35	100.0
		Male Mean Length	565		560		540			
		SE		13		6	32			
		Range	526-587		520-600		508-572			
		n	4		15		2			
		Female Mean Length	559		560		-			
		SE	8		9		-			
		Range	543-580		516-604		-			
		n	4		10		-			
8/24-25, 31-9/2, 4	9	Male	2	222.2		$3 \quad 33.3$	0	0.0	5	55.6
Quartile 3		Female	2	222.2		222.2	0	0.0	4	44.4
		Subtotal	4	444.4		$5 \quad 55.6$	0	0.0	9	100.0
		Male Mean Length	559		554		-			
		SE		16		16	-			
		Range	543-575		537-587		-			
		n	2		3		-			
		Female Mean Length	577		556		-			
		SE	22		2		-			
		Range	555-599		554-557		-			
		n	2		2		-			
9/7-8, 11-16, 19	13	Male	3	323.1		215.4	1	7.7	6	46.2
Quartile 4		Female	2	215.4		430.8	1	7.7	7	53.8
		Subtotal	5	38.5		$6 \quad 46.2$	2	15.4	13	100.0
		Male Mean Length	560		556		567			
		SE		22		28	-			
		Range	518-591		528-583		-			
		n	3		2					
		Female Mean Length	532		542		593			
		SE		22		9	-			
		Range	510-553		520-557		1			
		n	2		4					

Appendix D2.-Page 2 of 2.

Appendix D3.-Lower Yukon River test fishery (Middle Mouth site) coho salmon 6.0 in mesh drift gillnet, age and sex composition, and mean length (mm), 2012.

-continued-

Appendix D3.-Page 2 of 2.

	Sample		Brood Year (Age)							
			2009		2008		2007		Total	
Sample			(1.1)		(2.1)		(3.1)			
Dates	Size		N	\%	N	\%	N	\%	N	\%
Total	272	Male	40	14.7	78	28.7	14	5.1	132	48.5
		Female	40	14.7	89	32.7	11	4.0	140	51.5
		Total	80	29.4	167	61.4	25	9.2	272	100.0
		Male Mean Length		559	55					
		SE		5	3					
		Range		15-629	447-			585		
		n		40	78					
		Female Mean Length		556	55					
		SE		3	2					
		Range		05-596	504			582		
		n		40	89					

Appendix D4.-Lower Yukon River test fishery (combined Big Eddy and Middle Mouth sites) coho salmon 6.0 in mesh drift gillnet, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)							
			2009		2008		2007		Total	
			(1.1)		(2.1)		(3.1)			
				N \%	N	\%	N	\%	N	\%
$7 / 30-8 / 4,10-15$ Quartile 1	94	Male	21	122.3	33	35.1	2	2.1	56	59.6
		Female	12	212.8	25	26.6	1	1.1	38	40.4
		Subtotal	33	$3 \quad 35.1$	58	61.7	3	3.2	94	100.0
		Male Mean Length		553		551				
		SE		6		4				
		Range		504-593		505-596				
		n		21		33				
		Female Mean Length		561		564				
		SE		5		3				
		Range		533-593		516-589				
		n		12		25				
8/16-20 Quartile 2	90	Male	13	$3 \quad 14.4$	31	34.4	3	3.3	47	52.2
		Female	12	213.3	30	33.3	1	1.1	43	47.8
		Subtotal	25	$5 \quad 27.8$	61	67.8	4	4.4	90	100.0
		Male Mean Length		569		558				
		SE		8		6				
		Range		526-629		447-604				
		n		13		31				
		Female Mean Length		565		563				
		SE		4		4				
		Range		543-586		516-604				
		n		12		30				
$\begin{gathered} \text { 8/22-29, 31-9/4 } \\ \text { Quartile } 3 \end{gathered}$	106	Male	10	$0 \quad 9.4$	29	27.4	6	5.7	45	42.5
		Female	18	$8 \quad 17.0$	37	34.9	6	5.7	61	57.5
		Subtotal	28	$8 \quad 26.4$	66	62.3	12	11.3	106	100.0
		Male Mean Length		563		552				
		SE		11		4				
		Range		518-601		514-590				
		n		10		29				
		Female Mean Length		554		553				
		SE		5		4				
		Range		505-599		504-628				
		n		18		37				
9/5-19 Quartile 4	104	Male	21	$1 \quad 20.2$	28	26.9	6	5.8	55	52.9
		Female	13	312.5	31	29.8	5	4.8	49	47.1
		Subtotal	34	432.7	59	56.7	11	10.6	104	100.0
		Male Mean Length		555		559				
		SE		6		5				
		Range		518-615		514-615				
		n		21		28				
		Female Mean Length		548		546				
		SE		6		3				
		Range		510-589		512-587				
		n		13		31				

-continued-

Appendix D4.-Page 2 of 2.

