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ABSTRACT 
The escapement of sockeye salmon, Oncorhynchus nerka, into the Kenai River has been estimated using a 
combination of sonar and fish wheels operated at rkm 31.1 since 1968.  Beginning in 2011, the fisheries were 
managed using a dual-frequency identification sonar (DIDSON).  This project used mark–recapture methods to 
independently investigate bias in DIDSON estimates of sockeye salmon escapement in 2006–2008. Mark–recapture 
experiments were conducted using passive integrated transponder tags, radio tags, fish wheels, and weirs (Russian 
River and Hidden Creek) as recapture sites.  Radiotelemetry was used primarily to identify spawning areas 
throughout the watershed and estimate tagging-induced mortality. Overall, our mark–recapture abundance estimates 
did not support the conclusion that the DIDSON estimates were consistently biased during the 3 years of this study.  
In 2006, the Russian mark–recapture estimate was significantly higher while the Hidden mark–recapture estimate 
was significantly lower than the DIDSON estimate.  Variable tagging-induced mortality or initial capture 
probabilities between the 2 stocks were likely causes of these observed differences.  In 2007, the mark–recapture 
estimates from both weirs were not different from the DIDSON estimate.  However in 2008, the Russian mark–
recapture estimate was not different while the Hidden mark–recapture estimate was significantly lower than the 
DIDSON estimate.  A linear regression of the pooled mark–recapture estimates (dependent variable) against the 
DIDSON estimates (2006–2008) resulted in an intercept not significantly different from zero and a slope not 
significantly different from one.  Radiotelemetry studies indicated that 35–42% of sockeye salmon spawned in the 
mainstem Kenai River between the Russian River confluence and Skilak Lake.  Another 10–20% spawned in an 
approximately 16 km segment of the Kenai River immediately below Skilak Lake, while 11–21% spawned in upper 
tributaries of the watershed (Russian River, Quartz Creek, Trail Lakes, Ptarmigan Creek, and others).  

Key words: sockeye salmon, Oncorhynchus nerka, Kenai River, escapement, abundance, mark–recapture, fish 
wheel, weir, radiotelemetry, passive integrated transponder (PIT) tag. 

INTRODUCTION 
The Kenai River late-run sockeye salmon run is typically the largest of 4 major sockeye salmon, 
Oncorhynchus nerka, runs (Kenai, Kasilof, Susitna, and Crescent rivers) in Upper Cook Inlet 
(UCI; Figure 1).  Since 1976, estimated total UCI sockeye salmon runs have ranged from 1.8 to 
12.1 million, while estimated Kenai River sockeye salmon runs have ranged from 654,000 to 
8.6 million (Tobias and Willette 2004).  Within the Kenai River watershed, the majority (~90%) 
of sockeye salmon fry rear in glacially turbid Kenai and Skilak lakes (DeCino et al. 2004), but 
significant numbers also rear in Hidden and Russian lakes.  The glacial waters of the Snow River 
feed into Kenai Lake, the outlet of which is the beginning of the Kenai River (Figure 2).  
Downstream from this lake, the Russian River flows into the Kenai River, and then through the 
Kenai River canyon and into Skilak Lake. Hidden Creek, the outlet stream of Hidden Lake, 
flows directly into Skilak Lake.  Below Skilak Lake, the river drops through Naptowne Rapids, 
but then has a relatively low gradient as it flows westerly into UCI. An early (June) sockeye 
salmon run into the Kenai River spawns in the Russian River watershed, whereas the late-run 
(July–August) sockeye salmon spawn in several tributaries flowing into Kenai and Skilak lakes, 
as well as in the mainstem Kenai River between Kenai and Skilak lakes, and in an approximately 
6 km segment of the Kenai River below Skilak Lake. Kenai River late-run sockeye salmon are 
harvested in mixed-stock gillnet fisheries in Cook Inlet and in inriver sport and personal use 
fisheries.  Management of the Kenai River late-run sockeye salmon run is based upon achieving 
a spawning escapement within a specific escapement goal range.  The escapement goal range 
during this study for Kenai River late-run sockeye salmon was 500,000 to 800,000 (Clark et al. 
2007). 

The escapement goal range for Kenai River late-run sockeye salmon has been based, in part, 
upon the number of wild sockeye salmon estimated to spawn within the watershed.  The number 
of wild sockeye salmon spawning within the watershed has been estimated from the total inriver 
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sonar estimate of sockeye salmon minus (1) the estimated number of sockeye salmon harvested 
in recreational fisheries upstream of the sonar, and (2) the number of hatchery-origin sockeye 
salmon enumerated at a weir on Hidden Creek (Tobias and Willette 2004).  Harvests in 
recreational fisheries have been estimated annually using a statewide harvest survey (Jennings et 
al. 2010) and creel surveys conducted during the fishery (King 1995, 1997).  Sonars have been 
operated on the Kenai River at river kilometer (rkm) 31.1 during July and early August since 
1968 (Westerman and Willette 2011).  Sonar technology has been used because high glacial 
turbidity precludes visual enumeration of migrating salmon in this river.  Prior to 1978, 
uplooking transducer arrays were used to enumerate salmon, but have since been replaced with 
side-looking Bendix sonars.  Fish wheel catches have been used to apportion sonar counts to 
species when the fraction of other species in the catches exceeded 5%.  This apportionment has 
typically occurred only in early August during even-numbered years, when pink salmon were 
most abundant.  

The annual Bendix sonar-derived estimates of Kenai River sockeye salmon abundance passing 
rkm 31.1 have been compared with weir counts (Tarbox et al. 1981), split-beam sonar estimates 
(Smith and Maxwell 2007), and dual frequency identification sonar (DIDSON)1 estimates of 
salmon abundance (Maxwell et al. 2011).  In addition, potential biases in the Bendix sonar 
estimates of sockeye salmon abundance in the Kenai River were investigated by Ehrenberg 
(1990) following the 1989 Exxon Valdez oil spill.  While the Bendix sonar was used to count fish 
that swim through the sonar beams located along both banks of the river, the entire river was not 
ensonified.  In areas with swift currents, sockeye salmon typically swim along the river banks 
where currents are slower due to friction.  However, if some sockeye salmon swim over the top 
of the bottom-oriented sonar beam or if they pass in the center of the river between the 2 
beams, they would likely not be counted resulting in an underestimate of the true abundance.  
Tarbox et al. (1981) operated side-looking Bendix sonars at rkm 31.1 during June and found that 
the subsequent catch and escapement of early-run Russian River sockeye salmon accounted for 
99% of the sonar estimate.  Ehrenberg (1990) concluded that there were no sources of error in 
the characteristics or operation of the Bendix sonar that would lead to the conclusion that the 
abundance estimates in 1989 were biased low.  Parrish (1999) concluded that the Bendix sonar 
calibration procedure likely introduced variability into the estimates, and that the system’s 
automatic counter and station operator’s manual counting likely became saturated at high salmon 
densities.  Using split-beam sonar, Smith and Maxwell (2007) did not find a consistent bias in 
the Bendix sonar estimates of salmon passage, but they also concluded that split-beam sonar was 
not the best equipment to replace the Bendix sonar.  Maxwell et al. (2011) concluded that the 
DIDSON abundance estimates were 1.25 times greater than the Bendix estimates on the south 
bank and 1.59 times greater on the north bank.  The DIDSON sonar estimates were primarily 
greater than the Bendix estimates at close range where the Bendix beam is narrowest.  This 
project used mark–recapture techniques to independently estimate the abundance of sockeye 
salmon migrating upstream past the sonars operated at rkm 31.1 in 2006–2008.  Since, the Kenai 
late-run sockeye salmon escapement goal was re-evaluated and expressed in DIDSON units in 
2010 (Fair et al. 2010) and DIDSON was used for management in 2011 and will be used for the 
foreseeable future, we compared our mark–recapture abundance estimates with DIDSON 
abundance estimates in 2006–2008.   

                                                 
1  Product names used in this report are included for scientific completeness, but do not constitute a product endorsement. 
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OBJECTIVES 
1. Conduct mark–recapture experiments in 2006–2008 to estimate the abundance of adult 

sockeye salmon migrating upstream of rkm 31.1 on the Kenai River during the period of 
sonar operation and test whether mark–recapture and DIDSON abundance estimates differ 
from each other; and  

2. Use radiotelemetry to determine the distribution of sockeye salmon spawners within the 
Kenai River watershed, estimate the migratory timing of major spawning stocks past rkm 
31.1 and estimate the migration rates of sockeye salmon in the Kenai River in 2006–2008. 

METHODS 
STUDY DESIGN 
Mark–recapture experiments were conducted to estimate the abundance of sockeye salmon in the 
Kenai River migrating upstream of rkm 31.1 (Figure 2), the location adult sockeye salmon have 
historically been enumerated using side-looking sonar.  Two fish wheels located at rkm 31.1, a 
point hereafter referred to as the “capture location”, were used to mark a sample of sockeye 
salmon adults in approximate proportion to their abundance as they migrated upstream to spawn.  
Recapture events consisted of the following (1) scanning the catch of sockeye salmon for marks 
in 2 fish wheels located at rkm 45.1, (2) scanning the entire population of sockeye salmon 
passing a weir located on Hidden Creek and (3) scanning the entire population of sockeye 
salmon passing a weir located on the Russian River.  Two mark–recapture datasets resulted from 
this design.  The first was based on fish marked at fish wheels at rkm 31.1 and sampled at the 
Russian and Hidden lake weirs.  Recapturing fish at the weirs had the potential of generating 
very large sample sizes for marked sockeye salmon, thereby increasing precision of the 
abundance estimate and allowing powerful testing of experimental assumptions.  The second 
dataset was based on fish marked at the fish wheels at rkm 31.1 and sampled by the recapture 
fish wheels at rkm 45.1.  This study design provided 4 estimates of abundance at rkm 31.1 
depending upon the recapture site(s): (1) Russian weir, (2) Hidden weir, (3) weirs combined, and 
(4) rkm 45.1 fish wheel.  This study was designed with redundancy in mind to allow for more 
than one mark–recapture estimate in the event that any particular estimate was unattainable and 
as a diagnostic for compliance with mark–recapture assumptions.  Theoretically, all estimates 
should be the same, i.e., any differences among them should only be due to sampling error.   

Fish wheel (rkm 45.1) and weir recapture data were segregated in the analyses.  The mark–
recapture estimators used in this study were not structured to use data from fish sampled twice, 
because tagged fish recaptured in the fish wheels at rkm 45.1 were sacrificed to verify the 
presence of the tag.  

A subset of the sockeye salmon captured by the fish wheels at rkm 31.1 were marked with a PIT 
(Passive Integrated Transponder) tag or radio transmitter.  Each PIT and radio tag had a unique 
code allowing us to identify each fish when it was recaptured. Each tagged fish also had their 
adipose fin removed and their sex and length measured.  We attempted to apply PIT tags and 
radio tags in approximate proportion to abundance.   

Fish with transmitters were monitored by fixed and mobile receiver stations to: (1) determine the 
proportion that migrated upstream of the capture location past the recapture fish wheels at rkm 
45.1 and above Naptowne Rapids at rkm 63.7, and (2) obtain migratory timing, migration speed, 
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and spawning distribution information.  The proportion of radio tags migrating past the recapture 
fish wheels at rkm 45.1 was used to estimate the proportion of all marked fish (both radio and 
PIT tagged) that migrated upstream of the capture location and were vulnerable to recapture in 
the fish wheels; i.e., the proportion that did not succumb to effects of capture and handling.  The 
proportion of radio tags migrating above Naptowne Rapids at rkm 63.7 was used to estimate the 
proportion of all marked fish that migrated upstream of the capture location and were vulnerable 
to recapture at the Hidden Creek and Russian River weirs.  The number of PIT tags applied was 
then discounted accordingly. Sockeye salmon caught in the fish wheel recapture event were 
visually examined for an adipose clip, and those with an adipose clip were scanned with an 
electronic PIT tag reader for the presence of a tag.  Fish recaptured at the Russian and Hidden 
Lake weirs were scanned automatically by PIT tag readers attached directly to each weir.  The 
total number of fish examined for marks in the recapture events, and the number and tag codes of 
recaptured marked fish were recorded.  At the rkm 45.1 fish wheels, length was measured on all 
recaptured fish and on a sample of unmarked fish.  Length was measured and age, sex and length 
determined for a sample of fish passing through the weirs.   

Additional data were collected to test model assumptions or to mitigate violations of them.  
These included application of radio transmitters to adjust for handling and tag-induced mortality 
at the marking site (described above), application of secondary marks to assess tag loss, and 
collection of fish length data at fish wheels and weirs to test for size-selectivity.  Drift gillnetting 
was also conducted in the center of the river channel at the recapture fish wheels to estimate the 
marked fraction of any sockeye salmon migrating mid-river.  Other information collected during 
the study included genetic data from marked fish (via sampling of axillary processes), pertinent 
to the Russian River run reconstruction project. 

MARKING EVENT 
Sockeye salmon were captured for tagging at our rkm 31.1 sonar site using 2 fish wheels located 
on each bank of the river.  The fish wheel on the north bank was located approximately 150 m 
below the sonar, a site where it has been operated over the past 10 years.  The fish wheel on the 
south bank was located approximately 1,000 m upstream of the sonar.  This site was chosen, 
because a fish wheel had been successfully operated in this area during a previous coho salmon 
tagging project (Robert Massengill, Sport Fish Biologist, ADF&G, Soldotna; personal 
communication).  Weirs were installed between the fish wheels and the river bank to force fish to 
swim within the zone swept by the fish wheel baskets.  Use of weirs had been previously shown 
to increase salmon catches.  Fish wheel installation and testing was conducted during the last 
week of June, so that we could begin tagging on July 1.   

