# **Production of Unuk River Chinook Salmon through** 2008 from the 1992–2005 Broods

by Jan L. Weller and David G. Evans

February 2012

Alaska Department of Fish and Game

**Divisions of Sport Fish and Commercial Fisheries** 



#### **Symbols and Abbreviations**

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

| Weights and measures (metric)  |                    | General                  |                   | Mathematics, statistics        |                         |  |
|--------------------------------|--------------------|--------------------------|-------------------|--------------------------------|-------------------------|--|
| centimeter                     | cm                 | Alaska Administrative    |                   | all standard mathematical      |                         |  |
| deciliter                      | dL                 | Code                     | AAC               | signs, symbols and             |                         |  |
| gram                           | g                  | all commonly accepted    |                   | abbreviations                  |                         |  |
| hectare                        | ha                 | abbreviations            | e.g., Mr., Mrs.,  | alternate hypothesis           | H <sub>A</sub>          |  |
| kilogram                       | kg                 |                          | AM, PM, etc.      | base of natural logarithm      | е                       |  |
| kilometer                      | km                 | all commonly accepted    |                   | catch per unit effort          | CPUE                    |  |
| liter                          | L                  | professional titles      | e.g., Dr., Ph.D., | coefficient of variation       | CV                      |  |
| meter                          | m                  |                          | R.N., etc.        | common test statistics         | (F, t, $\chi^2$ , etc.) |  |
| milliliter                     | mL                 | at                       | a                 | confidence interval            | CI                      |  |
| millimeter                     | mm                 | compass directions:      |                   | correlation coefficient        |                         |  |
|                                |                    | east                     | E                 | (multiple)                     | R                       |  |
| Weights and measures (English) |                    | north                    | Ν                 | correlation coefficient        |                         |  |
| cubic feet per second          | ft <sup>3</sup> /s | south                    | S                 | (simple)                       | r                       |  |
| foot                           | ft                 | west                     | W                 | covariance                     | cov                     |  |
| gallon                         | gal                | copyright                | ©                 | degree (angular)               | 0                       |  |
| inch                           | in                 | corporate suffixes:      |                   | degrees of freedom             | df                      |  |
| mile                           | mi                 | Company                  | Co.               | expected value                 | Ε                       |  |
| nautical mile                  | nmi                | Corporation              | Corp.             | greater than                   | >                       |  |
| ounce                          | OZ                 | Incorporated             | Inc.              | greater than or equal to       | ≥                       |  |
| pound                          | lb                 | Limited                  | Ltd.              | harvest per unit effort        | HPUE                    |  |
| quart                          | qt                 | District of Columbia     | D.C.              | less than                      | <                       |  |
| vard                           | vd                 | et alii (and others)     | et al.            | less than or equal to          | $\leq$                  |  |
| -                              | 5                  | et cetera (and so forth) | etc.              | logarithm (natural)            | ln                      |  |
| Time and temperature           |                    | exempli gratia           |                   | logarithm (base 10)            | log                     |  |
| day                            | d                  | (for example)            | e.g.              | logarithm (specify base)       | $\log_2$ etc.           |  |
| degrees Celsius                | °C                 | Federal Information      |                   | minute (angular)               | ,                       |  |
| degrees Fahrenheit             | °F                 | Code                     | FIC               | not significant                | NS                      |  |
| degrees kelvin                 | Κ                  | id est (that is)         | i.e.              | null hypothesis                | Ho                      |  |
| hour                           | h                  | latitude or longitude    | lat. or long.     | percent                        | %                       |  |
| minute                         | min                | monetary symbols         | -                 | probability                    | Р                       |  |
| second                         | s                  | (U.S.) \$, ¢             |                   | probability of a type I error  |                         |  |
|                                |                    | months (tables and       |                   | (rejection of the null         |                         |  |
| Physics and chemistry          |                    | figures): first three    |                   | hypothesis when true)          | α                       |  |
| all atomic symbols             |                    | letters                  | Jan,,Dec          | probability of a type II error |                         |  |
| alternating current            | AC                 | registered trademark     | ®                 | (acceptance of the null        |                         |  |
| ampere                         | А                  | trademark                | TM                | hypothesis when false)         | β                       |  |
| calorie                        | cal                | United States            |                   | second (angular)               | "                       |  |
| direct current                 | DC                 | (adjective)              | U.S.              | standard deviation             | SD                      |  |
| hertz                          | Hz                 | United States of         |                   | standard error                 | SE                      |  |
| horsepower                     | hp                 | America (noun)           | USA               | variance                       |                         |  |
| hydrogen ion activity          | рН                 | U.S.C.                   | United States     | population                     | Var                     |  |
| (negative log of)              |                    |                          | Code              | sample                         | var                     |  |
| parts per million              | ppm                | U.S. state               | use two-letter    | 1                              |                         |  |
| parts per thousand             | ppt,               |                          | abbreviations     |                                |                         |  |
| 1 F                            | <b>%</b> 0         |                          | (e.g., AK, WA)    |                                |                         |  |
| volts                          | V                  |                          |                   |                                |                         |  |
| watts                          | W                  |                          |                   |                                |                         |  |

## FISHERY DATA SERIES NO. 12-04

### PRODUCTION OF UNUK RIVER CHINOOK SALMON THROUGH 2008 FROM THE 1992–2005 BROODS

by

Jan L. Weller Division of Sport Fish, Ketchikan

and

David G. Evans Division of Sport Fish, Anchorage

Alaska Department of Fish and Game Division of Sport Fish, Research and Technical Services 333 Raspberry Road, Anchorage, Alaska, 99518-1565

February 2012

This investigation was partially financed by the Federal Aid in Sport Fish Restoration Act (16 U.S.C. 777-777K) under Project F-10-23, and F-10-24 Job No. S-1-8.

ADF&G Fishery Data Series was established in 1987 for the publication of Division of Sport Fish technically oriented results for a single project or group of closely related projects, and in 2004 became a joint divisional series with the Division of Commercial Fisheries. Fishery Data Series reports are intended for fishery and other technical professionals and are available through the Alaska State Library and on the Internet: http://www.adfg.alaska.gov/sf/publications/. This publication has undergone editorial and peer review.

Jan L. Weller<sup>a</sup>, Alaska Department of Fish and Game, Division of Sport Fish, Ketchikan, AK, USA

and

David G. Evans, Alaska Department of Fish and Game, Division of Sport Fish Anchorage, AK, USA

<sup>a</sup> Author to whom all correspondence should be addressed: <u>jan.weller@alaska.gov</u>

This document should be cited as:

Weller, J. L., and D. G. Evans. 2012. Production of Unuk River Chinook salmon through 2008 from the 1992–2005 broods. Alaska Department of Fish and Game, Fishery Data Series No. 12-04, Anchorage.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write: ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526 U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203 Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

**The department's ADA Coordinator can be reached via phone at the following numbers:** (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648,

(Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

**For information on alternative formats and questions on this publication, please contact:** ADF&G, Division of Sport Fish, Research and Technical Services, 333 Raspberry Rd, Anchorage AK 99518 (907) 267-2375

# TABLE OF CONTENTS

## Page

| LIST OF TABLES                                                                                                                                                                  | ii                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| LIST OF FIGURES                                                                                                                                                                 | iii                        |
| LIST OF APPENDICES                                                                                                                                                              | iv                         |
| ABSTRACT                                                                                                                                                                        | 1                          |
| INTRODUCTION                                                                                                                                                                    | 1                          |
| STUDY AREA                                                                                                                                                                      | 5                          |
| METHODS                                                                                                                                                                         | 5                          |
| Adult Abundance                                                                                                                                                                 | 5                          |
| Event 1: Sampling in the Lower River<br>Event 2: Sampling on the Spawning Grounds<br>Abundance by Size                                                                          | 5<br>7<br>8                |
| Expansion Factor                                                                                                                                                                | 10                         |
| Migratory Timing                                                                                                                                                                | 11                         |
| Age and Sex Composition                                                                                                                                                         | 11                         |
| Smolt Abundance And Overwinter Survival                                                                                                                                         | 12                         |
| Juvenile Chinook Salmon Capture, Tagging, and Sampling<br>Smolt Abundance                                                                                                       | 12<br>12                   |
| Harvest, Incidental Fishing Mortality, Total Fishing Mortality, Production, and Exploitation Rate Estimates                                                                     | 15                         |
| Estimation of Fraction of Adults Bearing CWTs<br>Harvest<br>Incidental and Total Fishing Mortality<br>Production, Exploitation Rate, and Marine Survival Estimation<br>RESULTS. | 15<br>16<br>21<br>24<br>26 |
| 2007 Mark Recapture Study                                                                                                                                                       |                            |
| Event 1: Sampling in the Lower River<br>Event 2: Sampling on the Spawning Grounds<br>Abundance by Size                                                                          |                            |
| Expansion Factor                                                                                                                                                                | 31                         |
| Age and Sex Composition                                                                                                                                                         |                            |
| Migratory Timing                                                                                                                                                                | 32                         |
| 2008 Mark Recapture Study                                                                                                                                                       |                            |
| Event 1: Sampling in the Lower River<br>Event 2: Sampling on the Spawning Grounds<br>Abundance by Size                                                                          |                            |
| Expansion Factor                                                                                                                                                                |                            |
| Migratory Timing                                                                                                                                                                | 41                         |
| Age and Sex Composition                                                                                                                                                         | 41                         |
| Smolt Abundance And Overwinter Survival                                                                                                                                         | 43                         |
| Harvest, Incidental Fishing Mortality, Total Fishing Mortality, Production, Exploitation Rate, and Marine Surv<br>Rate Estimates                                                | vival<br>48                |
| Estimation of Fraction of Adults Bearing CWTs<br>Fishing Mortality, Production, Exploitation, and Marine Survival<br>DISCUSSION                                                 |                            |