Appendix D5.-Yukon River Mountain Village test fishery coho salmon 5 7/8 in mesh drift gillnet, age and sex composition, and mean length (mm), 2012.

Sample Dates	Sample Size		Brood Year (Age)							
			2009		2008		2007		Total	
				(1.1)		(2.1)				
			N	\%	N	N \%	N	\%	N	\%
$\begin{gathered} \text { 7/27-29; 8/4-5, 7-8 } \\ 10-11,13,15 \\ \text { Quartile } 1 \end{gathered}$	18	Male	4	22.2		844.4	1	5.6	13	72.2
		Female	2	11.1		$3 \quad 16.7$	0	0.0	5	27.8
		Subtotal	6	33.3	11	$1 \quad 61.1$	1	5.6	18	100.0
		Male Mean Length		514		559				
		SE		39		10				
		Range		410-600		523-600				
		n		4		8				
		Female Mean Length		580		549				
		SE		4		9				
		Range		576-584		532-559				
		n		2		3				
8/19-20 Quartile 2	16	Male	3	18.8		$7 \quad 43.8$	0	0.0	10	62.5
		Female	2	12.5		$3 \quad 18.8$	1	6.3	6	37.5
		Subtotal	5	31.3	10	- 62.5	1	6.3	16	100.0
		Male Mean Length		530		552				
		SE		4		9				
		Range		523-535		518-592				
		n		3		7				
		Female Mean Length		556		557				
		SE		1		31				
		Range		555-557		512-615				
		n		2		3				
$\begin{gathered} \text { 8/27-28, 8/30-9/4 } \\ \text { Quartile } 3 \end{gathered}$	46	Male	14	30.4		$9 \quad 19.6$	1	2.2	24	52.2
		Female	8	17.4	12	$2 \quad 26.1$	2	4.3	22	47.8
		Subtotal	22	47.8	21	$1 \quad 45.7$	3	6.5	46	100.0
		Male Mean Length		540		572				
		SE		7		8				
		Range		500-605		540-605				
		n		14		9				
		Female Mean Length		549		548				
		SE		6		7				
		Range		525-575		510-590				
		n		8		12				
$\begin{gathered} \text { 9/5-9, 11, } 13 \\ \text { Quartile } 4 \end{gathered}$	34	Male	8	23.5		$9 \quad 26.5$	0	0.0	17	50.0
		Female	4	11.8		$9 \quad 26.5$	4	11.8	17	50.0
		Subtotal	12	35.3	18	852.9	4	11.8	34	100.0
		Male Mean Length		540		537				
		SE		7		8				
		Range		505-575		490-565				
		n		8		9				
		Female Mean Length		539		556				
		SE		6		8				
		Range		530-555		525-600				
		n		4		9				

Appendix D5.-Page 2 of 2.

[^0]: ${ }^{1}$ All product names used in this report are included for scientific completeness and do not constitute a product endorsement.

[^1]: -continued-

[^2]: ${ }^{\text {a }}$ Estimates based on District 1 harvest.

[^3]: a All commercial fishing periods were restricted to 6.0 in or smaller mesh gillnets.

[^4]: ${ }^{\text {a }}$ Total samples aged.
 b Sex ratio is from total sample which includes unaged fish.
 c Age determination from otoliths.
 d Age determination from scales.
 e Sample bias because collected at sonar site using gillnet (1995 and 1996 used 114 mm and 149 mm mesh).
 ${ }^{\mathrm{f}}$ Age determination from vertebrae.
 g No samples collected.
 ${ }^{\text {h }}$ Carcass samples collected on the spawning grounds.
 ${ }^{i}$ Averages not weighted by sample size.
 j Escapement samples taken with beach seine.
 ${ }^{k}$ Escapement samples predominantly taken late in run.
 1 Collections taken at the mouth of the Kantishna River of which the Toklat is a tributary. Samples collected from subsistence fish.
 ${ }^{m}$ Sex composition based on a sample size of 180 fish.

[^5]: a These samples were from fish confiscated due to use of illegal gear.

[^6]: -continued-

[^7]: -continued-

[^8]: -continued-

[^9]: -continued-

[^10]: -continued-

[^11]: -continued-

[^12]: -continued-

[^13]: a Only male Chinook salmon were harvested in the sport fishery.

[^14]: -continued-

[^15]: -continued-

[^16]: -continued-

[^17]: -continued-