Although, rkm 31.1 sonars typically begin operation on July 1 each year, our mark–recapture 
estimates of sockeye salmon abundance apply only to periods when fish were being tagged, i.e., 
July 3–August 24, 2006, July 1–August 23, 2007, and July 7–August 17, 2008.  In 2006, fish 
wheels began operation on July 1, but no fish were tagged until July 3 due to very low catches.   
In 2008, low and very clear water precluded effective fish wheel operation until July 7.  Fish 
were tagged until the end of sonar operations in 2007 and 2008, but in 2006 no fish were tagged 
after August 24, because many of the technicians we hired to tag fish were students that needed 
to return to school before the end of August.  Sonar operations in 2006 continued until August 31 
due to the very late sockeye salmon run that year (Westerman and Willette 2007).   
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In 2006, we anticipated applying 7,000 PIT tags to sockeye salmon based upon an assumed total 
passage of 700,000 sockeye salmon during the period of normal sonar operations and a 1% 
tagging rate.  Fish were tagged over an 18 hour period each day to enhance the likelihood of 
proportional tagging. Both fish wheels were operated almost continuously between 0800 and 
0200 the following morning to concentrate effort during the period when most sockeye salmon 
appeared to move in the Kenai River (Figure 3).  Three crews of 3 people operated the fish 
wheels during two 9 hour work shifts each day.  Crew schedules were staggered throughout the 
week to maintain tagging operations 7 days a week. Initially, the number of fish tagged each 
hour on each bank was expected to be 1% of the hourly sonar count for that bank from the 
previous hour.  The crews alternated tagging fish between the 2 banks approximately every hour 
to minimize holding time of fish in the fish wheel live boxes.  If the crews could not tag the 
desired number of fish during a given hour, additional tags were to be applied the following hour 
to achieve the desired tagging rate.  During the last hour (0100–0200) and the first hour of 
tagging the next morning (0800–0900), the number of tags applied increased to compensate for 
tags not applied from 0300–0800.  However, after the first 3 weeks of tagging we found this 
method was not workable, because low fish wheel catches during the first 3 weeks precluded us 
from tagging 1% of the sonar count.  Once the run increased, fish wheel catches increased but 
our tagging crew could not physically tag enough fish to maintain a 1% tagging rate.  Therefore, 
on approximately July 20 the crews were instructed to alternate tagging fish between the 2 banks 
each hour and tag as many fish as possible. 

In 2007, we anticipated applying 8,000 PIT tags based upon the number of PIT tags applied in 
2006 and expected increases in the number applied due to changes in crew schedules.  Three 
crews of 3 people operated the fish wheels during two 8 hour work shifts each day.  Prior to the 
peak of the run (approximately July 1–20), crews started tagging at 1000 and ended at 0400 the 
following morning.  This schedule was expected to maximize the number of fish tagged prior to 
the peak of the run when low fish wheel catches limited the number of fish tagged (Figure 3).  
When fish wheel catches increased to the point that crews could not tag every sockeye salmon 
caught in the wheels, the schedule was changed to a start time of 0800 and an end time of 0200 
the following morning.  This schedule limited the amount of time crews worked in the dark 
which could affect data quality, but it did not reduce the number of fish tagged due to the high 
catches at this time.  Throughout the season, crew schedules were staggered during the week to 
maintain tagging operations 7 days a week.  Prior to the peak of the run, tagging crews alternated 
between fish wheels approximately every hour, tagging all fish caught.  During this time, fish 
wheels were left running during meal breaks.  The numbers of fish accumulating in the trap box 
during this period was typically very low (<10 fish).  When fish wheel catches increased during 
the peak of the run, crews alternated between fish wheels approximately every 2 hours, and the 
wheels were turned off when crews were not present tagging fish.  During this period of high 
catches, sockeye salmon were taken directly out of the fish wheel basket or trap box and tagged 
as quickly as possible. 

The tagging crew schedule developed in 2007 was applied again in 2008, except the PIT tagging 
rate after August 1 was adjusted to better match the tagging rate in July.  The expected number 
of PIT tags to apply in August was calculated by taking the ratio of the number of PIT tags 
applied to the total DIDSON count in July and multiplying by the projected DIDSON count in 
August.  PIT tags were then applied to every nth sockeye salmon captured in the fish wheels.  
The nth tagging rate was calculated by dividing the expected number of PIT tags to apply in 
August by the expected August fish wheel catch. 
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PIT tags were used in this study because they are small, quick to apply, not visible externally (to 
avoid enhancing predation), internal (no hydrodynamic drag), uniquely numbered, can be 
identified automatically, and can be scanned without handling the fish.  PIT tags are constructed 
with an integrated circuit chip connected to a tightly wound copper hoop antenna.  The tags can be 
interrogated by a 134.4 kHz signal from a scanning device.  When the scanning device frequency 
excites the PIT tag, the tag emits a signal back to the receiver with a unique code (10-digit 
hexidecimal code displayed alphanumerically).  The PIT tags are encapsulated in glass and are 
typically 12 mm long by 2.1 mm wide (about the size of a grain of rice).  PIT tags have been used 
extensively in research on salmonid survival (Prentice 1990; Skalski et al. 1998), movement 
(Prentice et al. 1990c; Hildebrand and Kirschner 2000), behavior (Brannas et. al. 1994), and 
estimation of population size (Willette et al. 2003).  Prentice et al. (1990a) found that when properly 
injected into the body cavity, PIT tags are retained at high rates (100% and 99.7% in male and 
females, respectively), and that tag-induced mortality was low.  Prentice et al. (1990b) described a 
PIT-tagging method suitable for Columbia River salmon and Prentice et al. (1990a) noted that all 
wounds to maturing Atlantic salmon that were PIT tagged using this method were closed and 
healing by the third day.  Prentice (1990) compared juvenile Chinook salmon and steelhead trout 
that were PIT tagged with cold branding, coded wire tagging, and a control group (handling but not 
tagged) at dams on the Columbia River.  He noted no significant increased mortality of PIT tagged 
fish when compared to these other tagging methods.   

Three people per crew were necessary to quickly process each sockeye salmon captured to 
reduce handling time and associated stress.  Captured sockeye salmon were placed in a holding 
tank onboard a riverboat prior to tagging.  Fish that were severely injured were not tagged.  A 
bucket was used to frequently add fresh water to the tank.  A padded, plastic cradle device was 
slipped around the fish to restrain it during tagging.  One person held the restrained fish and the 
other inserted a PIT tag into the cheek using a hypodermic needle and syringe.  The crew 
removed the adipose fin, determined sex, and measured fork length (MEFT, from the mid eye to 
the fork of tail) to the nearest 5 mm using a meter on the cradle.  Removal of the adipose fin 
served to identify PIT tag loss between the capture and recapture events and served as the 
primary mark at the recapture fish wheels at rkm 45.1.  Tagged fish were passed through a tag 
detection antenna (Biomark Inc) to verify that a PIT tag was present in the cheek.  The PIT tag 
reader was interfaced with a handheld computer (Allegro CX).  The PIT tag code for each tagged 
fish was automatically written to a file in the handheld computer along with the date and time.  A 
crew member input the riverbank, sex and length of the tagged fish into the computer using a 
custom data entry program.  Whenever possible, sockeye salmon were taken directly out of the 
fish wheel basket and tagged immediately.  Radiotelemetry data for coho salmon indicated that 
fish that were tagged immediately upon capture experienced a mortality rate one-half that of fish 
held for variable times in the fish wheel trap box before tagging (10% versus 20% mortality, 
Carlon and Evans 2007).  

Established methods (Tobias and Willette 2004) were used to collect scale samples for age 
determination from every sixth PIT-tagged fish tagged on each bank.  A tissue sample (axillary 
process) was also collected from every PIT-tagged fish sampled for age determination and 
placed in a uniquely numbered vial for later genetic stock identification.  This sampling rate was 
designed to provide the number of genetic sample needed for the Russian River run 
reconstruction project.  The handheld computer prompted the crew to collect the scale and 
genetic samples.  
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We anticipated applying esophageal radio transmitters to approximately 200 sockeye salmon 
each year.  We attempted to apply radio transmitters in approximate proportion to sockeye 
salmon abundance by using historical sonar run timing data (2000–2004) to calculate the number 
of radio tags to apply each day.  Within a day, the number of radio tags to apply on each bank 
was based upon the proportion of the previous day’s total sonar count on each bank.  Within each 
bank, the previous day’s sonar count was divided by the number of radio tags to be deployed to 
determine that every nth fish shall be radiotagged.  Within each bank, the first fish to tag each day 
was randomly selected from the first n fish and every nth fish thereafter during that day was 
radiotagged.   

We used model F1840B radio transmitters manufactured by Advanced Telemetry Systems, Inc. 
(ATS) operating on 20 frequencies within the 151.100 megahertz (MHz) to 153.000 MHz range.  
Each transmitter was equipped with a mortality indicator mode that activated when the tag was 
motionless for approximately 4 hours.  Transmitters were about 56 mm long, 17 mm in diameter, 
weighed 22 g in air, contained a 30 cm external whip antenna, and had a warranty life of at least 
122 days.  Radio tags were inserted through the esophagus and into the upper stomach of the fish 
using an approximately 25 cm polyvinyl chloride (PVC) tube with a diameter equal to that of the 
radio tag.  The radio transmitter was seated on the end of the tube.  The antenna was threaded 
through the tube and gripped to hold the tag in place.  The radio transmitter was then pushed 
through the esophagus and seated such that the antenna end of the radio tag was 0.5 cm beyond 
the base of the pectoral fin.  The PVC tubes were marked with reference points to assure proper 
tag insertion depths.  At the beginning of each season, a few sockeye salmon of varying sizes 
that were radiotagged were killed and necropsied to verify proper tag placement in the stomach.  
Sockeye salmon <400 mm MEFL were not radiotagged to minimize handling mortality. Only 
0.1–0.3% of sockeye salmon captured in the rkm 31.1 fish wheels were <400 mm MEFL.  The 
frequency and pulse code of each radiotagged fish was entered into the handheld computer using 
the same program used for normal PIT tagging operations.  All marked sockeye salmon were 
released into the river adjacent to each fish wheel immediately after all data were recorded. 

RECOVERY EVENT FISH WHEELS 
The first recapture event consisted of scanning the catch of sockeye salmon for marks in 2 fish 
wheels located at rkm 45.1.  The location of the recapture fish wheels was chosen largely 
because it is where these same fish wheels have been operated in August and September to 
provide an index of the run of adult coho salmon to the Kenai River. 

Each sockeye salmon removed from the fish wheel was first examined for the presence of an 
adipose fin. If the adipose fin had been recently removed, fish were scanned with a handheld PIT 
tag reader.  If a tag was detected, the tag code was recorded in the PIT tag reader memory and 
written on a data form.  If a PIT tag was not detected, the fish was sacrificed to verify that a PIT 
tag was not present.  If the adipose fin had been recently removed, the fish was also examined for 
the presence of a radio tag antenna, and the presence\absence of the antenna was recorded on the 
data form.  Periodically, a MEFL was measured on a sample of unmarked fish.  When combined 
with lengths of marked fish, these data were used to test for size-dependent capture probability.  
All efforts were made to minimize capture and handling-induced stress at the recapture location.  
The possible states of fish in the fish wheels and actions taken are summarized in Table 1. 
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Excluding time for meal breaks and shift changes, both fish wheels operated continuously, 24 
hours a days, 6 days a week from July 1 through August 25 and then at a lower rate until 
September 30.  Three crews of 2 people each operated the fish wheels during three 8-hour work 
shifts per day.  The fish wheels were started one-half hour after the shift started (0630, 1430 and 
2230, respectively) and stopped one-half hour before the shift ended (1330, 2130 and 0530, 
respectively).  This allowed adequate time to travel to or from the launch site, launch or secure the 
boat, equipment, and data forms, and to travel by boat to or from the fish wheels.  The actual time 
at which each fish wheel was stopped at the end of each shift depended on catch rates.  When the 
catches were low, both fish wheels operated, and the crew sampled fish as they were caught, 
switching to the other fish wheel approximately every 45 minutes.  When catches were high, only 
one fish wheel operated at a time to avoid having too many fish accumulate in the live box.  Fish 
wheel operations ceased at a time that ensured that all captured fish were sampled and released by 
about one-half hour before the shift ended.  Two people per crew were needed to quickly process 
each sockeye salmon captured to reduce handling time and associated stress.  The number of fish 
of other species captured was also recorded, as well as the date, location, and time of capture.   

Drift gillnetting was conducted 2 days each week at the rkm 45.1 fish wheel site.  Gillnetting was 
conducted on Tuesdays and Thursdays, with one morning shift (0600–1400) on one day and an 
afternoon shift (1400–2200) on the other day.  Morning and afternoon shifts were rotated within 
each day.  Gillnets were drifted between the north and south bank recapture fish wheels.  The 
gillnets were 10 m long and 3 m deep (30 meshes) with a 4.75 in stretched multifilament (SMS-38) 
web.  The crew attempted to drift the net no closer than 20 m from either shore to avoid capturing 
salmon that were migrating along the shoreline and thus vulnerable to capture in the fish wheels.  
A rangefinder was used periodically to measure the distance from shore.  The net was retrieved 
into the boat when 5 fish had been captured or the boat had drifted out of the sampling area 
(adjacent to the lower fish wheel).  The net was retrieved into the boat with the fish remaining 
entangled to avoid capturing too many fish as the net drifted out of the sampling area. 

After the net was retrieved, each fish was removed from the gillnet.  Sockeye salmon were 
inspected as described for fish wheel captures.  The crew tallied the number of fish caught in the 
gillnet by species and recorded this data.  No sockeye salmon captured in gillnets were marked 
with a PIT or radio tag. 