# TABLE OF CONTENTS (Continued)

|                                 | Page |
|---------------------------------|------|
| CONCLUSIONS AND RECOMMENDATIONS |      |
| ACKNOWLEDGMENTS                 |      |
| REFERENCES CITED                |      |
| APPENDIX A                      | 71   |
| APPENDIX B                      |      |
| APPENDIX C                      |      |
|                                 |      |

# LIST OF TABLES

### Table

## Page

| 1.  | Capture histories for large Chinook salmon in the population spawning in the Unuk River in 2007 and 2008                                                                                    | 9  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.  | Numbers of marked Chinook salmon $\geq$ 660 mm MEF and 595–659 mm MEF released in the lower                                                                                                 |    |
|     | Unuk River in 2007, and the numbers of marked Chinook salmon $\geq 660$ mm MEF and 540–659 mm MEF released in the lower Unuk River in 2008, by marking period, and the number inspected for |    |
|     | marks and recaptured at each recovery location.                                                                                                                                             | 27 |
| 3.  | Peak survey counts, mark-recapture estimates of abundance, expansion factors, and other statistics for                                                                                      |    |
|     | large Chinook salmon in the Unuk River (1997–2008 and 1997–2008 average)                                                                                                                    | 30 |
| 4.  | Estimated mean date of migration of Chinook salmon stocks past SN1 on the Unuk River from 1997–                                                                                             |    |
| -   | 2008, standard error, and sample size.                                                                                                                                                      | 33 |
| 5.  | Estimated age and sex composition of the escapement of small, large, and combined small- and large-                                                                                         | 24 |
| 6   | Sized Uninook salmon in the Unuk Kiver in 2007, as determined from spawning grounds samples                                                                                                 | 34 |
| 0.  | sampled in the Unuk River in 2007                                                                                                                                                           | 36 |
| 7   | Estimated age and sex composition of the escapement of small large and combined small and large                                                                                             |    |
| ,.  | sized Chinook salmon in the Unuk River in 2008, as determined from inriver set gillnet (large fish)                                                                                         |    |
|     | and spawning grounds samples (small fish).                                                                                                                                                  | 42 |
| 8.  | Estimated average length (MEF in mm) by age class, sex, and sampling event of Chinook salmon                                                                                                |    |
|     | sampled in the Unuk River in 2008                                                                                                                                                           | 43 |
| 9.  | Number of fall fingerlingand spring smolt released with adipose fin clips, the estimated number of                                                                                          |    |
|     | those fish that were released with valid CWTs, the number of fish with valid coded wire tags that                                                                                           |    |
|     | were subsequently recovered, the estimated proportion of coded wire tagged fingerlings that survived                                                                                        |    |
|     | to the following spring, the estimated number of adipose-finclipped fingerlings that survived to smolt,                                                                                     | 16 |
| 10  | The estimated total number of smalt released with adipose fin aligns the number of returning adults that                                                                                    | 40 |
| 10. | were examined in river for the presence of an adipose fin clip, the number of fish examined that                                                                                            |    |
|     | possessed an adjoose fin clip, the estimated abundance of smolt and the associated standard error of the                                                                                    |    |
|     | estimate, and the estimated abundance of fingerlings and the associated error of the estimate. 1992–                                                                                        |    |
|     | 2005 brood years.                                                                                                                                                                           | 47 |
| 11. | The number of returning adults that were examined inriver for the presence of an adipose fin clip, the                                                                                      |    |
|     | number of fish examined that possessed an adipose fin clip, the number of adipose-finclipped fish that                                                                                      |    |
|     | were sacrificed for coded wire tag verification, the number of sacrificed fish that possessed a valid                                                                                       |    |
|     | Unuk River Chinook salmon coded wire tag, the estimated fraction of adults that possessed a valid                                                                                           |    |
|     | Unuk River Chinook salmon coded wire tag $\theta$ and the associated standard error, and the estimated                                                                                      |    |
| 10  | variance and squared coefficient of variability for $\theta - 1$ , 1992–2005 brood years.                                                                                                   | 49 |
| 12. | Nominal estimates of landed catch, incidental mortality, spawning abundance, and total returns of                                                                                           | 50 |
| 13  | Unuk Kivei Uninook saimon, by age class, for Drood years 1992–2005                                                                                                                          | 32 |
| 13. | (1992–2005)                                                                                                                                                                                 | 53 |
|     | (1)/2 2000)                                                                                                                                                                                 |    |

# LIST OF TABLES (Continued)

| Table |                                                                                                                                                                                                                                                                                                                                                | Page     |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 14.   | Estimates of landed catch, incidental mortality, spawning abundance, total return, and exploitation rate of Unuk River Chinook salmon in adult equivalents (AEQs) for the 1992–2005 broods through return year 2008.                                                                                                                           | e<br>54  |
| 15.   | Nominal harvest estimates of Unuk River Chinook salmon from the 1992–2005 broods, by gear type, through 2008                                                                                                                                                                                                                                   | 55       |
| 16.   | Nominal harvest estimates of Unuk River Chinook salmon from the 1992–2005 broods, by harvest location, through 2008.                                                                                                                                                                                                                           | 56       |
| 17.   | Estimated spawning abundanc, landed catch, incidental fishing mortalit, fishing mortalit, total return of productio, exploitation rat, and marine survival rate for the 1992–2005 broods, through 2008, using adult equivalents.                                                                                                               | or<br>57 |
| 18.   | Nominal estimates of landed catch, incidental mortality, spawning abundance, and total returns of Unuk River Chinook salmon, by age class and return year, 1995–2008. Rounding error is present                                                                                                                                                | 61       |
| 19.   | Estimates of landed catch, incidental mortality, spawning abundance, and total returns of Unuk River Chinook salmon in adult equivalents, by age class and return year, 1995–2008.                                                                                                                                                             | 62       |
| 20.   | Number of Chinook salmon <21 in TL (approximately 530 mm TL) reported in the ADF&G Division of Commercial Fisheries Mark Tag and Age Laboratory's database as landed catch (harvest), and sampled for coded wire tags, from traditional purse seine fisheries in Southeast Alaska Districts 101–106 (DANEL A) and Districts 107–114, 1008–2008 | CA       |
|       | 100 (PANEL A) and Districts 107–114, 1998–2008                                                                                                                                                                                                                                                                                                 | 64       |

# LIST OF FIGURES

| Figure | F                                                                                                                                                                               | Page            |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 1.     | Behm Canal area in Southeast Alaska and the location of selected Chinook salmon systems and hatcheries.                                                                         | 2               |
| 2.     | Unuk River area in Southeast Alaska, showing major tributaries, barriers to Chinook salmon migration, and location of ADF&G research sites.                                     | 4               |
| 3.     | Location of the set gillnet site (SN1) on the lower Unuk River in 2007 and 2008.                                                                                                | 6               |
| 4.     | Net placement used at the set gillnet site on the lower Unuk River in 2007 and 2008                                                                                             | 6               |
| 5.     | Southeast Alaska experimental troll fishing areas                                                                                                                               | 17              |
| 6.     | Southeast Alaska commercial fishing districts and creel census ports.                                                                                                           | 19              |
| 7.     | Southeast Alaska troll fishery quadrants.                                                                                                                                       | 20              |
| 8.     | Northern British Columbia fishery management areas.                                                                                                                             | 20              |
| 9.     | Effort (in hours of soak time) and catch of Chinook salmon by date at SN1 on the Unuk River, 2007                                                                               | 26              |
| 10.    | Cumulative relative frequencies of large Chinook salmon marked in the lower Unuk River in 2007 compared with those recentured on the spawning grounds                           | 28              |
| 11.    | Cumulative relative frequencies of large Chinook salmon marked in the lower Unuk River in 2007 compared with those inspected on the spawning grounds                            | 20              |
| 12.    | Cumulative relative frequencies of large Chinook salmon inspected on the spawning grounds in 2007 compared with those recentured on the spawning grounds.                       | <i>2)</i><br>20 |
| 13.    | Preferred estimates of spawning abundance and associated standard errors for large Chinook salmon in the Unuk River relative to the biological escapement goal range, 1977–2008 | 29              |
| 14.    | Cumulative relative frequencies of Chinook salmon 595–659 mm MEF marked in the lower Unuk<br>River in 2007 compared with those inspected on the spawning grounds                | 32              |
| 15.    | Cumulative relative frequencies of Chinook salmon 595–659 mm MEF marked in the lower Unuk<br>River in 2007 compared with those recaptured on the spawning grounds               | 32              |
| 16.    | Cumulative relative frequencies of Chinook salmon 595–659 mm MEF inspected on the spawning grounds in 2007 compared with those recaptured on the spawning grounds.              | 35              |
| 17.    | Effort (in hours of soak time) and catch of Chinook salmon by date at SN1 on the Unuk River, 2008                                                                               | 35              |
| 18.    | .Cumulative relative frequencies of large Chinook salmon marked in the lower Unuk River in 2008 compared with those recaptured on the spawning grounds.                         | 37              |
| 19.    | Cumulative relative frequencies of large Chinook salmon marked in the lower Unuk River in 2008 compared with those inspected on the spawning grounds.                           | 37              |

# LIST OF FIGURES & ROMOXHG

| Figure |                                                                                                                                                                    | Page |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 20.    | Cumulative relative frequencies of large Chinook salmon inspected on the spawning grounds in 2008 compared with those recaptured on the spawning grounds           |      |
| 21.    | Cumulative relative frequencies of Chinook salmon 540–659 mm MEF marked in the lower Unuk River in 2008 compared with those inspected on the spawning grounds      | 40   |
| 22.    | Cumulative relative frequencies of Chinook salmon 540–659 mm MEF marked in the lower Unuk<br>River in 2008 compared with those recaptured on the spawning grounds  | 40   |
| 23.    | Cumulative relative frequencies of Chinook salmon 540–659 mm MEF inspected on the spawning grounds in 2008 compared with those recaptured on the spawning grounds. | 41   |