RECOVERY EVENT WEIRS 
A second recapture event consisted of scanning sockeye salmon for marks as they passed 
through weirs located on Hidden Creek and Russian River.  Electronic PIT tag detection systems 
were employed on both weirs to scan all fish passing through the weirs for tags.  Rectangular 
12x31.5 inch PIT tag antennas were affixed to the upstream gate on the live box at Russian River 
weir and to a gate in the weir at Hidden Creek.  A plywood chute was constructed on both gates 
to ensure that the antenna was at least 24 inch from any metal weir parts.  A PIT tag reader was 
housed in an aluminum box and attached to the antenna by a 20 ft cable.  The PIT tag detection 
system was powered by 2 external 12V batteries attached to a sonar panel on a mast.  The 
aluminum electronics box, the mast, and solar panel were surrounded by an electric fence to 
minimize tampering by wildlife.  In 2007 and 2008, a second PIT tag antenna system was 
attached upstream of the plywood chute on each weir.  An approximately 2 m Vexar chute led 
fish from the first antenna through the second antenna.  This redundancy in the PIT tag detection 
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system allowed us to calculate the detection rate of both antennas assuming the detection rates of 
the 2 antennas were independent.  

Technicians maintained PIT tag readers and conducted tag detection tests at each weir each day 
during operation.  Prior to daily fish passage each day, the PIT tag reader was placed within the 
aluminum box on the weir, the antenna and power cables attached, and the reader turned on.  A 
visual inspection of the cables and antenna was conducted and any damage recorded (e.g., loose 
antenna, error messages on the reader, water damage, etc.).  The voltage on the external batteries 
was tested and the batteries replaced with a newly charged one if the voltage dropped below 
12V.  The date, time, any problems with the reader, battery voltage, and whether the battery was 
replaced were recorded on a data form.  

Prior to daily fish passage each day, technicians conducted tag detection tests to estimate the PIT 
tag detection rate at the weir.  Tag detection tests consisted of passing fifty 20-ml plastic vials, 
each containing a PIT tag through the rectangular PIT tag antenna one at a time, collecting the 
bottles, then passing all 50 through the antenna again, one at a time.  The bottles contained 
varying amounts of water so their buoyancies varied, causing the bottles to naturally explore all 
areas of the detection field as they passed through the antenna.  In 2007 and 2008, detection rates 
were calculated for each antenna separately and both antennas combined. 

All fish enumerated through the weir passed through the PIT tag antenna system.  Prior to 
passing any fish, the electric fence surrounding the antenna (used to ward off bears) was turned 
off to minimize any noise that might affect tag detection.   

At the end of each day, the PIT tag reader was removed from the aluminum box and taken into 
the cabin.  In the cabin, a custom program was run on a laptop computer to download data from 
the PIT tag reader to a text file.  The program calculated the detection rate from the test 
conducted that morning, and wrote the number of PIT tags detected (not from detection test) and 
the detection rate for that day to a text file.   

Each day during morning radio check, the weir crew reported the following data from the 
previous day: (1) PIT tag detection rate, (2) number of PIT tags detected (not from detection 
test), (3) total sockeye salmon counted, and (4) any problems with the PIT tag equipment and 
any needed equipment or help. PIT tag detection rate, number of PIT tags detected, and number 
of sockeye salmon counted each day, etc. were recorded in a spreadsheet in Soldotna and stored 
on our local area network.   

The weir crews and Soldotna staff monitored tag detection rate data, and if 95 or more trials were 
correctly detected (95% detection rate), the detector was considered fully functional.  If the 
detection rate was less than 95%, action was taken to determine the cause of the problem, and the 
PIT tag detection system was then either repaired or replaced.  While the detector was being 
repaired or replaced, the crew passed fish normally and no scanning for PIT tags occurred.  The 
numbers of fish passed on these days were subtracted from the total weir count when calculating 
the tagged to untagged ratio of sockeye salmon passing through the weir. 

RADIO TAG RELOCATION 
The movements of radiotagged fish were monitored primarily by a series of fixed, land-based, 
radio-receiving stations.  Fixed station data were supplemented and verified by data collected 
during mobile tracking surveys conducted by boat and fixed-wing aircraft.  In 2006–2008, 6 
land-based stations were operated at riverbank locations along the Kenai River at (1) rkm 31.1 
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(rm 19.5 – capture location and sonar site), (2) rkm 45.4 (rm 28.2 – to monitor fish migrating 
past the recapture fish wheels), (3) rkm 76.5 (rm 47.5 – near Lower Olsen Creek) to monitor fish 
migrating into the Skilak Lake outlet spawning area, (4) rkm 80.5 (rm 50.0. – Skilak Lake outlet) 
to monitor fish migrating out of the Skilak Lake outlet spawning area, (5) rkm 104.6 (rm  65.0 
Skilak Lake inlet) to monitor fish migrating into the upper Kenai River and (6) rkm 131.2 (rm 82 
Kenai Lake outlet) to monitor fish moving into Kenai Lake (Figure 2).  In 2007–2008, a seventh 
land-based station was added at rkm 121.3 (rm 71.0 Jim’s landing) to monitor fish migrating up 
through the Kenai River canyon.  Fixed radio-receiving stations were located in the Skilak Lake 
outlet spawning area to better estimate the proportion of all radiotagged sockeye salmon that 
utilized this spawning area and to estimate their stream life. 

Prior to the first radio tag release, the range at which each station could detect a tag was tested 
using a tethered radio tag deployed from a boat.  The system was adjusted or relocated if 
necessary to ensure that (1) the detection range was sufficient for a tag to be detected multiple 
times as fish moved past the fixed station, and (2) no contiguous zones existed within the river 
channel where tagged fish could escape detection.  

At each fixed station, the radio receivers, manufactured by ATS (Model R4000 or Model 4100), 
were interfaced with a Model 5041 data collection computer (DCC II).  The receiver/DCC 
combination recorded the date, time, and unique frequency/pulse code combinations of 
transmitters when they were detected.  The DCCs continually scanned the frequencies of all 
transmitters 24 hours per day.  Two antennas were coupled with each fixed-station system using 
an ATS antenna switch (Model 200).  One antenna was oriented in a downstream direction, the 
other in an upstream direction.  Signal strength and time of reception was recorded separately for 
each antenna to provide information on direction of travel. 

Mobile systems were mounted in a boat and fixed-wing aircraft.  Model 4100 receivers were 
used alone or interfaced with a DCC.  The DCC device was used when large numbers of 
transmitters were on-air.  The DCC was capable of uniquely identifying 3–6 radio transmitters 
when the transmitters were in close proximity to each other.  When tracking with the receiver 
alone, visual and audible cues produced by the receiver were monitored by the operator.  When a 
cue indicated that a transmitter had been detected, the operator recorded the date, time, 
frequency/pulse code, and location (to nearest 0.1 river mile from a boat and nearest 0.5 river 
mile from aircraft).  The frequency was displayed on the receiver LCD screen by default.  
Momentarily adjusting the interval switch to “INT” (“interval”) displayed the pulse code, 
thereby completely identifying a unique radio tag (frequency/pulse code combination). 

In 2006, radio tracking surveys were conducted in the mainstem of the Kenai River each week 
throughout the season using an outboard-powered riverboat.  In 2007–2008, radio tracking surveys 
of the mainstem Kenai River were generally conducted twice per week.  This form of tracking 
allowed for precise relocations of radiotagged fish, confirming data collected by fixed stations.  In 
addition, boat-based tracking in the mainstem downstream from rkm 31.1 (downstream of sonar 
site) served to verify the fates of fish that moved downstream after tagging. 

Fixed-wing aircraft radiotelemetry surveys of the Kenai River watershed were conducted 2–4 
times each season.  Aerial radio tracking was used to identify fish spawning locations and 
determine if fish carrying transmitters were capable of reaching spawning destinations (to 
substantiate the assumption that radiotagged fish are representative of the population of untagged 
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fish).  The flights covered the major tributaries and the mainstem Kenai River.  The Model 4100 
receiver was interfaced with a DCC and monitored by an operator in the aircraft.  Each wing 
strut of the aircraft was fitted with an external antenna.  Prior to each flight the DCC was 
programmed with the 20 study frequencies.  As individual frequencies were identified the pulse 
code was determined and recorded.  Each transmitter was located to the nearest 1.0 rkm.  Any 
transmitters signaling a mortality pulse were noted. 

Data recorded by each fixed radiotelemetry station was downloaded onsite each week using a 
handheld or laptop computer.  The data were then transferred to a desktop computer located at 
the ADF&G office in Soldotna and stored on our local area network.  All other transmitter 
detection data from angler recoveries, etc. were recorded in a spreadsheet. 

In addition to locations detected from telemetry surveys, final radio tag locations were also 
collected from miscellaneous sources.  Press releases and signs posted along the river and in area 
sporting goods stores informed anglers and the general public about the project and the 
importance of returning (or at least reporting) radio transmitters that they recovered during sport 
fishing efforts.  Date, location, and radio frequency/pulse code of recovered marked sockeye 
salmon were recorded whenever possible.  

Radiotelemetry data from each year was archived in a Microsoft Access database that 
incorporated all data from telemetry surveys, fixed stations, and miscellaneous sources.  The 
database was structured to allow the user to construct a chronological history of detections of 
each radiotagged fish at fixed stations, during boat or aerial surveys, or returns from fishermen.  

DATA ANALYSIS ESTIMATION OF ABUNDANCE 

If assumptions 1–5 below were met, then Chapman’s modification of the Petersen model (Seber 
1982) was used to estimate abundance N̂  for an experiment such that: 
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where n1 is the number of fish captured and marked during event 1, n2 is the number of fish 
inspected for marks during event 2, and m2 is the number of n2 that possessed marks applied 
during event 1.  The variance of the abundance estimate was estimated as: 
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The conditions necessary for equation 1 to provide an accurate estimate of abundance were 
described in Seber (1982) : 

1. Closed population (i.e., no mortality or recruitment), 
2. Either the probability of capture (tagging) was constant across all individuals at the 

time of capture (constant p1), or marked fish mixed uniformly with unmarked fish 
before the recapture event, or the probability of capture was constant across all 
individuals at the time of recapture (constant p2), 

3. Marking did not affect catchability, 
4. Tags were not lost, 
5. All tags were recognized and reported. 
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Assumption 1: The proportion of radio tags released at rkm 31.1 failing to travel upstream 
(dropouts) was used to discount the number of PIT tags released at rkm 31.1 for deaths due to the 
tagging process, i.e.,  
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Our reasoning was that if radiotagged fish, which were also given PIT tags and therefore were 
more insulted than fish receiving only PIT tags, survived the tagging process and continued 
migration, then chances were at least the same proportion of PIT-tagged fish continued migration 
as well.  If anything, we may have overestimated dropouts of PIT-tagged fish causing our mark–
recapture estimate to be biased low.  For the abundance estimate derived from tag recaptures at 
the rkm 45.1 fish wheels, we used an estimate of the survival of radiotagged fish successfully 
migrating past the fixed station at this location.  For abundance estimates derived from tag 
recaptures at weirs, we used an estimate of the survival of radiotagged fish that successfully 
migrated above Naptowne Rapids at rkm 63.7 (Figure 2).  This approach assumed that there was 
no spawning below rkm 63.7, so any radiotagged fish that did not successfully migrate above 
Naptowne Rapids likely succumbed to the effects of tagging; whereas, fish that ceased migrating 
above Naptowne Rapids may have died after spawning. In both cases, the number of radiotagged 
fish harvested below either rkm 45.1 or 63.7 (and reported to us) was subtracted from the total 
number of radio tags released.  We further assumed natural and fishing mortalities were equal 
between tagged and untagged fish, so our abundance estimate was pertinent to the tagging site at 
rkm 31.1.  Note that PIT tags recovered at the rkm 45.1 fish wheels were culled from the 
experiment using the weirs. 

Assumption 2:  We attempted to apply tags in approximate proportion to abundance; however, 
sampling crews became saturated as in river abundance increased causing the probability of 
capture (tagging) to change over time and therefore among individuals (Figures 4–5).  
Furthermore, fish wheels are known to exert differing catchabilities over fish sizes (Meehan 
1961), and thus we anticipated that the initial capture probability (p1) would be inconsistent 
across individuals of different sizes.  Furthermore, we did not expect complete mixing of fish to 
occur as tags deployed later during the run had little to no chance of mixing with fish passing 
earlier in the run.  With respect to probability of capture at time 2 (p2) at the rkm 45.1 fish 
wheels,  the same inconsistencies as described for p1 likely occurred with respect to catchability.  
However, using weirs as recapture sites, recapture probability was equal to 1.0 at all weirs or 
equal to zero at other sites.   

For the above reasons, we relied on both length and temporal stratification to reduce the bias of 
the estimate using the rkm 45.1 fish wheels as the recapture site.  However, only length 
stratification was used to reduce the bias of the estimate when weirs were used as the recapture 
site. Temporal stratification was used in the Darroch model (see model selection Methods below) 
to incorporate changes in movement and capture probabilities through time, when p1 and p2 were 
inconsistent across temporal strata.  But as fish cannot move between length categories, separate 
estimates were required for each length stratum.  Chi-square tests have long been relied upon to 
help decide whether to pool or separate strata during mark–recapture studies (Seber 1982, 
Schwarz and Taylor 1998).  Following Clark (1991), we expanded this idea by using maximally 
selected chi-square values to determine cut points for strata.  
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The following table was used to separate fish into length strata: 
 Small Large 

Marked m2Small m2Large 

Not marked n2Small- m2Small n2Large-m2Large 

 

The split was made between length groups if the maximum chi-square was significant (α = 0.05).  
Then, the process was repeated within the small and large strata to see if further stratification 
was required.  The strategy was to choose strata that homogenize p1 at the tagging site within 
each length stratum.  A separate mark–recapture analysis was performed for each length stratum.   

For the case where the rkm 45.1 fish wheels were used as the recapture site, the following tests 
were conducted within each length stratum to identify temporal tagging strata by finding cut 
points that maximized the chi-square performed on the following table: 

 Tagging 
stratum 

Rkm 45.1 fish wheels 

Not seen again Early Late 

Early m2Early,Early m2Early,Late n1Early- m2Early 

Late m2Late,Early m2Late,Late n1Early- m2Late 
 

Schwarz and Taylor (1998) recommended this test for determining whether to pool 2 consecutive 
tagging strata.  The split was made between dates if the maximum chi-square was significant (α 
= 0.05).  No more than 2 temporal strata per size stratum were used as more strata did little to 
improve accuracy or reduce precision.  Temporal recovery strata were determined by lagging the 
cut point dates by the average travel time to the recapture site.  The strategy was to choose strata 
that homogenize movement probabilities within each temporal stratum.  In addition to this 
technique, visual inspection of m2/n1 plotted against marking date helped us to recognize changes 
in capture probabilities over time. Occasionally, this plot was used to identify cut points different 
than that which maximized the above chi-square.  

Assumption 3:  Validating this assumption was not possible for the recapture site at rkm 45.1, 
beyond determining the proportion of tagged fish that succumbed to tagging, an extreme effect 
of tagging on catchability.  Assumption 3 was more likely met for weir recapture sites since the 
probability of capture was 100% at both weirs. 

Assumption 4:  The adipose fin was removed on all pit-tagged fish, resulting in 2 marks per fish.  
Pit tag loss was determined by observing the number of fish at rkm 45.1 missing adipose fins and 
not possessing pit tags.  The tag loss rate (π) was estimated as: 

          clipsadiposewithfishall
tagpitnowithfishclippedadiposeofnumber

=π ,                       (4) 

and the number of recaptures (m2) was divided by (1- π) to correct for tag loss.  Uncertainty 
surrounding this estimate was ignored as it was considered small compared to the overall 
uncertainty in m2.   
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Assumption 5: We were unable to quantify how many tags went unreported at the rkm 45.1 fish 
wheels.  However, tag detection tests at weir sites indicated that detection rates were near 100%, 
so we assumed that all tags were reported.  Abundance estimates would be biased high if this 
assumption were violated.  

Model Selection 
For the case where the rkm 45.1 fish wheels were used as the recapture site, one of 2 models 
(Schwarz and Taylor 1998) were chosen (Arnason et al. 1996) to provide a mark–recapture 
estimate within length strata: (1) Chapman’s modification of the pooled Petersen (PPE) or (2) 
partially stratified Petersen (i.e., the Darroch model; Darroch 1961), depending on whether 
assumption 2 above was met. The PPE was chosen when a non-significant (α = 0.05) chi-square 
resulted from any of the following tests: 

 

Mixing test(p2) 
 

 

Equal proportions test(p1) 

  Early Late 
Marked m2.,Early m2.,Late 

Not 
marked u2.,Early u2.,Late 

 

where, u2=number of fish without tags in the second sample (n2). 

For the case where weirs were used as recapture sites, recapture probabilities were equal (p2=1.0) 
among all sampled strata, so there was zero correlation between tagging and recapture 
probabilities, resulting in no bias using the PPE (Schwarz and Taylor 1998, page 288).  In these 
cases, estimates were only stratified by length and separate PPE analyses were performed for 
each length stratum. 

Comparison of Abundance Estimates 
We used the Z-test statistic (Springhall 2003) to test whether our mark–recapture and DIDSON 
abundance estimates were significantly different.  We assumed that the variance of DIDSON 
estimates resulted only from the 10minute subsampling procedure used at the 31.1 rkm sonar site 
(Westerman and Willette 2011).  Woody (2007) estimated that a 10minute subsampling 
procedure every hour resulted in an approximately 5% relative error in salmon abundance 
estimates.  Separate Z-tests were conducted for each length stratum and for all length strata 
combined.  We also used the Z-test statistic to test whether our mark–recapture abundance 
estimates from the Russian River and Hidden Creek weirs sites were significantly different for 
those length strata available at both weir sites.  These tests evaluated Schwarz and Taylor’s 
(1998) conclusion that zero correlation between tagging and recapture probabilities should result 

Tagging 
stratum Recovered Not seen again 

Early m2Early,. n1Early- m2Early 

Late m2Late,. n1Late- m2Late 
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in no bias using the PPE, i.e., any difference between abundance estimates should only be due to 
sampling error.   

Data Analysis Radiotelemetry 
We estimated the mean migration time (number of days) and migration speed (km day-1) of 
radiotagged sockeye salmon swimming between 5 fixed radiotelemetry stations located at rkms 
31.1 (sonar site), 45.1 (recapture fish wheels), 80.5 (Skilak Lake outlet), 104.6 (Skilak Lake 
inlet), and 132.0 (Kenai Lake outlet) during 7 weekly time periods (Figure 2).  Eight analyses of 
variance were conducted to test for differences among the weekly mean migration times and 
speeds between the 5 fixed radiotelemetry sites.  The dependent variables were migration time 
and speed and the independent variables were tag week.    

We estimated the run timing of radiotagged sockeye salmon passing rkm 31.1 and later relocated 
in 4 major spawning areas in the Kenai River watershed.  The highest location of each relocated 
radiotagged fish in the watershed was used to infer probable spawning destination.  For each of 
the 4 spawning areas (k), we estimated the weekly proportion (pik) of the total number of 
recovered radio tags (mik) from weekly release strata i where  

∑
=

i
ik

ik
ik m

m
p   . 

(5) 

To correct for apparent unequal tagging proportions among release strata, the number of 
recovered radio tags in each release stratum (mi) was weighted (wi) by the weekly DIDSON 
estimate of sockeye salmon passage at rkm 31.1 (Ndi) and the inverse of the proportion of tags 
used in each release stratum (Willette et al. 2003) such that:  

∑

∑
=

i
i

i

i
i

i

i

m
m

Nd
Nd

w   . (6) 

 

DIDSON estimates of sockeye salmon passage were used to weight the radio tag recoveries 
because this abundance estimate likely represented actual sockeye abundance more than fish 
wheel catch per effort.  As a measure of stock-specific run timing past rkm 31.1, the weighted 
weekly proportion (pwik) of the total number of recovered radio tags from release strata i found 
in spawning area k was estimated as: 

∑
=

i
iki

iki
ik mw

mw
pw

 .

 
(7) 

 

The simple proportion of the total number of relocated radio tags found in 24 zones in the 
watershed provided an approximate measure of probable spawner distribution.   
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RESULTS 
ABUNDANCE 
2006 
In 2006, we were unable to apply PIT tags in proportion to the daily sonar estimate of sockeye 
salmon passage due to variable fish wheel catchability and sockeye salmon run timing.  Prior to 
July 16, fish wheel catches were very low, presumably due to high water clarity and low fish 
wheel catchability (Figure 4).  Sonar data during that period indicated that sockeye salmon were 
distributed offshore of the narrow near shore zone sampled by the fish wheels.  After July 16, 
sockeye salmon distribution shifted closer to shore and fish wheel catches increased.  After July 
21, the run increased (Figure 4), and crews were unable to tag 1% of the daily sonar count due to 
the large numbers of fish.  The number of hours the fish wheels operated during the peak of the 
run was substantially reduced because crews could not handle all the fish caught each hour 
(Figure 4).  Our tagging operation terminated on August 25 because many tagging crew 
members needed to leave.  Normally, this would not have been a problem, but the sockeye 
salmon run in 2006 was the latest ever observed on the Kenai River. 

In 2006, we applied PIT tags to 6,901 (350–650 mm) and radio tags to 215 (460–625 mm) 
sockeye salmon at rkm 31.1 between July 3 and August 24.  Substantially more PIT tags were 
applied on the north bank (4,180) than the south (2,720) bank.  Ninety-five percent of radio 
tagged sockeye salmon migrated past the rkm 45.1 fish wheels, and 89% migrated upstream of 
Naptowne Rapids at rkm 63.7 (Table 2, Appendix A1).  Estimated tagging-induced mortalities to 
rkm 45.1 (5%) and 63.7 (11%) were significantly (P<0.05) different.  We examined 59,609 fish 
(370–699 mm) for tags at the rkm 45.1 fish wheels, and 89 PIT-tagged sockeye salmon were 
recaptured. At the Hidden Creek weir, 36,138 (470–569 mm) sockeye salmon were scanned for 
tags, and 185 PIT tags were detected. At the Russian River weir, 85,924 (370–629 mm) sockeye 
salmon were scanned for tags, and 156 PIT tags were detected.  The daily number of PIT tags 
detected passing through Hidden Creek and Russian River weirs increased relative to the number 
of fish scanned for tags later in August (Figure 5).  The size frequency distributions of untagged 
sockeye salmon were estimated with samples collected at rkm 45.1 fish wheels (n=3,528), at 
Hidden Creek weir (n=914), and at the Russian River weir (n=201).  

No tag loss was detected among the freshly adipose-clipped sockeye salmon recaptured in the 
rkm 45.1 fish wheels.  Tag detection was not independently estimated at the rkm 45.1 fish 
wheels, but our crews reported that some tags were probably overlooked, particularly at night 
and during the peak of the run when very large numbers of sockeye salmon were scanned.  The 
very low numbers of recaptured tags at this site during the peak of the run were consistent with 
this concern (Figure 5).  The abundance estimate derived from tags recaptured at the rkm 45.1 
fish wheels was therefore dismissed, because it was likely biased high due to poor tag detection 
(Table 3).  However, daily tests indicated that tag detection was >95% on 89% and 96% of the 
days at Hidden Creek and Russian River weirs, respectively.  

Initial capture probabilities (p1) generally increased with fish length up to 569 mm (Figure 6). 
Chi-square tests identified 4 length strata corresponding with changes in initial capture 
probabilities (Table 3).  The same 4 length strata were used for the abundance estimates derived 
from tag recaptures at the 2 weir recapture sites.  However, the abundance of fish smaller than 
470 mm could only be estimated from tags recaptured at the Russian River weir, because no 
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tagged fish in this size class were detected passing the Hidden Creek weir.  Similarly, the 
abundance of fish greater than 569 mm could only be estimated from tags recaptured at the 
Russian River weir, because only 3 tagged fish in this size class were detected passing the 
Hidden Creek weir and this small sample was considered inadequate (Schwarz and Taylor 1998).   

Our mark–recapture estimates of sockeye salmon abundance passing rkm 31.1 derived from tags 
recaptured at the 2 weir sites were not consistent.  Tag recaptures were available from the 370–
629 mm length strata at the Russian River weir allowing for an overall abundance estimate of 
3,025,997 (95% CI = 2,464,629 to 3,586,366) sockeye salmon passing rkm 31.1 (Table 3).  This 
abundance estimate was significantly (P<0.001) greater than the DIDSON abundance estimate of 
1,715,963 for these length strata (Table 4).  The Russian River weir estimates were significantly 
greater than the DIDSON estimates for the 2 smallest length strata (370–519) and the largest 
length stratum (570–629 mm), but the mark–recapture and DIDSON estimates were not different 
for the 520–569 length stratum.  Tag recaptures were available from the 470–569 mm length 
strata at the Hidden Creek weir allowing for an abundance estimate of 547,910 (95% CI = 
455,905 to 641,915) sockeye salmon passing rkm 31.1 (Table 3).  This abundance estimate was 
significantly (P<0.001) less than the DIDSON abundance estimate of 1,010,829 for these size 
classes (Table 3).  Using tag recaptures from the 470–569 mm length strata at both weirs resulted 
in an abundance estimate of 855,617 (95% CI = 751,097 to 960,138) sockeye salmon passing 
rkm 31.1 (Table 3), which was also significantly (P<0.001) less than the DIDSON abundance 
estimate for these length strata.  The Russian River weir mark–recapture abundance estimate 
(470–569 mm) was also significantly (P<0.001) greater than (2.36 times) the Hidden Creek weir 
estimate (Table 4).   

2007 
In 2007, we were generally able to apply PIT tags in proportion to daily DIDSON estimates of 
sockeye salmon passage during July, but the number of tags applied in August was higher 
relative to the sonar passage estimates, apparently due to an increase in fish wheel catchability 
(Figure 4).  As in 2006, sonar data indicated a shift in sockeye salmon distribution from offshore 
to more near shore later in the season causing the apparent increase in fish wheel catchability.    

The crew scheduling changes implemented in 2007 resulted in an increase in the number of PIT 
tags applied.  We applied PIT tags to 8,077 (310–690 mm) and radio tags to 234 (437–651 mm) 
sockeye salmon at rkm 31.1 between July 1 and August 23.  Approximately the same number of 
PIT tags were applied on the north bank (4,022) and south (4,055) banks.  Ninety-three percent 
of radio tagged sockeye salmon migrated past the fixed receiver at rkm 45.1, and 86% migrated 
upstream of Naptowne Rapids at rkm 63.7 (Table 2, Appendix A2). Estimated tagging-induced 
mortalities to rkm 45.1 (7%) and 63.7 (14%) were significantly (P<0.05) different.  At the 
Hidden Creek weir, 16,491 (450–609 mm) sockeye salmon were scanned for tags, and 155 PIT 
tags were detected.  At the Russian River weir, 55,379 (360–609 mm) sockeye salmon were 
scanned for tags, and 250 PIT tags were detected.  As in 2006, the daily number of PIT tags 
detected passing through Hidden Creek and Russian River weirs increased relative to the number 
of fish scanned for tags later in August (Figure 5).  The size frequency distributions of untagged 
sockeye salmon were estimated with samples collected at the Hidden Creek (n=1,103) and 
Russian River weirs (n=229).  Since no tag loss was detected in 2006, we assumed no tag loss 
occurred in 2007.  Daily tests indicated that tag detection was >95% on 100% and 96% of the 
days at Hidden Creek and Russian River weirs, respectively.  
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Initial capture probabilities (p1) decreased with fish length up to about 550 mm and then 
increased (Figure 7). Chi-square tests identified 5 length strata corresponding with changes in 
initial capture probabilities (Table 5).  The same 4 length strata were used for the abundance 
estimates derived from tag recaptures at the 2 weir recapture sites.  The abundance of fish 
smaller than 450 mm could only be estimated from tags recaptured at the Russian River weir, 
because no tagged fish in this size class were detected passing the Hidden Creek weir.   