# LIST OF APPENDICES

| Appe | ndix                                                                                                                                                                                                                                                                                                                                                                                              | Page           |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Â1.  | Detection of size- and/or sex-selective sampling during a two-sample mark-recapture experiment and                                                                                                                                                                                                                                                                                                | U              |
|      | its effects on estimation of population size and population composition.                                                                                                                                                                                                                                                                                                                          | 72             |
| A2.  | Tests of consistency for the Petersen estimator                                                                                                                                                                                                                                                                                                                                                   | 75             |
| A3.  | Predicting escapement from index counts using an expansion factor.                                                                                                                                                                                                                                                                                                                                | 76             |
| A4.  | Peak survey counts, and abundance estimates with associated estimates of standard error, of the spawning population of large Chinook salmon in the Unuk River using the 1997–2004 mean expansion factor (EF), the 1997–2007 mean EF, and the results from mark-recapture studies, 1977–2008.                                                                                                      | 79             |
| A5.  | Elapsed time between release and recapture of Chinook salmon in the lower Unuk River in 2007                                                                                                                                                                                                                                                                                                      | 80             |
| A6.  | Estimated annual escapement of Chinook salmon in the Unuk River by age class and gender, 1997-                                                                                                                                                                                                                                                                                                    | -              |
|      | 2008                                                                                                                                                                                                                                                                                                                                                                                              | 82             |
| A7.  | Elapsed time between release and recapture (sulking period) of Chinook salmon in the lower Unuk<br>River in 2008                                                                                                                                                                                                                                                                                  | 84             |
| B1.  | Numbers of Unuk River Chinook salmon fall fingerlings and spring smolt captured and released after excision of the adipose fin and the number of adipose-clipped fish implanted with coded wire tags and estimated to have retained their tags for 24 hours. 1993- spring 2009                                                                                                                    | 86             |
| B2.  | Number of Unuk River Chinook salmon smolt caught in the spring and subsequently released wit valid coded wire tags, mean smolt length and weight, and water temperature and depth, 2005–2009                                                                                                                                                                                                      | th<br>88       |
| B3.  | Number of Unuk River Chinook salmon fingerlings caught in the fall and subsequently released with valid coded wire tags, mean smolt length and weight, and water temperature and depth, 2005–2008                                                                                                                                                                                                 | 93             |
| B4.  | Mean length, weight, and associated statistics of Unuk River Chinook salmon spring smolt and fall fingerlings, 1978 through spring of 2009.                                                                                                                                                                                                                                                       | 97             |
| B5.  | Numbers of Unuk River Chinook salmon examined for adipose fin clips, sacrificed for coded wir tags sampling purposes, valid CWT's decoded, percentage of sacrificed fish with valid coded wir tags, percentage of fish examined with adipose fin clips, the estimated fraction of examined fish with valid tags, by age class and mark-recapture sampling event, 1998 brood through 2008 returns. | re<br>re<br>98 |
| B6.  | Estimated marine harvest of Chinook salmon from the 1992–2004 broods, bound for the Unuk River, and associated statistics, by harvest strata, from 1995–2008.                                                                                                                                                                                                                                     | ,<br>102       |
| B7.  | Voluntary recoveries of Chinook salmon possessing a valid Unuk River Chinook salmon CWT from 1995 to 2008.                                                                                                                                                                                                                                                                                        | 118            |
| C1.  | Computer files used in the creation of this manuscript.                                                                                                                                                                                                                                                                                                                                           | 120            |

# ABSTRACT

Two-event mark-recapture experiments were used to estimate the abundance of Chinook salmon *Oncorhynchus tshawytscha* that returned to spawn in the Unuk River in 2007 and 2008. Biological data were collected during both events. Each apparently healthy fish was marked with a numbered solid-core spaghetti tag sewn through its back and 2 secondary batch marks in the form of an upper-left operculum punch and removal of the left axillary appendage. In event 2, fish were examined on the spawning grounds to estimate the fraction of the population that had been marked.

Abundance of large Chinook salmon ( $\geq 660 \text{ mm MEF}$ ) was estimated to be 5, 668 (SE = 446) in 2007 and 3,104 (SE = 357) in 2008. The estimates were made from 577 marked and 114 recaptured fish out of 1,127 examined upstream in 2007, and 557 marked and 54 recaptured fish out of 242 examined upstream in 2008. Using indirect methods, abundance of fish <660 mm MEF was estimated to be 961 (SE = 106) in 2007 and 875 (SE = 146) in 2008.

As part of a stock assessment program that began in fall 1993 (1992 brood year), coded wire tags (CWTs) were implanted in juvenile Chinook salmon on the Unuk River each fall and spring from 2005 to 2008. Harvest, harvest distribution, incidental harvest mortality, and total fishing mortality were estimated for the 1992–2005 brood year returns through 2008. Estimates of spawning abundance derived from the inriver mark-recapture studies (1994 and 1997–2008), escapement age-sex-length data (1995–2008), and CWT study results were used to estimate total production, marine survival, and exploitation rates for the 1992–2005 broods, through 2008.

The adipose fins of CWT fish were also excised as the first event in a two-event mark recapture study in order to estimate smolt abundance for the 1992–2005 broods. Smolt abundance and CWT release and recovery information were used to estimate fingerling abundance and the overwinter survival rate of fingerling Chinook salmon from the 1992–2005 broods.

Key words: abundance, Chinook salmon, Unuk River, mark-recapture, spaghetti tag, axillary appendage, coded wire tags, harvest, harvest distribution, incidental mortality, fishing mortality, marine survival, exploitation rates, production, overwinter survival, fingerlings, smolt

## **INTRODUCTION**

The Unuk River is 1 of 11 escapement indicator streams for Chinook salmon *Oncorhynchus tshawytscha* in Southeast Alaska (SEAK; Pahlke 1997). This system traverses the Misty Fjords National Monument and flows into Behm Canal, a narrow saltwater passage north and east of Ketchikan (Figure 1). The Unuk River is the largest Chinook salmon producer in Behm Canal. Peak single-day aerial and foot survey counts of "large" Chinook salmon  $\geq 660$  mm MEF have been used as an index of escapement for the Unuk River. From 1979 t o 1989, the index is roughly dome shaped, with peak values occurring in 1984 (1,837 fish) and 1986 (2,126 fish; Pahlke 1997); the survey count averaged 1,347 during this period. From 1990 to 2000 the index values declined, averaging only 849 fish, or 63% of the previous 11-year period. Survey counts increased from 2001to 2006 (Weller and Evans 2009), averaging 1,152 fish, with a peak count of 2,019 fish in 2001.

Low Unuk River survey counts in the early 1990s coincided with similar declines in the three other Behm Canal indicator stocks, the Chickamin, Blossom, and Keta River stocks (Pahlke, 1996; Figure 1), and prompted concern over the health of the Chinook salmon population in Behm Canal. In 1992, the Alaska Department of Fish and Game (ADF&G), Division of Sport Fish began a research program on the Unuk River. Goals of the program were to estimate overwinter survival of fingerlings, production and marine survival of smolts, escapement and harvest of adults, total production, exploitation rates, and ultimately to estimate a biological escapement goal (BEG) for this stock. These goals are being accomplished with inriver mark-recapture experiments on adult and juvenile Chinook salmon, and with marine catch sampling programs.



Figure 1.-Behm Canal area in Southeast Alaska and the location of selected Chinook salmon systems and hatcheries.

A BEG for the Unuk River of 650–1,400 large fish counted in surveys, or an actual escapement of about 3,000–7,000 large fish, was established in 1997 (McPherson and Carlile 1997). Only large fish are counted in surveys because smaller Chinook salmon are readily mistaken for other salmon species of similar size and color. For our purposes, Chinook salmon  $\geq$ 660 mm MEF are considered large and are generally fish 3-ocean age (age-.3) or older. Nearly all females in the spawning population are classified as large. An index of escapement on the Unuk River is determined each year as the peak count of large spawners observed during several aerial and foot surveys of 6 tributaries: Cripple, Gene's Lake, Kerr, Clear, and Lake creeks, plus the Eulachon River (Pahlke 1997; Figure 2).

Mark-recapture and radio telemetry studies were conducted in 1994 (Pahlke 1996). Mark-recapture studies have also been conducted annually from 1997 through 2006 (Jones III et al. 1998; Jones III and McPherson 1999, 2000, 2002; Weller and McPherson 2003a-b, 2004, 2006 a-b; Weller and Evans 2009). The radio telemetry study indicated that 83% (SE = 9%) of all spawning occurred in the six tributaries surveyed. The 1997–2006 mark-recapture experiments estimated that an average of 5,431 large Chinook salmon entered the river during those years and ranged from 2,970 (1997) to 10,541 (2001; Weller and Evans 2009). Indices during those years averaged 1,041 large Chinook salmon, or 19.6% of the mark-recapture estimates, and ranged from 636 (1997) to 2,019 (2001). The highest recorded index of 2,126 large fish occurred in 1986 (Pahlke 1997). From 1977 to 2006, average peak survey counts in the six index tributaries of the Unuk River were distributed as follows: Cripple Creek (405 fish, 37%), Gene's Lake Creek (370 fish, 33%), Eulachon River (158 fish, 14%), Clear Creek (103 fish, 9%), Kerr Creek (39 fish, 4%), and Lake Creek (32 fish, 3%). Cripple Creek and Gene's Lake Creek are not surveyed from the air because of heavy canopy cover; surveys of these areas are made on foot. All other index areas are surveyed by helicopter or on foot (Pahlke 2009, 2010).

Other studies on the Unuk River were based on coded wire tags (CWTs) inserted into Chinook salmon juveniles from the 1982–1986 brood years (Pahlke 1995). This research estimated that commercial and sport harvest rates on the Unuk River Chinook salmon stock (age-1.1–1.5) ranged from 14% to 24%; however, the precision of the harvest estimates was low, as was confidence in the expansion factor used to estimate escapements (McPherson and Carlile 1997; Pahlke et al. 1996).