Our mark–recapture estimates of sockeye salmon abundance passing rkm 31.1 derived from tags 
recaptured at the 2 weir sites were consistent in 2007.  Tag recaptures were available from the 
360–610 mm length strata at the Russian River weir allowing for an overall abundance estimate 
of 1,286,624 (95% CI = 1,113,646 to 1,459,602) sockeye salmon passing rkm 31.1 (Table 5).  
This abundance estimate was not significantly (P=0.098) different from the DIDSON abundance 
estimate of 1,115,119 for these length strata (Table 5).  Tag recaptures were available from the 
450–610 mm length strata at the Hidden Creek weir allowing for an abundance estimate of 
1,039,867 (95% CI = 655,731 to 1,424,002) sockeye salmon passing rkm 31.1 (Table 5).  This 
abundance estimate was not significantly (P=0.763) different from the DIDSON abundance 
estimate of 1,096,990 for these size classes (Table 5).  Using tag recaptures from the 450–610 
mm length strata at both weirs resulted in an abundance estimate of 1,078,011 (95% CI = 
940,879 to 1,215,143) sockeye salmon passing rkm 31.1 (Table 5), which also was not 
significantly (P<0.814) different from the DIDSON abundance estimate for these length strata.  
The Russian River weir mark–recapture abundance estimate (450–610 mm) was also not 
significantly (P<0.427) different from the Hidden Creek weir estimate (Table 4).   

2008 
In 2008, we adjusted our August tagging rate to match the July rate, resulting in a generally more 
consistent number of PIT tags applied relative to daily DIDSON estimates of sockeye salmon 
passage (Figure 4).  As in 2006–2007, sonar data indicated a shift in sockeye salmon distribution 
from offshore to nearshore later in the season causing an apparent increase in fish wheel 
catchability, but our strategy of adjusting tagging rates relative to fish wheel catch largely 
corrected for these changes.     

We applied PIT tags to 4,958 (320–660 mm) and radio tags to 232 (380–640 mm) sockeye 
salmon at rkm 31.1 between July 7 and August 17.  Substantially more PIT tags were applied on 
the north bank (3,617) than on the south bank (1,341).  Eight-nine percent of radio tagged 
sockeye salmon migrated past the fixed receiver at rkm 45.1, and 84% migrated upstream of 
Naptowne Rapids at rkm 63.7 (Table 2, Appendix A3).  Estimated tagging-induced mortalities to 
rkm 45.1 (11%) and 63.7 (16%) were not significantly (P=0.204) different.  At the Hidden Creek 
weir, 13,870 (450–569 mm) sockeye salmon were scanned for tags, and 110 PIT tags were 
detected.  At the Russian River weir, 46,638 (370–669 mm) sockeye salmon were scanned for 
tags, and 222 PIT tags were detected.  As in 2006–2007, the daily number of PIT tags detected 
passing through Hidden Creek and Russian River weirs increased relative to the number of fish 
scanned for tags later in August (Figure 5).  The size frequency distributions of untagged 
sockeye salmon were estimated with samples collected at the Hidden Creek (n=642) and Russian 
River weirs (n=566).  Since no tag loss was detected in 2006, we assumed no tag loss occurred in 
2008.  Daily tests indicated that tag detection was >95% on 98% and 100% of the days at Hidden 
Creek and Russian River weirs, respectively.  
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Initial capture probabilities (p1) were generally highest for fish 450–489 mm in (Figure 8, 
Table 6).  Chi-square tests identified 4 length strata corresponding with changes in initial capture 
probabilities (Table 6).  The same 2 length strata were used for the abundance estimates derived 
from tag recaptures at the 2 weir recapture sites.  The abundance of fish smaller than 450 mm 
and greater than 569 mm could only be estimated from tags recaptured at the Russian River weir, 
because insufficient numbers of tags were detected at Hidden Creek weir for these length strata 
(Schwarz and Taylor 1998).     

Our mark–recapture estimates of sockeye salmon abundance passing rkm 31.1 derived from tags 
recaptured at the 2 weir sites were somewhat consistent in 2008.  Tag recaptures were available 
from the 370–669 mm length strata at the Russian River weir allowing for an overall abundance 
estimate of 1,039,495 (95% CI = 839,523 to 1,239,466) sockeye salmon passing rkm 31.1 (Table 
6).  This abundance estimate was not significantly (P=0.182) different from the DIDSON 
abundance estimate of 899,513 for these length strata (Table 6).  Tag recaptures were available 
from the 450–569 mm length strata at the Hidden Creek weir allowing for an abundance estimate 
of 297,216 (95% CI = 224,093 to 334,339) sockeye salmon passing rkm 31.1 (Table 6).  This 
abundance estimate was significantly (P<0.001) less than the DIDSON abundance estimate of 
450,204 for these size classes (Table 6).  Using tag recaptures from the 450–569 mm length 
strata at both weirs resulted in an abundance estimate of 304,453 (95% CI = 267,965 to 340,940) 
sockeye salmon passing rkm 31.1 (Table 6), which also was significantly (P<0.001) less than the 
DIDSON abundance estimate for these length strata.  The Russian River weir mark–recapture 
abundance estimate (450–569 mm) was not significantly (P<0.301) different from the Hidden 
Creek weir estimate (Table 4), and both estimates for these length strata were significantly less 
than the DIDSON estimate.  The overall Russian River mark–recapture and DIDSON estimates 
(370–669 mm) we not significantly different, because the mark–recapture estimates for the 370–
449 mm and 570–669 mm strata were higher, whereas the mark–recapture estimates for the 450–
569 mm strata were lower than the DIDSON estimates.  Thus, when the mark–recapture and 
DIDSON estimates for all length strata were summed, the overall estimates were not different.  

Pooling data from both weirs, our mark–recapture abundance estimates were significantly less 
than the DIDSON estimates in 2006 and 2008 but not in 2007 (Tables 3, 5, 6).  A linear 
regression of the pooled mark–recapture estimates (dependent variable) against the DIDSON 
estimates (2006–2008) resulted in a slope (m=1.12, se=0.19) not significantly different from one 
(P=0.628) and an intercept (b= -208532, se=162522) not significantly different from zero 
(P=0.421).  The regression was then run again with the intercept set at zero and this also resulted 
in a slope (m=0.90, se=0.07) not significantly different from one (P=0.269) indicating that the 
DIDSON and mark–recapture methods were measuring the same abundances (Figure 9).    

SPAWNER MIGRATION AND DISTRIBUTION 
2006 
In 2006, mean migration time declined significantly during the season for radio tagged sockeye 
salmon swimming between fixed radiotelemetry stations located at rkm 31.1–45.1 and 80.5–
104.6 (Table 7).  Between the sonar site and recapture fish wheels (rkm 31.1–45.1), mean 
migration time declined from 3.1 to 1.2 days from early July to late August. Between the outlet 
and inlet of Skilak Lake (rkm 80.5–104.6), mean migration time declined from 16.0 to 3.5 days, 
but 2 fish tagged during the first release period migrated between these 2 stations in 1.2 days.  
Between these same 4 sites, mean migration speeds increased during the season, but the changes 
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were only significant between rkm 31.1–45.1 and marginally significant between rkm 80.5–
104.6 (Table 7).  Between the sonar site and recapture fish wheels (rkm 31.1–45.1), mean 
migration speed increased from 4.7 to 14.0 km day-1. Between the outlet and inlet of Skilak Lake 
(rkm 80.5–104.6), mean migration speed increased from 4.9 to 7.3 km day-1 during the season, 
but 2 fish tagged during the first release period migrated 22.2 km day-1.  The highest overall 
mean migration speed (10.8 km day-1) was between rkm 45.1–80.5. 

Radiotagged sockeye salmon later relocated in the upper Kenai River watershed exhibited the 
earliest run timing past rkm 31.1, but this group was a relatively minor component of the total 
run. The migration past rkm 31.1 peaked the week beginning July 15 for fish later relocated in 
the upper Kenai River and July 22 for fish later relocated in the Skilak outlet area (Figure 9).  
The migration past rkm 31.1 was bimodal for fish later relocated in the Kenai River mainstem 
and Skilak inlet areas.  Comparison of weekly DIDSON abundance estimates and number of 
radio tags applied indicated disproportionate tagging during the week beginning July 22 and 
again in late August (Figure 10).  The majority (73%) of sockeye salmon radiotagged at rkm 31.1 
migrated to the Skilak outlet (Zone 4 – 20%), Skilak inlet (Zones 6, 11, 13 – 20%), Kenai River 
mainstem (Zones 15, 17 – 23%), and Upper Kenai tributary (Zones 14, 16, 18–24 – 11%) 
spawning areas (Table 8, Figure 11).  Only 1% of radiotagged sockeye salmon migrated to the 
Hidden Creek drainage and 4% to the Russian River drainage.  

2007 
In 2007, mean migration time again declined significantly during the season for radiotagged 
sockeye salmon swimming between fixed radiotelemetry stations located at rkm 31.1–45.1 and 
80.5–104.6 (Table 9).  Between the sonar site and recapture fish wheels (rkm 31.1–45.1), mean 
migration time declined from 3.5 to 1.5 days from early July to mid-August.  Between the outlet 
and inlet of Skilak Lake (rkm 80.5–104.6), mean migration time declined from 27.9 to 12.3 days, 
but 3 fish tagged during the first release period migrated between these 2 stations in 7.7 days.  
Mean migration speeds of fish swimming between rkm 31.1–45.1, rkm 80.5–104.6, and rkm 
104.6–132.0 changed significantly during the season (Table 9), but there was no consistent 
temporal trend.  The highest overall mean migration speed (12.9 km day-1) was again between 
rkm 45.1–80.5. 

Radiotagged sockeye salmon later relocated in the Kenai River mainstem and upper Kenai River 
tributaries exhibited the earliest run timing past rkm 31.1, with the peak of their migration 
occurring the week beginning July 22 (Figure 10).  Fish migrating to the Skilak outlet and inlet 
spawning areas exhibited a more protracted timing past rkm 31.1, with the peak of their 
migration occurring between July 22–August 5 (Figure 10).  Comparison of weekly DIDSON 
abundance estimates and number of radio tags applied indicated disproportionate tagging during 
the weeks beginning July 15 and 22 (Figure 10).  The majority (65%) of sockeye salmon 
radiotagged at rkm 31.1 migrated to the Skilak outlet (Zone 4 – 10%), Skilak inlet (Zones 6, 11, 
13 – 9%), Kenai River mainstem (Zones 15, 17 – 26%) and Upper Kenai tributary (Zones 14, 16, 
18–24 – 21%) spawning areas (Table 8; Figure 12).  Only 1 radiotagged sockeye salmon (<1%) 
migrated to the Hidden Creek drainage, and 3% of radiotagged sockeye salmon migrated to the 
Russian River drainage.  

2008 
In 2008, mean migration time changed significantly during the season for radiotagged sockeye 
salmon swimming between fixed radiotelemetry stations located at rkm 31.1–45.1 (Table 10), 
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but there was no consistent temporal trend.  Mean migration speeds between the fixed stations 
did not change significantly during the season (Table 10), and the highest overall mean migration 
speed (10.5 km day-1) was again between rkm 45.1–80.5. 

Radiotagged sockeye salmon later relocated in the Skilak inlet, Kenai River mainstem, and upper 
Kenai River tributaries exhibited the earliest run timing past rkm 31.1, with the peak of their 
migration occurring the week beginning July 15 (Figure 10).  Fish migrating to the Skilak inlet 
Kenai River mainstem spawning areas exhibited a secondary timing peak at rkm 31.1 during the 
week beginning July 29 (Figure 10).  The migration to the Skilak outlet spawning area peaked 
during the week beginning July 22 (Figure 10).  Comparison of weekly DIDSON abundance 
estimates and number of radio tags applied indicated disproportionate tagging during the week 
beginning July 29 (Figure 9).  The majority (59%) of sockeye salmon radiotagged at rkm 31.1 
migrated to the Skilak outlet (Zone 4 – 10%), Skilak inlet (Zones 6, 11, 13 – 16%), Kenai River 
mainstem (Zones 15, 17 – 22%), and Upper Kenai tributary (Zones 14, 16, 18–24 – 11%) 
spawning areas (Table 8, Figure 13).  Only 4% of radiotagged sockeye salmon migrated to the 
Hidden Creek drainage and 3% to the Russian River drainage.  

Mean migration speeds of all subpopulations combined between rkms 31.1–45.1 were 
significantly higher (P<0.001) in 2006 (9.9 km day-1, SE=0.4) and 2007 (10.8 km day-1, SE=0.4) 
than in 2008 (8.1 km day-1, SE=0.4).  Mean annual migration speeds were not significantly 
correlated (P>0.10) with mean date of migration past rkm 31.1, but run timing was later than 
average in 2006 (10 days late) and 2007 (4 days late) compared with 2008 (on time). 

DISCUSSION 
ABUNDANCE 
Uncertainty in our mark–recapture abundance estimates precluded a definitive conclusion 
regarding the accuracy of the DIDSON estimate in 2006.  Our mark–recapture abundance 
estimates derived from the rkm 45.1 fish wheels were likely biased high due to poor tag 
detection.  Our Russian River mark–recapture estimate was significantly greater than the 
DIDSON estimate, while the Hidden Creek estimate was significantly less than the DIDSON 
estimate.  In addition, the Russian River estimate was significantly greater than the Hidden Creek 
estimate.  In 2007, the Russian River and Hidden Creek mark–recapture abundance estimates 
were not significantly different from the DIDSON estimates, and they were not significantly 
different from each other.  In 2008, the Russian River and Hidden Creek mark–recapture 
abundance estimates were not significantly different from each other, but the Hidden Creek 
estimate was significantly less than the DIDSON estimate.  Our mark–recapture abundance 
estimates derived from the weirs may have been biased due primarily to violations of 
assumptions 1 and 2.  Below we discuss the validity of these estimates organized by the 
assumptions upon which they were predicated. 
Assumption 1:  Closed population (i.e., no mortality or recruitment). 
Greater tagging-induced mortality for fish migrating to the Russian River weir could account for 
the consistently higher abundance estimates obtained from recoveries at this site (Tables 3–6).  
We attempted to correct our abundance estimates for tagging-induced mortality by reducing the 
number of PIT tags released (and available for recapture) using estimates of survival of 
radiotagged fish.  Our estimates of tagging-induced mortality approximately doubled between 
rkm 45.1 and 63.7 (Table 2), leading us to question whether our survival estimate from rkm 63.7 
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adequately corrected for all tagging-induced mortality as the fish migrated farther from the 
tagging site to weirs located at rkm 108.4 (Hidden Creek) and 125.9 (Russian River).  
Underwood et al. (2004) and Bromaghin et al. (2007) concluded that tagging-induced mortality 
accounted for a decline in marked fractions of chum salmon Oncorhynchus keta captured in fish 
wheels at greater distances from the tagging site.  Although, we were not able to directly estimate 
tagging-induced mortality of radiotagged fish as they migrated upstream of rkm 63.7 (due to 
spawning activity), we can estimate the survival of tagged fish reaching Hidden Creek (80%) and 
Russian River (76%) weirs assuming mortality of tagged fish increased linearly (i.e., 
approximately 0.2% km-1) away from the tagging site.  These estimates indicate the probable 
magnitude of the difference in tagging-induced mortality between the 2 stocks, but they were not 
used in the abundance estimates. 

Inriver fishing mortality differences are another source of error that could account for the higher 
Russian River abundance estimates.  Inriver fisheries ensured that populations were not closed in 
our experiments.  But, so long as tagged and untagged fish were harvested at the same rate, our 
abundance estimates would not be biased.  However, Bromaghin et al. (2007) and Yanusz et al. 
(2007) found that radiotagged chum and sockeye salmon probably migrated more slowly than 
untagged salmon in the Yukon and Susitna rivers.  If so, tagged fish would be exposed to inriver 
fisheries for a longer time leading to a higher harvest rate compared to untagged fish.  
Differences in fishing mortalities between tagged and untagged fish would be greatest for fish 
migrating through the intense Russian River fishery. 

Other investigators have documented levels of mortality among radiotagged sockeye salmon 
similar to those obtained in this study. Cooke et al. (2006) estimated 9.7% of radiotagged 
sockeye salmon did not migrate upstream of Hell’s Gate on the Fraser River, and 14.2% of those 
that successfully passed Hell’s Gate were not detected entering natal spawning grounds.  
Although, we were not able to estimate tagging-induced mortality above Naptowne Rapids (rkm 
63.7), it is likely that tagged fish migrating to Russian River weir may have suffered higher 
mortality than fish migrating to Hidden Creek weir, because they had to pass through the Kenai 
River canyon and the Russian River falls. 

Tagging-induced mortality is likely caused by stress-related physiological changes induced by 
hyperactivity during capture. Laboratory studies have shown that the stress of capture causes blood 
lactic acid levels to increase for up to 4 hours after capture with mortality occurring if critical levels 
of lactate are reached (Parker and Black 1959; Parker et al. 1959; Farrell et al. 2000). Candy et al. 
(1996) documented an increase in delayed mortality (8–12 hours after release) of sonic-tagged 
Chinook salmon held less than 15 mins (0%) versus greater than 30 mins (50%).  In our study, we 
found no difference between radiotagged survivors and non-survivors (P=0.60) in the amount of 
time lapsed between checks of the fish wheel live boxes.  However, the elapsed time between 
checks of the live box was not the actual holding time of individual fish, because we did not know 
when each individual fish entered the box. 

Assumption 2:  Either the probability of capture was constant across all individuals at the time 
of capture (constant p1), or marked fish mixed uniformly with unmarked fish before the recapture 
event, or the probability of capture was constant across all individuals at the time of recapture 
(constant p2). 
Because salmon entering the river at the beginning of the run did not mix with those entering at 
the end of the run before reaching the weirs, the marked fish were not mixed uniformly with 
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unmarked fish before the recapture event.  Also, the probability of capture was not constant 
across all individuals at the time of recapture, because fish migrating to the 2 weirs had a 100% 
probability of capture while those migrating to other parts of the drainage had a 0% probability 
of capture.  Therefore, to meet assumption 2, we needed to ensure that the probability of capture 
was constant across all individuals at the time of capture.   We stratified by size in an attempt to 
correct for size-dependent fish wheel capture probabilities (Figures 6–8).  If this scheme were 
successful, abundance estimates derived from the 2 weir recapture sites should not have differed 
within size strata.  But, it appeared that capture probabilities also changed over time due to 
tagging rate changes during the run (Figure 4).  However, temporal stratification was not 
possible due to apparent differences in migration rates of tagged and untagged fish (Figure 5).  
Therefore, different abundance estimates between weir sites in 2006 (Table 4) could have 
resulted from temporal changes in capture probabilities and differences in run timing between 
the 2 stocks at the rkm 31.1 tagging site.  More uniform temporal tagging rates in 2007 and 2008 
may account for lack of any significant differences between abundance estimates from the 2 weir 
sites in those years.  

Assumption 3:  Marking did not affect catchability 

All fish were enumerated and checked for marks at the weirs causing the probability of capture at 
each weir to be 100%.  Thus, catchability for fish returning to weirs could only have been 
affected by the tagging process if movement probabilities were altered where tagged fish were 
less likely to reach the weirs than untagged fish.  Because tagging-induced mortality increased 
with distance from the tagging site (Table 2), it is reasonable to conclude that some tagged fish 
may not have reached the weirs (a sublethal tagging effect).  The magnitude of this source of 
error is unknown, but future analyses of genetic data may provide for an estimate of stock-origin 
for individual tagged fish allowing us to further investigate it.  

Assumption 4:  Tags were not lost. 
Of the 89 adipose-clipped fish that were recaptured at the rkm 45.1 fish wheel, no PIT tag loss 
was detected.  Based on this sample size and finding zero loss, we can be 95% confident that PIT 
tag loss was no greater than 3.4%.  Thus, we did not apply tag loss corrections for any estimate.   

Assumption 5:  All tags were recognized and reported. 
Daily tag detection tests conducted in 2006 with PIT tags in neutrally buoyant vials resulted in 
detection rates >95% on 89% and 96% of the days at Hidden Creek and Russian River weirs, 
respectively.  But, subsequent tag detection tests conducted with live fish tagged at the weirs 
suggested that detection rates estimated with the vials were biased high.  However, we 
recognized that the behavior of fish tagged at the weirs was different than that of fish tagged at 
rkm 31.1, because recent handling caused these fish to swim through the antennas differently 
than other fish passing through during normal operations.  These results led us to install 
redundant PIT tag antennas at both weirs in 2007, which provided for estimates of tag detection 
rates for fish tagged at rkm 31.1 with the assumption that the detection rates of the 2 antennas at 
each weir were independent of each other.  The antennas operated in 2007 (attached directly to 
the live box) were found to have tag detection rates >95% on 100% and 96% of the days at 
Hidden Creek and Russian River weirs, respectively.  These results suggested that the single 
antennas operated in 2006 (also attached directly to the live box) probably also provided high 
detection rates.  But, since redundant antennas were not operated in 2006, we cannot be certain 
that the 2007 tag detection results apply directly to the 2006 antennas.  
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SPAWNER MIGRATION AND DISTRIBUTION 
In the present study, average sockeye salmon migration speeds were 5–14 km day-1 and more 
than doubled from early July to mid-August below rkm 45.1 (Tables 7–9).  In a previous tagging 
study, Tarbox (1988) estimated the maximum migration speed of sockeye salmon in rivers was 
about 20 km day-1.  Using run reconstruction, Mundy et al. (1993) estimated that residence time 
of Kenai River sockeye salmon in Cook Inlet declined by a factor of 3 during July, suggesting an 
increase in migration speed during the run. Yanusz et al. (2007) observed an increase in 
migration speed (2.0–13.5 km day-1) of sockeye salmon during the run for fish tagged at Flathorn 
in the Susitna River.  Higher migration speeds later in the run likely result because individuals 
entering the river late tend to be more reproductively advanced. Yanusz et al. (2007) also 
concluded that the migration speeds of radiotagged sockeye salmon were likely slower than 
untagged fish.  If so, our migration speed estimates may be biased low.   

We found that the run timing of fish spawning in upper Kenai River tributaries was relatively 
early in each year of the study (Figure 9).  A similar pattern has been observed in other sockeye 
salmon populations with upper tributary spawners migrating and spawning earlier in the run 
(Hartman et al. 1963; Narver 1968; Nelson 1983; Owen et al. 1962).  These studies have also 
shown that lakeshore and outlet spawning subpopulations tended to exhibit later run timing.  We 
found that the run timing of the Skilak outlet subpopulation was relatively late in 2007–2008 but 
not in 2006 (Figure 9).  The numbers of fish apparently spawning in Skilak Lake was too small 
to estimate run timing.  Finally, the mean annual migration speed of all subpopulations combined 
was weakly associated with run timing past rkm 31.1 suggesting that fish migrated upstream 
faster when run timing was later than average.   

The distribution of sockeye salmon spawners within the Kenai River watershed in part 
determines the mechanisms regulating salmon production in this system.  We found that about 
35–42% of the run likely spawned within the mainstem Kenai River above Skilak Lake 
(Table 8).  This subpopulation likely experienced a relatively stable physical environment 
compared to smaller upper tributary streams subjected to greater fluctuations in water level and 
temperature.  However, having the majority of spawners concentrated within about a 50 km 
stream segment may also contribute to greater fluctuations in survival for the stock as a whole, 
because a large fraction of the stock probably experiences similar embryo-spring fry survivals. 
Perhaps these characteristics contribute to the relatively high variability in returns per spawner 
(1.9 to 15.8) observed in this system (Edmundson et al. 2003).  The fry produced by these 
spawners likely all rear in Skilak Lake, which is consistent with our previous estimates of the 
importance of this lake for salmon production in the watershed (DeCino et al. 2004; Edmundson 
et al. 2003).  We found that about 10–20% of the run likely spawned within the mainstem Kenai 
River at the outlet of Skilak Lake (Table 8).  Emergent fry produced by this outlet subpopulation 
migrate upstream to rear in Skilak Lake.  Emergent fry migrating upstream are probably more 
dependent on yolk energy reserves and spring food resources to successfully complete their 
migration (McCart 1967).  If so, the outlet spawning subpopulation may be more likely to exhibit 
the brood interaction described by Edmundson et al. (2003), and interannual changes in the 
abundance of this subpopulation may determine whether this mechanism significantly affects the 
population dynamics of the stock as a whole.  
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CONCLUSIONS 
Overall, our mark–recapture abundance estimates did not support the conclusion that the 
DIDSON estimates were consistently biased during the 3 years of this study.  In 2006, the 
Russian mark–recapture estimate was significantly higher while the Hidden mark–recapture 
estimate was significantly lower than the DIDSON estimate.  The Russian and Hidden mark–
recapture estimates were also significantly different from each other in 2006.  Variable tagging-
induced mortality or initial capture probabilities between the 2 stocks were likely causes of these 
observed differences.  The Russian and Hidden mark–recapture estimates were not significantly 
different from each other in 2007–2008, and in 2007 the mark–recapture estimates from both 
weirs were not significantly different from the DIDSON estimate.  However in 2008, the Russian 
mark–recapture estimate was not significantly different while the Hidden mark–recapture 
estimate was significantly lower than the DIDSON estimate.  The differences between these 
estimates were due to the different length strata included in the Russian and Hidden mark–
recapture estimates.  A linear regression of the pooled mark–recapture estimates (dependent 
variable) against the DIDSON estimates (2006–2008) resulted in an intercept not significantly 
different from zero and a slope not significantly different from one indicating that the DIDSON 
and mark–recapture methods were measuring the same abundances.    

Radiotelemetry studies indicated that 35–42% of sockeye salmon spawned in the mainstem 
Kenai River between the Russian River confluence and Skilak Lake. Another 10–20% spawned 
in an approximately 16 km segment of the Kenai River immediately below Skilak Lake, while 
11–21% spawned in upper tributaries of the watershed (Russian River, Quartz Creek, Trail 
Lakes, Ptarmigan Creek, etc). Finally, 7–11% spawned in Skilak Lake and its tributaries (i.e. 
King County Creek, Hidden Creek, and Skilak River), and 19–31% either did not migrate above 
Naptowne Rapids or were caught in sport or personal use fisheries or were not relocated after 
initial release.  Sockeye salmon migrating to the upper tributaries exhibited slightly earlier run 
timing past the rkm 31.1 sonar site, while those migrating to the mainstem Kenai River above 
Skilak Lake exhibited later run timing. 
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Table 1.–Possible states of fish at the recapture fish wheels (rkm 45.1) and action taken. 