Starting in 1993, young-of-the-year (YOY) fingerlings were tagged with CWTs (Hendrich et al. 2008). From 1993 through 2004, 428,672 Chinook (fall) fingerlings were tagged, with an annual average of 35,719 and a range of 13,789 (1993) to 61,905 (1997). Tagging of smolt commenced in spring 1994, and 119,009 smolt were tagged through 2004 with an annual average of 10,819 and a range of 2,642 (1994) to 17,121 (1998).

Based on data collected through 2004, an adult-to-adult spawner-recruit model incorporating a marine survival parameter was used to revise the BEG range to 1,800–3,800 large spawners (Hendrich et al. 2008). In index equivalents this represents a peak survey count of between 375 and 800 large fish, significantly less than the previous BEG range of 650–1,400 large fish counted in surveys (McPherson and Carlile 1997). The dataset used in the BEG estimate of Hendrich at al. (2008) included a longer time series relative to the BEG estimate of 1997, was able to incorporate improved estimates of the age composition of the spawning population, marine survival, incidental mortality, and harvest, and used an expansion factor based on 7 years of mark-recapture data to estimate spawning abundance as opposed to the single year of mark-recapture data available in 1997.



Figure 2.–Unuk River area in Southeast Alaska, showing major tributaries, barriers to Chinook salmon migration, and location of ADF&G research sites. SN = setnet, CWT = coded wire tag.

The current stock assessment program for adult escapement of Chinook salmon to the Unuk River has 3 primary objectives: (1) to estimate escapement; (2) to estimate age, sex, and length (ASL) distribution in the escapement; and (3) to estimate the fraction of fish possessing CWTs/adipose fin clips by brood year. Meeting this last objective is essential to estimating: a) harvest of this stock (CWTs) in current and future sport and commercial fisheries, and b) smolt abundance (adipose fin clips). Together, harvest and escapement data enable us to estimate total production and exploitation rates, and the combination of production and smolt abundance allows for marine survival estimation.

The objective of this manuscript is to provide the results of the 2007 and 2008 a dult mark-recapture studies on the Unuk River. Results of the CWT study from 2005–2008 are also reported, as are revisions and updates to previously published results of the CWT study (Hendrich et al. 2008) from 1992 to 2004.

## **STUDY AREA**

The Unuk River originates in a heavily glaciated area of northern British Columbia and flows for 129 km where it empties into Burroughs Bay, 85 km northeast of Ketchikan, Alaska. The Unuk River drainage encompasses an area of approximately 3,885 km<sup>2</sup> (Pahlke et al. 1996). The lower 39 km of the Unuk River are in Alaska (Figure 2), and in most years, the Unuk River is the fourth or fifth largest producer of Chinook salmon in SEAK.

## **METHODS**

## **ADULT ABUNDANCE**

Two-event mark-recapture experiments for closed populations were used to estimate the number of immigrant large Chinook salmon to the Unuk River in 2007 and 2008. Fish were captured using set gillnets in the lower river for the first event and were sampled for marks with a variety of gear types on the spawning grounds for the second event. We originally planned to also use mark-recapture techniques to estimate the abundance of medium fish, with length class defined as the smallest length of recapture (595 mm MEF to 659 mm MEF in 2007 and 540 mm MEF to 659 mm MEF in 2008); a lack of recaptures in those size classes forced us, however, to estimate fish <660 mm MEF using a combination of ASL data and the estimated abundance of large fish (see below).

### **Event 1: Sampling in the Lower River**

Adult Chinook salmon were captured using set gillnets at the SN (setnet) 1 site (Figure 2) as they immigrated into the lower Unuk River between 11 June and 5 August during 2007, and 11 June and 4 August in 2008. The set gillnets were 37 m (120 ft) long by 4 m (14 ft) deep with 18 cm (7<sup>1</sup>/<sub>4</sub> in) stretch mesh and a loose hanging ratio of about 2.2:1. The SN1 site has been used for event 1 fish capture since 1997. This site is located approximately 3 km upstream of saltwater on the south channel, the mainstem of the lower Unuk River, below all known spawning areas except the Eulachon River (Figures 2 and 3).



Figure 3.-Location of the set gillnet site (SN1) on the lower Unuk River in 2007 and 2008. SN = setnet.



Figure 4.-Net placement used at the set gillnet site (SN1) on the lower Unuk River in 2007 and 2008. SN = setnet.

Back-to-back shifts fished 2 set gillnets at SN1 12 hours per day, 6 days per week. Crew shifts were staggered during the week so that at least 1 shift fished each day of the week whenever possible. One net was set perpendicular to the main flow of the Unuk River; it was attached to shore and ran directly across a small slough to a fixed buoy placed about 3 m downstream of a small island. Another net was attached to the same fixed buoy and trailed downstream along the eddy line formed between the mainstem and the side slough (Figure 4). Fish captured in the set gillnet were immediately and carefully untangled or cut loose and placed in a live tank aboard the set gillnet skiff.

All fish captured, regardless of health, were sampled for ASL data. Length was measured to the nearest 5 mm MEF, and sex was determined from external, dimorphic characteristics. Five scales were taken about 25 mm apart within the preferred area on the left side of each fish. The preferred area is 2 to 3 rows above the lateral line and between the posterior terminus of the dorsal fin and the anterior margin of the anal fin (Welander 1940). Scales were mounted on gum cards that held scales from 10 fish, as described in ADF&G (1993). The age of each fish was later determined from the pattern of circuli (Olsen 1995), seen on i mages of scales impressed into acetate cards magnified 70× (Clutter and Whitesel 1956). The presence or absence of an adipose fin was also noted for each sampled fish. Those fish missing adipose fins and <700 mm MEF (jacks) were sacrificed, and their heads were sent to the ADF&G Division of Commercial Fisheries Mark, Tag and Age Laboratory (Tag Lab) for detection and decoding of CWTs.

With the exception of fish <700 mm MEF that were missing an adipose fin (these fish were sacrificed for CWT extraction), all captured fish judged healthy were marked with a uniquely numbered solid-core spaghetti tag sewn through the back, a clip of the left axillary appendage (LAA), and a left upper operculum punch (LUOP) 0.63 cm (0.25 in) in diameter. The axillary clip and operculum punch enabled detection of tag loss. The spaghetti tag consisted of a 5.71 cm (2.25 in) section of laminated Floy tubing shrunk onto a 38 cm (15 in) piece of 80-lb-test monofilament fishing line. The monofilament was sewn through the back just behind the dorsal fin and secured by crimping both ends of the monofilament in a line crimp. The excess monofilament was then trimmed off. Each spaghetti tag was individually numbered and stamped with an ADF&G phone number.

#### **Event 2: Sampling on the Spawning Grounds**

Chinook salmon of all sizes were sampled on Boundary Lake Creek (also known as Border Creek); on Clear, Cripple, Gene's Lake, Kerr, and Lake creeks; and on the Eulachon River in 2007 and 2008 (Figure 2). These seven tributaries received an estimated 84% (83% when Boundary Lake Creek is excluded) of the escapement in the telemetry study of Pahlke et al. (1996). Various methods were used to capture fish including rod and reel, dip nets, gillnets, and carcass surveys. Use of a variety of gear types has been shown to produce unbiased estimates of age, sex, and length composition (Jones et al. 1998; Jones and McPherson 1999, 2000, 2002; McPherson et al. 1997). A hole was punched into the left lower operculum (LLOP) of all newly inspected fish to prevent double sampling. Inspected fish were closely examined for a tag, an LUOP, an LLOP, an LAA, a missing adipose fin, and were sampled to obtain ASL data by the same techniques used in the lower river. For Chinook salmon missing adipose fins, all fish <700 mm MEF, as well as postspawn fish of all sizes, were sacrificed to retrieve CWTs. Heads so collected were sent to the Tag Lab for dissection and decoding of tags. Foot, boat, or aerial surveys were also conducted on each of the sampled tributaries on at least 1 occasion. Multiple

surveys were spaced approximately 1 week apart and when possible, a survey was conducted on the historical peak of observed abundance.

#### Abundance by Size

Abundance of large  $(\hat{N}_L)$  fish was estimated separately so that the estimate for  $\hat{N}_L$  could be compared to the survey index.  $\hat{N}_L$  was estimated using Chapman's modification of the Petersen estimator (Seber 1982):

$$\hat{N}_{L} = \frac{(M_{L}+1)(C_{L}+1)}{(R_{L}+1)} - 1$$
(1)

$$\operatorname{var}(\hat{N}_{L}) = \frac{(M_{L}+1)(C_{1}+1)(M_{L}-R_{L})(C_{L}-R_{L})}{(R_{L}+1)^{2}(R_{L}+2)}$$
(2)

where  $M_L$  is the number of large fish sampled and marked during event 1,  $C_L$  is the number of large fish inspected for marks during event 2, and  $R_L$  is the number of  $C_L$  that possessed marks applied during event 1. The general conditions that must hold for  $\hat{N}_L$  to be a consistent estimate of abundance are in Seber (1982) and may be cast as follows:

- (a) every fish had an equal probability of being marked in the first event, <u>or</u> that every fish had an equal probability of being captured in the second event, <u>or</u> that marked fish mixed completely with unmarked fish;
- (b) both recruitment and mortality did not occur between events;
- (c) marking did not affect the catchability of a fish;
- (d) fish did not lose their marks in the time between the two events;
- (e) all marks were reported on recovery in the second event; and,
- (f) double sampling did not occur.