Adipose 
missing 

PIT tag 
present 

PIT tag 
decoded 

Radio 
Tag 

Present 
Never 

Tagged Data Recorded Action 
X X X   Record PIT tag no. Release 
X X    PIT tag malfunction MEFL, Sacrifice 
X     PIT tag loss MEFL, Sacrifice 
X X X X  Record PIT tag no. Release 
X X  X  PIT tag malfunction MEFL, Sacrifice, Reuse radio 

tag 
X   X  PIT tag loss  MEFL, Sacrifice, Reuse radio 

tag 
X X X   Radio tag loss Record PIT tag #, Release. 
    X Totals by hour  MEFL every 15th, Release 
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Table 2.–Number of radio tags applied at rkm 31.1, number of radiotagged fish caught in personal use and sport fisheries, and estimated 
fraction of radiotagged sockeye salmon surviving tagging effects and migrating past rkms 45.1 and 63.7, 2006–2008.   

 
Zone Number No. Caught Number Not Number Not Number with Estimated Estimated 

Year (Range rkm) Tagged in Zone Caught Migrating Upstream Mortality Codes Survival Mortality 

2006 31.1–45.1 215   8 207 11   6 0.95 0.05 

 
31.1–63.7 215 11 204 23 11 0.89 0.11 

         2007 31.1–45.1 234 21 213 14 10 0.93 0.07 

 
31.1–63.7 234 27 207 30 18 0.86 0.14 

         2008 31.1–45.1 232 26 206 22 16 0.89 0.11 

 
31.1–63.7 232 34 198 32 22 0.84 0.16 

 



 

 

32 

Table 3.–Comparison of mark–recapture and DIDSON estimates of sockeye salmon abundance passing rkm 31.1 from July 1 to August 24, 
2006.  

Length M-R 
 

95% Confidence Interval 
      

DIDSON sonar 
 

Z-test 
 Stratum (mm) Estimate V(n) Lower  Upper n1 n2 m2 p1 p2 

 
Estimate V(n) P-value Ratio 

Russian River weir as recovery site 
    370–469 273,701 4.1E+09 148,195 399,207 232 18,809 15 0.001 0.065 

 
65,215 1.1E+07 0.001 4.20 

470–519 423,337 4.8E+09 287,205 559,470 600 23,939 33 0.001 0.055 
 

168,860 7.1E+07 0.000 2.51 
520–569 869,684 9.3E+09 680,744 1,058,624 2993 22,657 77 0.003 0.026 

 
841,969 1.8E+09 0.776 1.03 

570–629 1,459,275 6.4E+10 965,280 1,953,270 2275 20,519 31 0.002 0.014 
 

639,920 1.0E+09 0.001 2.28 
Total 3,025,997 8.2E+10 2,465,629 3,586,366 6,100 85,924 156 0.002 0.026 

 
1,715,963 2.9E+09 0.000 1.76 

               Hidden Creek weir as recovery site 
    470–519 138,437 1.4E+08 115,586 161,288 600 26,018 112 0.004 0.187 

 
168,860 7.1E+07 0.034 0.82 

520–569 409,473 2.2E+09 318,288 500,658 2993 10,120 73 0.007 0.024 
 

841,969 1.8E+09 0.000 0.49 
Total 547,910 2.3E+09 453,905 641,915 3,593 36,138 185 0.005 0.051 

 
1,010,829 1.8E+09 0.000 0.54 

               Russian and Hidden weirs combined 
    470–519 205,728 2.2E+08 176,831 234,625 600 49,957 145 0.003 0.242 

 
168,860 7.1E+07 0.029 1.22 

520–569 649,890 2.6E+09 549,444 750,336 2993 32,777 150 0.005 0.050 
 

841,969 1.8E+09 0.004 0.77 
Total 855,617 2.8E+09 751,097 960,138 3,593 82,734 295 0.004 0.082 

 
1,010,829 1.8E+09 0.023 0.85 

               rkm 45.3 fish wheel as recovery site 
    370–539 2,196,284 5.7E+11 722,458 3,670,110 1,673 18,574 22 0.001 0.013 

 
470,654 5.5E+08 0.021 4.67 

540–589 2,323,605 1.6E+11 1,535,909 3,111,301 3,789 27,971 57 0.002 0.015 
 

1,065,935 2.8E+09 0.002 2.18 
590–699 1,072,517 9.5E+10 469,644 1,675,389 902 13,064 10 0.001 0.011 

 
253,754 1.6E+08 0.008 4.23 

Total 5,592,406 8.2E+11 3,815,869 7,368,943 6,365 59,609 89 0.001 0.014 
 

1,790,344 3.6E+09 0.000 3.12 
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Table 4.–Comparison of mark–recapture estimates of sockeye salmon abundance passing rkm 31.1 based upon tag recaptures at the Russian 
River and Hidden Creek weirs, 2006–2008. 

 
Length Russian River 

  
Hidden Creek 

   
Year stratum (mm) Estimate V(n) 

 
Estimate V(n) Z-test P Ratio 

2006 470–569 1,293,021 1.4E+10 
 

547,910 2.3E+09 0.000 2.36 

2007 450–609 0 0.0E+00 
 

1,039,867 3.8E+10 0.000 1.16 

2008 450–569 0 0.0E+00 
 

279,216 7.9E+08 0.000 1.64 
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Table 5.–Comparison of mark–recapture and DIDSON estimates of sockeye salmon abundance passing rkm 31.1 from July 1 to August 23, 
2007.  

Length M-R 
 

95% Confidence Interval 
      

DIDSON sonar 
 

Z-test 
 Stratum (mm) Estimate V(n) Lower  Upper n1 n2 m2 p1 p2 

 
Estimate V(n) P-value Ratio 

Russian River weir as recovery site 
    360–449 80,326 5.9E+08 32,647 128,004 109 6,558 8 0.001 0.073 

 
18,129 8.2E+05 0.010 4.43 

450–489 26,873 2.0E+07 18,157 35,588 206 3,886 29 0.007 0.141 
 

34,259 2.9E+06 0.119 0.78 
490–549 596,974 3.1E+09 488,591 705,358 2,060 31,576 108 0.003 0.052 

 
341,873 2.9E+08 0.000 1.75 

550–579 225,661 6.7E+08 174,916 276,407 2,571 6,315 71 0.011 0.028 
 

426,806 4.6E+08 0.000 0.53 
580–609 356,790 3.4E+09 241,681 471,898 1,772 7,044 34 0.005 0.019 

 
294,053 2.2E+08 0.294 1.21 

Total 1,286,624 7.8E+09 1,113,646 1,459,602 6,718 55,379 250 0.005 0.037 
 

1,115,119 3.1E+09 0.098 1.15 

               Hidden Creek weir as recovery site 
    450–489 7,396 1.7E+06 4,823 9,968 206 926 25 0.027 0.121 

 
34,259 2.9E+06 0.000 0.22 

490–549 211,937 4.1E+08 172,023 251,852 2,060 10,387 100 0.010 0.049 
 

341,873 2.9E+08 0.000 0.62 
550–579 373,355 4.9E+09 236,265 510,446 2,571 3,918 26 0.007 0.010 

 
426,806 4.6E+08 0.456 0.87 

580–609 447,178 3.3E+10 90,574 803,782 1,772 1,260 4 0.003 0.002 
 

294,053 2.2E+08 0.394 1.52 
Total 1,039,867 3.8E+10 655,731 1,424,002 6,609 16,491 155 0.009 0.023 

 
1,096,990 3.0E+09 0.763 0.95 

               Russian and Hidden weirs combined 
    450–489 18,150 4.3E+06 14,098 22,202 206 4,813 54 0.011 0.262 

 
34,259 2.9E+06 0.000 0.53 

490–549 413,750 7.3E+08 360,835 466,665 2,060 41,962 208 0.005 0.101 
 

341,873 2.9E+08 0.024 1.21 
550–579 268,629 6.9E+08 216,979 320,279 2,571 10,233 97 0.009 0.038 

 
426,806 4.6E+08 0.000 0.63 

580–609 377,481 3.5E+09 262,064 492,898 1,772 8,304 38 0.005 0.021 
 

294,053 2.2E+08 0.166 1.28 
Total 1,078,011 4.9E+09 940,879 1,215,143 6,609 65,312 397 0.006 0.060 

 
1,096,990 3.0E+09 0.814 0.98 
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Table 6.–Comparison of mark–recapture and DIDSON estimates of sockeye salmon abundance passing rkm 31.1 from July 7 to August 17, 
2008. 

Length M-R   95% Confidence Interval             DIDSON sonar   Z-test   

stratum (mm) Estimate V(n) Lower  Upper n1 n2 m2 p1 p2   Estimate V(n) P-value Ratio 
Russian River weir as recovery site 

    370–449 159,221 1.2E+09 92,070 226,373 261 11,536 18 0.002 0.069 
 

57,087 8.1E+06 0.003 2.79 
450–489 12,410 3.0E+06 9,012 15,808 214 2,307 39 0.017 0.182 

 
46,789 5.5E+06 0.000 0.27 

490–569 305,543 6.5E+08 255,657 355,430 1,846 21,836 131 0.006 0.071 
 

403,415 4.1E+08 0.003 0.76 
570–669 562,320 8.6E+09 380,718 743,921 1,795 10,959 34 0.003 0.019 

 
392,222 3.8E+08 0.071 1.43 

Total 1,039,495 1.0E+10 839,523 1,239,466 4,116 46,638 222 0.005 0.054 
 

899,513 8.1E+08 0.182 1.16 

               Hidden Creek weir as recovery site 
    450–489 13,850 5.7E+06 9,185 18,515 214 1,802 27 0.015 0.126 

 
46,789 5.5E+06 0.000 0.30 

490–569 265,366 7.9E+08 210,441 320,291 1,846 12,068 83 0.007 0.045 
 

403,415 4.1E+08 0.000 0.66 
Total 279,216 7.9E+08 224,093 334,339 2,060 13,870 110 0.008 0.053 

 
450,204 4.1E+08 0.000 0.62 

               Russian and Hidden weirs combined 
    450–489 13,194 1.7E+06 10,613 15,775 214 4,109 66 0.016 0.308 

 
46,789 5.5E+06 0.000 0.28 

490–569 291,259 3.4E+08 254,863 327,655 1,846 33,904 214 0.006 0.116 
 

403,415 4.1E+08 0.000 0.72 
Total 304,453 3.5E+08 267,965 340,940 2,060 38,013 280 0.007 0.136 

 
450,204 4.1E+08 0.000 0.68 
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Table 7.–Mean migration time (days) and speed (km day-1) of radiotagged sockeye salmon between 4 fixed radiotelemetry stations on the 
mainstem Kenai River, 2006. 

 
rkm 31.1-45.1 

 
rkm 45.1-80.5 

 
rkm 80.5-104.6 

 
rkm 104.6-132.0 

Week  Mean SE n 
 

Mean SE n 
 

Mean SE n 
 

Mean SE n 

 
Migration Time (days) 

7/01–7/7 - - - 
 

- - - 
 

- - - 
 

- - - 
7/08–7/14 3.1 0.7 7 

 
3.8 2.1 3 

 
1.2 6.7 2 

 
- - - 

7/15–7/21 1.8 0.4 17 
 

3.0 1.0 13 
 

11.9 2.9 11 
 

5.9 5.2 5 
7/22–7/28 2.5 0.2 73 

 
4.1 0.5 62 

 
16.0 1.5 42 

 
12.4 4.4 7 

7/29–8/04 2.0 0.3 41 
 

5.9 0.6 38 
 

13.3 1.8 27 
 

10.8 8.3 2 
8/05–8/11 2.0 0.4 18 

 
5.8 0.9 15 

 
8.9 3.0 10 

 
4.0 11.7 1 

8/12–8/18 1.2 0.3 32 
 

4.0 0.7 23 
 

6.0 2.2 19 
 

6.3 4.8 6 
8/19–8/25 1.2 0.9 4 

 
3.2 2.1 3 

 
3.5 5.5 3 

 
- - - 

Mean 2.1 0.1 192 
 

4.6 0.3 157 
 

12.1 0.9 114 
 

8.6 2.4 21 
P-value 0.025 

   
0.067 

   
0.003 

   
0.829 

  
 

Migration Speed (km day-1) 
7/01–7/7 - - - 

 
- - - 

 
- - - 

 
- - - 

7/08–7/14 4.7 1.7 7 
 

10.3 3.5 3 
 

22.2 4.9 2 
 

- - - 
7/15–7/21 9.5 1.1 17 

 
13.9 1.7 13 

 
7.1 2.1 11 

 
5.4 2.2 5 

7/22–7/28 8.2 0.5 73 
 

11.2 0.8 62 
 

4.9 1.1 42 
 

5.4 1.8 7 
7/29–8/04 8.8 0.7 41 

 
10.1 1.0 38 

 
5.7 1.3 27 

 
2.9 3.4 2 

8/05–8/11 7.3 1.1 18 
 

8.5 1.6 15 
 

6.5 2.2 10 
 

7.1 4.8 1 
8/12–8/18 14.0 0.8 32 

 
10.5 1.3 23 

 
5.7 1.6 19 

 
9.7 2.0 6 

8/19–8/25 13.4 2.2 4 
 

12.6 3.5 3 
 

7.3 4.0 3 
 

- - - 
Mean 9.3 0.4 192 

 
10.8 0.5 157 

 
5.9 0.7 114 

 
6.1 0.9 21 

P-value <0.001 
   

0.358 
   

0.062 
   

0.389 
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Table 8.–Final destinations of radiotagged sockeye salmon in the Kenai River watershed, 2006–2008. 