Condition (a) may be violated if size- or sex-selective sampling occurs. Kolmogorov-Smirnov (K-S; Conover 1980) two-sample tests were used to test the hypothesis that fish of different lengths were captured with equal probability during both first and second sampling events. These test procedures are described in Appendix A1, as well as corrective measures (stratification) should size-selectivity be found. These measures are designed to minimize bias in estimation of abundance and composition parameters. Tests for gender bias in 2007 were not conducted because of errors detected in gender classification during first event sampling.

Three consistency tests (Appendix A2) described by Seber (1982) and Arnason et al. (1996) were used to test for temporal and/or spatial violations of condition (a). Contingency table analyses were used to test 3 null hypotheses: 1) for all marked fish recovered during event 2, time of marking is independent of when/where recovery occurs; 2) the probability that a fish inspected during event 2 is marked is independent of when/where it was caught during the second event; and 3) the probability that a marked fish is recovered during event 2 is independent of when it was marked. If all three hypotheses were rejected, the "partially" stratified abundance estimator described by Darroch (1961) was necessary to estimate abundance. Failure to reject at least one of these three hypotheses was sufficient to conclude that at least one of the assumptions in condition (a) was satisfied, and a Petersen-type model was appropriate to estimate abundance.

The experiment was assumed closed to recruitment because first event sampling spanned the entire immigration. Marking was assumed to have little effect on behavior of released fish or the catchability of fish on the spawning grounds because only fish in good condition were tagged and released, and because the 1994 r adio telemetry study indicated minimal mortality from handling in the marking event for Chinook salmon (Pahlke et al. 1996). The use of multiple marks during event 1, careful inspection of all fish captured during event 2, and additional marking of all fish inspected helped to ensure assumptions (d), (e), and (f) were met.

Confidence intervals for  $\hat{N}_L$  were estimated with modifications of bootstrap procedures in Buckland and Garthwaite (1991). Fish were divided into 4 capture histories (Table 1). A bootstrap sample was built by drawing with replacement as ample of size  $\hat{N}_L$  from the empirical distribution defined by the capture histories. A new set of statistics from each bootstrap sample  $\{\hat{M}_L^*, \hat{C}_L^*, \hat{R}_L^*\}$  was generated, along with a new estimate for abundance  $\hat{N}_L^*$ . Ten thousand such bootstrap samples were drawn, creating the empirical distribution  $\hat{F}(\hat{N}_L^*)$ , which is an estimate of  $F(\hat{N}_L)$ . Confidence intervals were estimated from  $\hat{F}(\hat{N}_L^*)$  with the percentile method (Efron and Tibshirani 1993, Section 13.3).

|                                            | Number of large Chinook salmon |       |                                 |  |  |
|--------------------------------------------|--------------------------------|-------|---------------------------------|--|--|
| Capture history                            | 2007                           | 2008  | Source of statistics            |  |  |
| Marked and not captured in                 |                                |       |                                 |  |  |
| tributaries                                | 463                            | 513   | M <sub>i</sub> - R <sub>i</sub> |  |  |
| Marked and captured in tributaries         | 114                            | 54    | $R_i$                           |  |  |
| Not marked, but captured in tributaries    | 1,013                          | 251   | C <sub>i</sub> - R <sub>i</sub> |  |  |
| Not marked and not captured in tributaries | 4,078                          | 2,276 | $N_i$ - $M_i$ - $C_i$ + $R_i$   |  |  |

| Table 1.–Capture histories for l  | arge (≥660 mm MEF) Chine     | look salmon in the population | n spawning in |
|-----------------------------------|------------------------------|-------------------------------|---------------|
| the Unuk River in 2007 and 2008 ( | notation explained in text). |                               |               |

The abundance of fish <660 mm MEF was estimated indirectly by expanding the estimate for large fish by the estimated size composition of the spawning escapement:

$$\hat{N}_{<660} = \hat{N}_{L} \left( \frac{1}{\hat{\phi}} - 1 \right)$$
 (3)

where  $\hat{N}_{<660}$  is the estimated spawning escapement of fish <660 mm MEF, and  $\hat{\phi}$  is the estimated fraction of large fish in the spawning population Chinook salmon (McPherson et al. 1997).

The variance of the estimate for the abundance of small fish was estimated:

$$\operatorname{var}(\hat{N}_{<660}) = \operatorname{var}(\hat{N}_{L}) \left[ \frac{1}{\phi} - 1 \right]^{2} + \hat{N}_{L}^{2} \operatorname{var}\left( \frac{1}{\hat{\phi}} \right) - \operatorname{var}\left( \frac{1}{\hat{\phi}} \right) \operatorname{var}(\hat{N}_{L})$$
(4)

where

$$\operatorname{var}\left(\frac{1}{\hat{\phi}}\right) \approx \left(\frac{1}{\hat{\phi}}\right)^4 \frac{\hat{\phi}(1-\hat{\phi})}{n-1} \tag{5}$$

and *n* is the number of fish of all sizes sampled in event 2. Confidence intervals were derived via simulation, where for each bootstrap realization of the abundance of large fish, a binomial random variable was drawn (~binomial (trials = number of fish inspected on the spawning grounds, probability  $=\hat{\phi}$ )) and a simulated  $\hat{\phi}$  produced. A simulated  $\hat{N}_{<660}$  was calculated and confidence intervals derived as for the abundance of large fish, above.

The abundance of all fish was estimated as:

$$\hat{N}_{All} = \hat{N}_{<660} + \hat{N}_{L}$$
(6)

with variance estimated as:

$$\operatorname{var}(\hat{N}_{All}) = \hat{N}_{L}^{2} \operatorname{var}\left[\frac{1}{\hat{\phi}}\right] + \operatorname{var}(\hat{N}_{L})\left(\frac{1}{\hat{\phi}}\right)^{2} - \operatorname{var}\left(\frac{1}{\hat{\phi}}\right) \operatorname{var}(\hat{N}_{L})$$
(7)

### **EXPANSION FACTOR**

The expansion factor ( $\hat{\pi}$ ) for large Unuk River Chinook salmon in a calendar year is:

$$\hat{\pi}_i = \hat{N}_{Li} / C_i \tag{8}$$

and

$$\operatorname{var}(\hat{\pi}_i) = \operatorname{var}(\hat{N}_i) / C_i^2 \tag{9}$$

where *i* is the year (with a mark-recapture experiment),  $\hat{N}_{Li}$  is the mark-recapture estimate of large Chinook salmon, and  $C_i$  is the peak survey count of large fish.

The expansion factor for a year in which no mark-recapture experiment is anticipated is the mean of the  $\hat{\pi}_i$  over the k years for which mark recapture experiments are available (11 for the Unuk River at present, from 1997 to 2007; 2008 is not included because of incomplete survey counts):

$$\overline{\pi} = \sum_{i=1}^{k} \hat{\pi}_i / k \tag{10}$$

The variance associated with use of  $\overline{\pi}$  in a prediction, var  $(\pi_p)$ , is described in Appendix A3.

The estimator for expanding peak survey counts into estimates of spawning abundance is:

$$\hat{N}_p = \overline{\pi} \ C_p \tag{11}$$

$$\operatorname{var}(\hat{N}_p) = C_p^2 \operatorname{var}(\pi_p) \tag{12}$$

#### **MIGRATORY TIMING**

The mean date of migration for Unuk River stocks (Boundary Creek, Clear Creek, Cripple Creek, Genes Lake Creek, Kerr Creek, Lake Creek or the Eulachon River) passing the SN1 site was calculated as:

$$\overline{d}_{w} = \frac{\sum_{i=1}^{n_{w}} d_{wi}}{n_{w}}$$
(13)

where  $n_w$  is the number of marked fish recovered at location w, and  $d_{wi}$  is the day the  $i^{th}$  fish was marked at the SN1 gillnet site, with variance estimated as:

$$\operatorname{var}(\overline{d}_{w}) = \frac{\sum_{i=1}^{n_{w}} (d_{wi} - \overline{d})^{2}}{(n_{w} - 1)n_{w}}$$
(14)

#### AGE AND SEX COMPOSITION

The proportion of the spawning population composed of a given age or sex within a size class c was estimated as a binomial variable:

$$\hat{p}_{gc} = \frac{n_{gc}}{n_c} \tag{15}$$

$$\operatorname{var}(\hat{p}_{gc}) = \frac{\hat{p}_{gc}(1 - \hat{p}_{gc})}{n_c - 1}$$
(16)

where  $n_c$  is the number of Chinook salmon of size class c in the sample that are successfully aged or sexed, and  $n_{gc}$  is the subset of  $n_c$  that belongs to group g. Information gathered during event 1 in 2007 was not used to estimate age or sex composition as some gender misidentification was found to have occurred at SN1. Samples gathered at each spawning tributary in 2007 were pooled together because no differences in age composition were apparent among tributaries sampled. In 2008, fish <660 mm MEF gathered at each spawning tributary were pooled together, but for large fish, only samples from event 1 were used because of event 2 gender bias. Estimated abundance of age/sex group g across size classes is:

$$\hat{N}_g = \sum_c \hat{p}_{gc} \hat{N}_c \tag{17}$$

Because the  $\hat{N}_c$  in Eq 17 are correlated ( $\hat{N}_{<660}$  is estimated from  $\hat{N}_L$  by Eq 3), the var $(\hat{N}_g)$  was estimated by simulation.

The estimated proportion of the spawning population in age/sex group g across the large or small population classes is:

$$\hat{p}_{g} = \frac{\hat{N}_{g}}{\hat{N}_{ALL}} \tag{18}$$

The var( $\hat{p}_{g}$ ) was also estimated through simulation.

Standard sample summary statistics were used to calculate estimates of mean length-at-age and its variance (Cochran 1977).

## SMOLT ABUNDANCE AND OVERWINTER SURVIVAL

#### Juvenile Chinook Salmon Capture, Tagging, and Sampling

Chinook salmon from the Unuk River are almost all (>99%; Hendrich et al 2008) from a single freshwater age, overwintering 1 year as fingerlings and emigrating as age-1 smolt. Nearly all Chinook salmon fingerlings tagged in the fall of year j + 1, and smolt tagged in the spring of year i+2 are thus from brood year *j*. G-40 minnow traps, baited with salmon roe, were fished daily for 24 h/d in the mainstem of the Unuk River, between approximately river km 3 and 19 (Figure 1), each spring and fall from 2005 to 2008. Minnow traps were checked daily, at which time juvenile Chinook salmon were removed from the minnow traps, counted, and subsequently transported to holding pens at camp. Chinook salmon were then separated from other species by using a combination of external morphological characteristics (Jones III et al. 1999). All live Chinook salmon were tranquilized in a water solution of tricain methane-sulfonate (MS 222) buffered with sodium bicarbonate. To alleviate stress, the anesthetic solution was kept near ambient river temperature by frequent water changes, and numbers of smolt tranquilized at any one time was limited (approximately 100). All smolt  $\geq$ 50 mm FL not missing adipose fins were tagged following procedures described in Koerner (1977) and their adipose fins were excised. All captured smolt missing an adipose fin were subsequently passed through a magnetic tag detector to test for the presence of a CWT. Unique codes were used each spring and fall. Codes were ordered in spools of approximately 5,000, 10,000, or 20,000 tags, and spools were only changed when depleted or when the seasonal tagging period ended.

All tagged fish were held overnight. A random subsample of 50–100 fish was checked each morning for tag retention. The daily estimate of fish tagged and released (valid tagged) equaled the number tagged, minus the number of overnight mortalities, multiplied by the proportion estimated to have retained their tags. The number of fish tagged, the number that died in the holding pen, and the estimated number of fish that had shed their tags were compiled and recorded on ADF&G CWT Tagging Summary and Release Information Forms. These forms were submitted to the Tag Lab in Juneau after each field season.

Each year a minimum of 188 fingerlings and 138 smolt were systematically measured to the nearest 1 mm FL and weighed to the nearest 0.1 g. Standard sample summary statistics were used to calculate estimates of mean length and weight and associated variances (Cochran 1977).

### Smolt Abundance

Experience has shown that estimates of the proportion of adults from a given brood year with adipose fin clips does not change appreciably over return years, and thus recovery data were

pooled over the *i* years (maximum = 5) in which fish from brood year *j* return. Smolt abundance  $(\hat{N}_{smolt,j})$  from brood year *j* was estimated using a version of the Chapman-modified Petersen formula.

$$\hat{N}_{smolt,j} = \frac{\left(\hat{M}_{j} + 1\right)\left(n_{\bullet j} + 1\right)}{\left(a_{\bullet j} + 1\right)} - 1$$
(19)

where

 $n_{\bullet j} = \sum_{i=1}^{L} n_{ij}$  where  $n_{ij}$  is the number of adults examined in year *i* from brood year *j* 

for missing adipose fins;

L = number of years over which fish from a given brood return (maximum = 5).  $a_{\bullet j} = \sum_{i=1}^{L} a_{ij}$ , where  $a_i$  is the number of adipose fin clips observed in  $n_{ij}$ ; and

 $\hat{M}_{j}$  = estimated number of outmigrating smolt originating from brood year j that bore an adipose fin clip; these fish may be from either the fall (f; year j+1) or spring (s; year j+2) tagging programs.  $\hat{M}_{j}$  is the sum of the estimated number of fingerlings with adipose fin clips from brood year j surviving to the spring ( $\hat{M}_{f \rightarrow s, j}$ ) and the number of smolt with adipose fin clips from brood year j ( $M_{s,j}$ ), where:

$$\hat{M}_{f \to s, j} = M_{f, j} \hat{S}_j \tag{20}$$

and

 $M_{f,j}$  = number of fingerlings released with adipose fin clips in the fall of year *j*+1; and

 $\hat{S}_{j}$  = estimated proportion of  $M_{f,j}$  that survived to the spring of j+2 (overwinter survival) (see Weller and McPherson 2003a, Appendix A7), where:

$$\hat{S}_{j} = \frac{\hat{M}_{s,valid,j} V_{\bullet,f,j}}{\hat{M}_{f,valid,j} V_{\bullet,s,j}}$$
(21)

and

 $\hat{M}_{s,valid,j}$  = estimated number of adipose-finclipped smolt released with valid CWTs in the spring of year *j*+2;

 $\hat{M}_{f,valid,j}$  = estimated number of adipose-finclipped fingerlings released with valid CWTs in the fall of year *j*+1;

 $v_{\bullet,f,j} = \sum_{i=1}^{L} v_{i,f,j}$ , where  $v_{i,f,j}$  is the total number of fish from brood year *j* implanted with valid CWTs in the fall of year *j*+1 that were subsequently recovered, regardless of

recovery circumstances (for instance recovery location; marine fishery, escapement, etc, or sample type; random, select, or voluntary; see Harvest section below); and

 $v_{\bullet,s,j} = \sum_{i=1}^{L} v_{i,s,j}$ , where  $v_{i,s,j}$  is the total number of fish from brood year *j* implanted with valid CWTs in the spring of year *j*+2 that were subsequently recovered, regardless of recovery location or sample type.

The variance of the smolt estimate was estimated as:

$$\operatorname{var}(\hat{N}_{smolt,j}) = (n_{\bullet} + 1)^{2} \operatorname{var}\left[(\hat{M}_{f \to s,j} + M_{s,j} + 1)\frac{1}{(a_{\bullet} + 1)}\right]$$
(22)

where, by Goodman (1960) for independent variables:

$$\operatorname{var}\left[\left(\hat{M}_{f \to s, j} + M_{s, j} + 1\right)\frac{1}{(a_{\bullet, j} + 1)}\right] = \left(M_{s, j} + \hat{M}_{f \to s, j} + 1\right)^{2} \operatorname{var}\left[\frac{1}{a_{\bullet, j} + 1}\right] + \left[\frac{1}{a_{\bullet, j} + 1}\right]^{2} \operatorname{var}\left(\hat{M}_{f \to s, j}\right) \\ - \operatorname{var}\left[\frac{1}{a_{\bullet, j} + 1}\right] \operatorname{var}\left(\hat{M}_{f \to s, j}\right)$$
(23)

and  $\operatorname{var}(\hat{M}_{f \to s, j})$  is obtained as described in Weller and McPherson (2003a Appendix A7). According to the delta method:

$$\operatorname{var}\left[\frac{1}{a_{\bullet}+1}\right] = \left[\frac{1}{a_{\bullet,j}+1}\right]^4 n_{\bullet,j} \hat{p}_a \left(1-\hat{p}_a\right)$$
(24)

where  $\hat{p}_{a,j} = \frac{a_{\bullet,j}}{n_{\bullet,j}}$  is the estimated proportion of inspected adults from brood year j with an adipose fin align

adipose fin clip.

The two components in Equation 23 are not independent, but a simulation using data from studies on 7 brood years of Unuk River Chinook salmon to establish realistic population parameters showed the correlation to be negligible. The simulation showed the simulated variance of smolt abundance to be almost identical to that provided by the average of the Goodman-derived estimates (Eq 23) over the simulation.

Fingerling abundance  $\hat{N}_{f}$  for brood year j was estimated as:

$$\hat{N}_{f,j} = \hat{N}_{smolt,j} \frac{1}{\hat{S}_j}$$
(25)

$$\operatorname{var}(\hat{N}_{f,j}) \approx \hat{N}_{f,j}^{2} \left| cv^{2} \left( \hat{N}_{smolt,j} \right) + cv^{2} \left( \hat{S}_{j} \right) \right|$$
(26)

## HARVEST, INCIDENTAL FISHING MORTALITY, TOTAL FISHING MORTALITY, PRODUCTION, AND EXPLOITATION RATE ESTIMATES

#### **Estimation of Fraction of Adults Bearing CWTs**

All adult Chinook salmon captured during the 1994 and 1997–2008 mark-recapture studies and during spawning grounds sampling in 1995 and 1996 were sampled for age (scale) data. Scales with regenerated or otherwise unknown freshwater age were assumed to have a freshwater age of 1 (Hendrich et al. 2008). The age of fish with regenerated or otherwise unknown marine-water ages were estimated from their lengths using estimated length-at-age relationships according to methods in Hendrich et al. (2008; Appendix E1).

The fraction of adults from brood year j that possessed a valid Unuk River CWT was estimated as:

$$\hat{\theta}_{j} = \frac{\sum_{i=1}^{L} a_{ij} \rho_{ij}}{\sum_{i=1}^{L} n_{ij}}$$
(27)

where

 $n_{ii}$  = number of adults examined in year *i* from brood year *j* for adipose fin clips;

 $a_{ij}$  = number of adipose fin clips observed in  $n_{ij}$ ;

 $\rho_{ij} = \frac{t_{ij}}{a_{ij}}$ , the proportion of sacrificed adults from brood year *j* in year *i* that also possess

a valid Unuk CWT; where

 $a'_{ii}$  = number of heads examined for CWTs from the  $a_{ij}$  fish with adipose fin clips;

$$t_{ii}$$
 = number of CWTs found in  $a'_{ii}$ ; and

L = number of years over which fish from a given brood return (maximum = 5, representing ages 1.1 through 1.5).

The variance of  $\hat{\theta}_j$  was estimated using a parametric bootstrap simulation (e.g. Geiger 1990).