  
River Kilometer 

 
2006 

 
2007 

 
2008 

Zone Description Begin End 
 

No. Tags Proportion 
 

No. Tags Proportion 
 

No. Tags Proportion 
1 Kenai River Mouth 0.0 31.1 

 
4 0.02 

 
4 0.02 

 
7 0.03 

2 Sonar Site to SF Fish Wheels 31.1 45.1 
 

7 0.03 
 

10 0.04 
 

15 0.06 
3 SF Fish Wheels to Upper Naptowne Rapids 45.1 63.7 

 
12 0.06 

 
16 0.07 

 
10 0.04 

4 Upper Naptowne Rapids to Skilak Outlet 63.7 80.5 
 

44 0.20 
 

23 0.10 
 

23 0.10 
5 Skilak Lake 80.5 104.6 

 
11 0.05 

 
14 0.06 

 
16 0.07 

6 Skilak Lake Inlet Staging Area 103.6 104.6 
 

1 0.00 
 

0 0.00 
 

0 0.00 
7 King County Creek Staging Area 87.9 87.9 

 
1 0.00 

 
1 0.00 

 
0 0.00 

8 King County Creek 87.9 87.9 
 

0 0.00 
 

0 0.00 
 

0 0.00 
9 Skilak River Staging Area 104.0 104.0 

 
1 0.00 

 
0 0.00 

 
0 0.00 

10 Skilak River 104.6 104.6 
 

2 0.01 
 

0 0.00 
 

0 0.00 
11 Skilak Lake Inlet to Boomerang Lake 104.6 106.5 

 
38 0.18 

 
17 0.07 

 
33 0.14 

12 Hidden Creek Drainage 104.6 104.6 
 

2 0.01 
 

1 0.00 
 

9 0.04 
13 Boomerang Lake to Jean Creek Slough 106.5 111.4 

 
3 0.01 

 
3 0.01 

 
3 0.01 

14 Jean Creek Drainage 111.5 111.5 
 

0 0.00 
 

1 0.00 
 

2 0.01 
15 Jean Creek to Russian River 111.4 118.9 

 
37 0.17 

 
39 0.17 

 
37 0.16 

16 Russian River Drainage 118.9 118.9 
 

8 0.04 
 

8 0.03 
 

7 0.03 
17 Russian River to Kenai Lake Outlet 118.9 132.0 

 
12 0.06 

 
22 0.09 

 
14 0.06 

18 Kenai Lake 132.0 167.7 
 

0 0.00 
 

2 0.01 
 

2 0.01 
19 Quartz Creek 136.5 136.5 

 
9 0.04 

 
32 0.14 

 
4 0.02 

20 Trail River-Ptarmagin Creek Staging Area 160.9 160.9 
 

0 0.00 
 

0 0.00 
 

0 0.00 
21 Trail River-Ptarmagin Creek 160.9 160.9 

 
5 0.02 

 
2 0.01 

 
11 0.05 

22 Snow River Staging Area 167.7 167.7 
 

0 0.00 
 

0 0.00 
 

0 0.00 
23 Snow River 167.7 167.7 

 
0 0.00 

 
2 0.01 

 
0 0.00 

24 Quartz Creek Staging Area 136.5 136.5 
 

1 0.00 
 

2 0.01 
 

0 0.00 

             
 

Sport Caught 
   

13 0.06 
 

33 0.14 
 

39 0.17 

 
Dip Net Caught 

   
2 0.01 

 
0 0.00 

 
0 0.00 

 
Returned (unknown) 

   
2 0.01 

 
2 0.01 

 
0 0.00 

             
 

Total 
   

215 1.00 
 

234 1.00 
 

232 1.00 
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Table 9.–Mean migration time (days) and speed (km day-1) of radiotagged sockeye salmon between 4 fixed radiotelemetry stations on the 
mainstem Kenai River, 2007. 

 
rkm 31.1-45.1 

 
rkm 45.1-80.5 

 
rkm 80.5-104.6 

 
rkm 104.6-132.0 

Week  Mean SE n 
 

Mean SE n 
 

Mean SE n 
 

Mean SE n 

 
Migration Time (days) 

7/01–7/7 3.5 2.9 8 
 

3.5 1.9 4 
 

7.7 6.1 3 
 

16.3 18.1 3 
7/08–7/14 2.9 3.1 17 

 
9.0 - 1 

 
40.0 - 1 

 
13.1 4.5 8 

7/15–7/21 1.7 1.2 47 
 

6.5 13.2 30 
 

21.4 16.9 17 
 

10.6 6.1 17 
7/22–7/28 2.9 2.1 42 

 
5.7 11.8 32 

 
27.9 15.6 21 

 
20.0 12.8 7 

7/29–8/04 3.0 3.8 13 
 

8.3 8.9 12 
 

12.5 12.4 18 
 

3.0 0.0 2 
8/05–8/11 1.7 0.7 20 

 
7.3 10.5 19 

 
12.9 15.6 22 

 
6.7 9.5 6 

8/12–8/18 1.5 0.8 13 
 

7.6 14.1 10 
 

12.3 12.2 8 
 

10.5 4.9 2 
8/19–8/25 2.0 0.0 3 

 
4.5 2.1 2 

 
17.0 - 1 

 
- - - 

Mean 2.3 0.2 163 
 

6.6 1.1 110 
 

18.0 1.7 91 
 

12.0 1.4 45 
P-value 0.019 

   
0.994 

   
0.010 

   
0.096 

  
 

Migration Speed (km day-1) 
7/01–7/7 5.6 4.3 7 

 
12.2 5.9 4 

 
9.9 13.1 3 

 
4.0 4.1 3 

7/08–7/14 8.0 4.3 17 
 

3.8 - 1 
 

0.6 - 1 
 

2.2 0.8 8 
7/15–7/21 10.4 4.2 46 

 
14.8 9.5 30 

 
2.7 2.5 17 

 
3.5 2.2 17 

7/22–7/28 6.9 4.1 42 
 

12.3 7.9 30 
 

2.1 3.1 21 
 

1.8 1.3 7 
7/29–8/04 8.3 4.4 13 

 
10.6 12.2 11 

 
6.9 7.9 18 

 
8.5 0.0 2 

8/05–8/11 9.9 3.8 20 
 

13.0 9.8 19 
 

7.4 7.2 22 
 

8.3 4.4 6 
8/12–8/18 10.9 4.1 13 

 
13.9 9.3 10 

 
6.5 8.0 8 

 
2.7 1.3 2 

8/19–8/25 7.0 0.0 3 
 

8.6 4.1 2 
 

1.5 - 1 
 

- - - 
Mean 8.8 0.3 161 

 
12.9 0.9 107 

 
5.1 0.7 91 

 
3.9 0.5 45 

P-value 0.001 
   

0.820 
   

0.052 
   

0.001 
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Table 10.–Mean migration time (days) and speed (km day-1) of radiotagged sockeye salmon between 4 fixed radiotelemetry stations on the 
mainstem Kenai River, 2008. 

 
rkm 31.1-45.1 

 
rkm 45.1-80.5 

 
rkm 80.5-104.6 

 
rkm 104.6-132.0 

Week  Mean SE n 
 

Mean SE n 
 

Mean SE n 
 

Mean SE n 

 
Migration Time (days) 

7/01-7/7 - - - 
 

- - - 
 

- - - 
 

- - - 
7/08-7/14 2.0 

 
1 

            7/15-7/21 3.1 2.1 41 
 

7.4 7.7 37 
 

13.4 11.2 31 
 

6.8 4.8 13 
7/22-7/28 2.8 1.4 17 

 
4.9 3.2 14 

 
12.1 9.9 8 

 
7.0 4.5 4 

7/29-8/04 2.2 1.3 72 
 

5.2 4.2 62 
 

13.7 11.1 50 
 

8.0 4.7 9 
8/05-8/11 2.9 1.4 22 

 
7.2 6.9 21 

 
11.2 4.5 13 

 
11.0 2.8 2 

8/12-8/18 2.2 1.2 27 
 

4.1 3.0 23 
 

6.1 3.5 15 
 

6.0 
 

1 
8/19-8/25 

               Mean 2.5 0.1 180 
 

5.8 0.4 157 
 

12.2 0.9 117 
 

7.5 0.8 29 
P-value 0.020 

   
0.090 

   
0.119 

   
0.805 

  
 

Migration Speed (km day-1) 
7/01-7/7 - - - 

 
- - - 

 
- - - 

 
- - - 

7/08-7/14 7.0 
 

1 
            7/15-7/21 6.0 3.6 41 
 

10.4 9.0 37 
 

4.2 5.0 30 
 

5.5 3.6 13 
7/22-7/28 6.9 4.3 17 

 
10.5 7.9 14 

 
5.0 4.6 8 

 
5.4 4.6 4 

7/29-8/04 8.2 4.2 69 
 

10.5 7.5 62 
 

4.4 4.8 50 
 

4.5 2.9 9 
8/05-8/11 6.2 3.5 22 

 
8.7 7.5 21 

 
3.4 3.2 13 

 
2.3 0.6 2 

8/12-8/18 7.8 4.0 26 
 

12.6 8.4 23 
 

6.2 4.0 15 
 

4.1 
 

1 
8/19-8/25 

               Mean 7.3 0.3 176 
 

10.5 0.6 157 
 

4.5 0.4 116 
 

4.9 0.6 29 
P-value 0.068 

   
0.624 

   
0.562 

   
0.763 
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Figure 1.–Map of the Cook Inlet basin indicating location of Kenai River and other selected streams.
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Figure 2.–Map of the study area within the Kenai River watershed.   

Radiotelemetry 

Radiotelemetry 

Radiotelemetry 



 

 42 

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0 500 1000 1500 2000

Hours

P
(D

ai
ly

 C
o

u
n

t)

 
Note:  These data are from 2000. 

Figure 3.–Typical plot of proportion of total daily sonar counts observed by hour at rkm 31.1.  
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Figure 4.–Daily DIDSON sockeye salmon abundance estimates, number of PIT tags applied, fish wheel catch and fish wheel hours of operation 
at rkm 31.1, 2006–2008.
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Figure 5.–Daily number of sockeye salmon scanned for tags and number of PIT tags detected at the rkm 45.1 fish wheels and at the Hidden and 

Russian River weirs, 2006–2008.
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Figure 6.–Number of PIT tags applied at rkm 31.1 (n1), number of sockeye salmon scanned for tags (n2), number of PIT tags detected (m2) at 

the rkm 45.1 fish wheels, Hidden and Russian river weirs and the probability of being tagged at rkm 31.1 (p1) in relationship to salmon length in 
2006.   
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Figure 7.–Number of PIT tags applied at rkm 31.1 (n1), number of sockeye salmon scanned for tags (n2), number of PIT tags detected (m2) at 

Hidden and Russian river weirs and the probability of being tagged at rkm 31.1 (p1) in relationship to salmon length in 2007. 
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Figure 8.–Number of PIT tags applied at rkm 31.1 (n1), number of sockeye salmon scanned for tags (n2), number of PIT tags detected (m2) at 

Hidden and Russian river weirs and the probability of being tagged at rkm 31.1 (p1) in relationship to salmon length in 2008.  
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 Note:  Abundance estimates included only those fish lengths present at both weirs, i.e. 2006: 470–569 mm, 2007: 

450–609 mm, and 2008: 450–569 mm.  The error bars in the graph represent 95% confidence intervals. The slope 
of the regression equation (m=0.90, se=0.07) was not significantly different from one (P=0.269). 
Figure 9.–Relationship between DIDSON and pooled mark–recapture estimates of sockeye salmon 

abundance passing rkm 31.1 on the Kenai River, 2006–2008.   
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Figure 10.–(a) DIDSON estimates of sockeye salmon passage at rkm 31.1 and number of radio tags applied each week. (b) Weekly weighted 
proportion of total number of radio tags released at rkm 31.1 and later relocated in 4 major spawning areas within the Kenai River watershed, 
2006–2008. 
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Note:  Numbers in boxes indicate multiple tagged fish relocated at the same site. 
Figure 11.–Final destinations of radiotagged sockeye salmon (solid circles) in the Kenai River watershed in 2006.   
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Note:  Numbers in boxes indicate multiple tagged fish relocated at the same site. 
Figure 12.–Final destinations of radiotagged sockeye salmon (solid circles) in the Kenai River watershed in 2007.   
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Note:  Numbers in boxes indicate multiple tagged fish relocated at the same site. 
Figure 13.–Final destinations of radiotagged sockeye salmon (solid circles) in the Kenai River watershed in 2008.   



 

 53 

APPENDIX A



 

 

54 

 
Note:  Numbers in boxes indicate multiple tagged fish relocated at the same site. 
Appendix A1.–Final destinations of radiotagged sockeye salmon (solid circles) in the Kenai River watershed that apparently died before 

reaching their spawning grounds in 2006.   



 

 

55 

 
Note:  Numbers in boxes indicate multiple tagged fish relocated at the same site. 
Appendix A2.–Final destinations of radiotagged sockeye salmon (solid circles) in the Kenai River watershed that apparently died before 

reaching their spawning grounds in 2007.   
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Note:  Numbers in boxes indicate multiple tagged fish relocated at the same site. 
Appendix A3.–Final destinations of radiotagged sockeye salmon (solid circles) in the Kenai River watershed that apparently died before 

reaching their spawning grounds in 2008. 
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