For each year of recovery i, adipose clips were generated as  $a_{ij}^* \sim \text{binomial}\left(n_{ij}, \frac{a_{ij}}{n_{ij}}\right)$ , and then

CWTs were generated as,  $t_{ij}^* \sim$  hypergeometric ( $m = t_{ij} / a_{ij}^{\dagger} a_{ij}^*$ ,  $n = a_{ij}^* - t_{ij} / a_{ij}^{\dagger} a_{ij}^*$ ,  $k = a_{ij}^{\dagger} / a_{ij} a_{ij}^*$ ). Notation for hypergeometric parameters follows that of the R language (R Development Core Team 2005).  $\rho_{ij}^*$  was then calculated as  $t_{ij}^* / (a_{ij}^* a_{ij}^{\dagger} / a_{ij})$ , and  $\hat{\theta}_j^*$  as:

$$\hat{\theta}_{j}^{*} = \frac{\sum_{i=1}^{L} a_{i}^{*} \rho_{i}^{*}}{\sum_{i=1}^{L} n_{i}}$$
(28)

Many values of  $\hat{\theta}_{j}^{*}$  were simulated and the variance of  $\hat{\theta}_{j}$  and of  $\hat{\theta}_{j}^{-1}$  were estimated as described in equation (2) for  $var(\hat{N}_{L})$ .

Returning Chinook salmon were/will be inspected for marks (missing adipose fins) and sampled for age (scale) data annually through 2012 (to complete recoveries of fish from brood year 2005) during mark-recapture operations. Each Chinook salmon was/will be examined for presence of the adipose fin, and a fish missing its adipose fin will be noted. Furthermore, heads were/will be removed from all adipose-finclipped Chinook salmon that are dead, post spawn, or <700 mm MEF (jacks) in length, with the resulting heads collected and shipped to the Tag Lab in Juneau for CWT processing. Scales (age) and length data were/will be collected from all adult Chinook salmon sampled to determine the marked rate by brood year.

#### Harvest

Landed catch (hereafter referred to as harvest) and CWT sampling data from fisheries managed by the State of Alaska were obtained from the Tag Lab database (<u>http://tagotoweb.adfg.state.ak.us</u>). Oliver (1990) and Hubartt et al. (1999) present details of sampling commercial and recreational fisheries in SEAK, respectively. The Regional Mark Processing Center (RMPC; <u>http://www.rmpc.org/</u>), which maintains the coastwide CWT central database (Regional Mark Information System, or RMIS) provided recovery information, harvest numbers, and CWT sampling statistics from fisheries not included in the Tag Lab database.

Fishery strata are defined as a combination of gear and harvest type with specific spatial and temporal characteristics. Commercial fishery harvest types in SEAK of relevance to this study were traditional fisheries, experimental area (troll) fisheries, terminal fisheries, and private non-profit (PNP) hatchery harvests in the Neets Bay terminal area. The traditional and experimental area fisheries are managed by ADF&G to achieve harvest targets (quotas) pursuant to the Pacific Salmon Treaty and as determined by the Chinook Technical Committee (CTC) of the Pacific Salmon Commission (PSC). Experimental area fisheries target Alaska hatchery returns of Chinook salmon in SEAK each spring (approximately May through June), although fish other than Alaskan hatchery fish (treaty fish) are also harvested. The proportion of treaty fish harvested in each experimental fishery determines the total catch limit for each fishery; see Lynch and Skannes (2005a, 2006a, 2007a, and 2008a) for further details on these fisheries. Experimental area fisheries are spatially small (subdistrict specific; Figure 5) and harvest by fishery is tallied by statistical week.

The Neets Bay terminal area fishery is a fishery managed jointly by ADF&G and the Southern Southeast Aquaculture Association to harvest returns to the Neets Bay hatchery (Lynch and Skannes 2005b, 2006b, 2007b, 2008b). Harvest is primarily for cost recovery and brood stock, but some common property terminal harvest does occur (Davidson et al. 2008a). This fishery is confined to District 101-95 (Figure 5), harvest is tallied by statistical week, and gear is undefined.

The Hidden Falls terminal area fishery is a fishery managed jointly by ADF&G and the Northern Southeast Aquaculture Association to harvest returns to the Hidden Falls hatchery (Lynch and Skannes 2005b, 2006b, 2007b, 2008b). This fishery is confined to District 112-12 (Figure 5) and is managed for cost recovery, brood stock, common property terminal harvest (Davidson et al. 2008a), and common property experimental area troll harvest (Lynch and Skannes 2007a, 2008a). Harvest is tallied by statistical week, harvest type, and gear.



Figure 5.-Southeast Alaska experimental troll fishing areas (district-sub district).

Traditional fisheries are mixed stock interception fisheries; terminal area, aboriginal, experimental area, and test fisheries are not considered traditional fisheries. Harvest from SEAK traditional purse seine (see Davidson et al. 2005a, 2006a, 2007b, 2008a for details on these fisheries), drift gillnet fisheries (see Davidson et al. 2005b, 2006b, 2007a, 2008b for details on these fisheries) are tallied by statistical week and district fished (Figure 6). In SEAK the traditional troll fishery is comprised of winter and summer components. The winter fishery begins 11 October and ends when 45,000 Chinook salmon have been harvested, or on 30 April, whichever occurs first (Lynch and Skannes 2005c, 2007c). The summer troll fishery begins 1 July and ends 20 September, unless the fishery is extended (Lynch and Skannes 2005b, 2006b, 2007b, 2008b). Traditional troll harvests in SEAK are tallied by guadrant and period. A guadrant is a group of combined contiguous districts that divides SEAK into 4 large troll reporting areas (NE, NW, SE, and SW; Figure 7). Period is a group of consecutive statistical weeks. Period 1 starts on 1 J anuary (statistical week 1) and ends when the winter troll fishery closes. Period 2 encompasses the spring, or experimental area, fishery. Period 3 begins when the summer troll fishery opens, generally 1 July, and for traditional Chinook salmon harvest, effectively ends when an inseason assessment of harvest sampling data determines the summer quota of Chinook salmon has been reached and the fishery is closed to Chinook salmon retention (note that the summer troll fishery generally remains open to retention of other salmon species and Period 3 extends throughout this time). If during the summer fishery the entire salmon troll fishery is closed and then reopened, or if Chinook salmon harvest during Period 3 was found to be substantially less than the quota and management reopens the fishery to Chinook retention, an additional period or periods are used to define each additional fishery opening. The final period of each calendar year is from 1 O ctober to 31 December. Note that as Unuk River Chinook salmon have completed spawning by 1 October, harvest contributions of Unuk River Chinook salmon during the final period of a calendar year are accredited to returns of the following calendar year. Canadian troll harvests are tallied by statistical week and management area (Figure 8).

Creel surveys and/or catch sampling of recreational fisheries were randomly conducted in SEAK at marine boat landing sites in Haines, Petersburg, Wrangell, Sitka, Juneau, Craig, Ketchikan, Elfin Cove, and Gustavus during times of peak sport fishing activity, e.g., April through September (Figure 6). Information collected from individual fishers included harvest type, date, and location, number of Chinook salmon inspected for missing adipose fins, and the number of Chinook salmon observed with missing adipose fins. Harvest types relevant to this study were marine boat (MB) and derby fishing in which the sampled fish was entered in a derby (DE). Each sample was classified as either random, select, or voluntary. Creel surveys were used to estimate recreational harvest by fortnight, harvest type, and port of landing (e.g., Wendt and Jaenicke 2011). Recoveries from Canadian recreational fisheries in Northern B.C. are strictly voluntary. CWT sampling information was obtained from a sampling program specifically designed to sample the Cook Inlet early-run marine sport fishery from 1999–2001 (Begich 2007).



Figure 6.–Southeast Alaska commercial fishing districts and creel census ports.

19



Figure 7.-Southeast Alaska troll fishery quadrants.



Figure 8.-Northern British Columbia fishery management areas.

Harvest statistics were obtained from the published results in the 1999–2001 Statewide Harvest Survey (SWHS), which included total boat harvest prior to statistical week 25 in the Anchor River, Whiskey Gulch, Deep Creek, and Ninilchik River areas (Howe et al. 2001; Walker et al. 2003; Jennings et al. 2004). CWT sampling information from the Cook Inlet early-run marine sport fishery in 2002 was obtained from the Tag Lab database, and harvest statistics were obtained from the published results in the 2002 SWHS (Kenai Peninsula area, total boat harvest prior to 25 June; Jennings et al. 2006). Aside from voluntary recoveries, sampling of this fishery was terminated after the 2002 season.

The Kodiak recreational fishery and commercial purse seine and set gillnet fisheries were sampled from 1997 t o 1999 f or Chinook salmon CWTs. Recovery information, sampling statistics, and harvest numbers were obtained from the Tag Lab database.

Chinook salmon by-catch has been sampled for Chinook salmon CWTs in high seas trawl fisheries by the National Marine Fisheries Service throughout the duration of this study. Recovery information, sampling statistics, and harvest numbers were obtained from RMIS.

Random recoveries of Unuk River CWTs from sampled fisheries with known or estimated catch were used to estimate harvest contributions. The contribution  $r_{uj}$  of a release group or brood of interest *j* to one fishery stratum *u* is:

$$\hat{r}_{uj} = H_u \left[ \frac{m_{uj}}{\lambda_u n_u} \right] \theta_j^{-1}; \qquad \lambda_u = \frac{a'_u t'_u}{a_u t_u}$$
(29)

where  $H_u$  = total harvest in fishery stratum u,  $n_u$  = number of fish inspected (the sample) from fishery stratum u,  $a_u$  = number of fish in  $n_u$  that are missing an adipose fin,  $a'_u$  = number of heads from  $a_u$  that arrive at the lab,  $t_u$  = number of heads from  $a'_u$  with CWTs detected,  $t'_u$  = number of CWTs from  $t_u$  that are dissected from heads and decoded,  $m_{uj}$  = number of CWTs with code(s) of interest from  $n_u$ , and  $\theta_j$  = fraction of the brood year j tagged with code(s) of interest. Separate strata are used for fish  $\geq 28$  in TL(legal size) and fish <28 in TL (sublegal size, jacks) as harvest and sampling data for these size categories are reported separately in Alaska's commercial and recreational fisheries. When  $H_u$  and  $\theta_j$  are known without error, an unbiased estimate of the variance of  $\hat{r}_{uj}$  can be calculated as shown by Clark and Bernard (1987). However, in our situation,  $H_u$  is estimated with error for sport fisheries, and  $\theta_j$  is estimated with error on the Unuk River because it is not possible to count or tag all outmigrating smolt. For these reasons, unbiased estimates of the variance of  $\hat{r}_{uj}$  were obtained using equations in Table 2 of Bernard and Clark

Select (CWTd fish sampled in a non-random fashion) and voluntary (CWTd fish recovered from other than established sampling programs) recoveries were not used to estimate harvest contributions.

#### **Incidental and Total Fishing Mortality**

(1996), which show the formulations for large samples.

Estimates of incidental fishing mortality by fishery strata were provided by the northern U.S. co-chair of the PSC CTC (John Carlile, ADF&G, Division of Commercial Fisheries, Juneau,

personal communication). Incidental fishing mortality (IM) is mortality caused by the act of fishing but is not part of the actual landed catch and is defined as the difference between reported (or landed) catch and total fishing mortality (FM) in Aggregate Abundance Based Management fisheries (CTC 2005). The CTC of the PSC currently defines 4 categories of incidental mortality: drop-offs, shakers, fish of legal size killed in Chinook salmon non-retention fisheries (CNR legal), and Chinook salmon not of legal size killed in non-retention fisheries (CNR sublegal; CTC 2004).

Drop-off mortality refers to fish that encounter fishing gear, are not successfully landed, but subsequently die as a result of the encounter. The CTC has derived regionally specific drop-off mortality rates for recreational and troll fisheries (CTC 1997). Drop-off mortality in these fisheries is comprised of 2 components: (1) escaped encounters - Chinook salmon that encounter fishing gear, escape prior to being landed, but subsequently die as a result of the encounter; and (2) predation mortality – fish that are lethally injured or removed from gear by predators. The total drop-off mortality rate for the SEAK and British Columbia troll fisheries is estimated to be 0.8% and 1.7%, respectively (CTC 1997). The total drop-off mortality rate for the SEAK and British Columbia recreational fisheries is estimated to be 3.6% (CTC 1997). Drop-off mortality in numbers of fish is then estimated as the relevant drop-off mortality rate times the estimated number of Chinook salmon encounters (the landed catch plus the estimated number of Chinook salmon released) in a fishery. Drop-off mortality is incorporated into legal and sublegal mortality estimation in both retention and CNR fisheries. The algorithm used to estimate drop-off mortality can be found in Appendix 1 of CTC (2004). Purse seine fisheries are considered to have zero drop-off mortality. Because incidental mortality in purse seine and gillnet fisheries are not estimated separately by the CTC, gillnet drop-off mortality is also currently considered to be zero.

Shakers are defined as Chinook salmon that are captured and released because they are either above (extralegal in fisheries with a maximum size limit) or below (sublegal) the legal size limit of a particular fishery (CTC 2004). The shaker mortality rate, the proportion of shakers that subsequently die, is currently only defined for sublegal shakers. Shaker mortality is estimated for each fishery stratum in which a Unuk River CWT was recovered using landed catch, the shaker encounter (legal-sublegal) ratio, and the sublegal shaker mortality rate. The sublegal shaker mortality rate is estimated to be the sum of the drop-off mortality rate (see above) and the mortality rate associated with the release of sublegal fish. The CTC estimates the sublegal release mortality rate to be 25.5% in troll fisheries, 32.2% for fish <33 cm (approximately 13 in) and 12.3% for fish  $\geq$ 33 cm in recreational fisheries, 72% for purse seine fisheries, and 90% for gillnet fisheries (CTC 1997). However, the current CTC analyses do not separate the net gears into seine and gillnet and therefore must use a combined release mortality rate. The current non-retention mortality rates in use are 90% for legal-sized fish, 90% for sublegal-sized fish and 0% for drop-offs. The shaker encounter ratio for a particular fishery is defined as the ratio of sublegal fish encountered (non-vulnerable population) to legally landed (vulnerable) fish. The product of landed catch, the shaker encounter rate, and the shaker mortality rate provides a nominal estimate of shaker mortality in a given fishery strata. The estimated number of shakers in a stratum is then distributed among the various stocks identified within the fishery stratum, by age, according to their relative estimated abundance in the non-vulnerable population (CTC 2005). Note that it is assumed for any particular stock, the spatial and temporal distribution of sublegal fish of a given age is the same as legal fish of a given age (CTC 2005). Details of the shaker mortality estimation algorithm can be found in CTC (2004), Appendix 1.

During CNR fisheries, both legal-sized and sublegal-sized mortality occurs when Chinook salmon are captured incidental to the target species, but die subsequent to release as a result of the encounter. The estimated number of encounters times a gear mortality rate provides an estimate of CNR mortality for a particular fishery strata and size class. The CTC currently employs 3 separate methods to estimate the number of encounters in CNR fisheries (CTC 2004). The method utilized for a particular fishery depends on the observational data available. The effort/season-length ratio, the external estimate of encounters, and the catchability coefficient methods were used to estimate encounters in the CNR fisheries of relevance to this study. The first method indirectly calculates a CNR encounter rate based on the relative effort or season lengths between the retention and non-retention fisheries and then applies a gear selectivity factor to this rate. The external estimate of encounters method uses the ratio of encounters in a CNR fishery relative to the number of encounters in a retention fishery that immediately pre- or post- cedes the CNR fishery to estimate the number of CNR encounters. The catchability coefficient method is rarely used. It is only used to estimate CNR encounters for a fishery in years for which there was no landed catch. This situation precludes the use of the other two methods, which require landed catch. This method uses stock and age-specific catchability coefficients for both legal- and sublegal-sized fish, in addition to information on the duration of the CNR fishery, to estimate the number of CNR encounters (CTC 2004).

Gear selectivity factors used in the effort/season-length method are an estimate of the relative change in encounter rates between the CNR and retention fisheries resulting from management or fishing actions that reduce Chinook salmon encounters in the CNR fishery. The selectivity factor for legal-sized fish is 0.34 for SEAK troll and net fisheries, 0.20 for Northern British Columbia (NBC) troll, 0.34 for NBC recreational, and 1.0 for NBC net fisheries (Appendix 2 in CTC 2004). The selectivity factor for sublegal encounters is 1.0 for all of the above mentioned fisheries.

For the effort/season-length and the external estimate of encounters methods, CNR encounters of legal-sized fish are estimated as the product of the catch of legal-sized Chinook salmon in the retention fishery and a scalar. For the effort/season-length method, the scalar is the product of the gear selectivity factor and the ratio of the CNR season length to the length of the retention fishery, in days, or the ratio of CNR effort to retention fishery effort, in boat days or angler trips. For the external estimate of encounters method, the scalar is the ratio of the estimated legal CNR encounters to the landed catch in the retention fishery (Appendix 3 in CTC 2004). The stock and age composition of legal-sized fish in the CNR fishery is assumed to be identical to that of the retention fishery for legal-sized fish, and the CNR legal sized mortalities are apportioned accordingly.

Encounters of sublegal-sized fish are estimated in the same manner as the legal-sized fish. However, the sublegal gear selectivity factors are used in place of the legal gear selectivity factors in the effort/season-length method, and the estimated sublegal encounters are used in place of the legal encounters in the external estimate of encounters method. The stock and age composition of the sublegal-sized fish in the CNR fishery is assumed to be identical to that of the shakers in the retention fishery. The consequence of this assumption is that CNR sublegal mortalities are apportioned according to the relative stock abundance in the retention fishery, and within each stock, CNR sublegal mortalities are apportioned according to the relative abundance across all age classes.

The CTC algorithms that generate estimates of incidental mortality do not calculate associated estimates of variance; consequently estimates of incidental mortality by age will not have associated estimates of variance. However, assuming that for brood year *j* the relative precision of the total estimated fishing mortality  $F\hat{M}_{j}$  (landed catch plus incidental mortality) was equal to that of the total estimated landed catch  $\hat{R}_{j}$ , the variance of the estimated incidental mortality  $I\hat{M}_{j}$  can be indirectly estimated as (Hendrich et al. 2008):

$$\operatorname{var}\left(I\hat{M}_{j}\right) = \left(F\hat{M}_{j}\frac{\sqrt{\operatorname{var}\left(\hat{R}_{j}\right)}}{\hat{R}_{j}}\right)^{2} - \operatorname{var}\left(\hat{R}_{j}\right)$$
(30)

Computer program memory limitations resulted in the grouping of some fisheries in the CTC's incidental mortality estimation algorithm. SEAK traditional purse seine and drift gillnet fisheries are one such example. These two fisheries have separate Chinook salmon harvest limits (quotas), management plans, and in the case of the purse seine fishery, size limits. The purse seine fishery has often been subject to periods of non-retention in order to avoid surpassing the annual harvest limit. Since 1995, however, the period of interest in this instance, the drift gillnet fishery, has had no periods of non-retention or size limitations on catch. The CTC algorithm, however, automatically estimates CNR mortality for the drift gillnet fishery during periods of purse seine non-retention. It was not possible to excise the CTC-generated CNR estimates for the drift net fishery from the total incidental mortality estimates used herein, nor was it possible to separate incidental mortality by category type.

#### **Production, Exploitation Rate, and Marine Survival Estimation**

The total estimated production (total return) of adults  $\hat{T}$  from brood year j is:

$$\hat{T}_{j} = \sum_{i=1}^{L} \hat{N}_{ji} + \sum_{i=1}^{L} \hat{R}_{ji} \left( AEQ_{ji} \right) + \sum_{i=1}^{L} I \hat{M}_{ji} \left( AEQ_{ji} \right)$$
(31)

where

 $\hat{N}_{ji}$  = estimated spawning abundance in year *i* from brood year *j*,

L = number of years over which fish from a given brood return (maximum = 5, representing ages 1.1 through 1.5),

 $\hat{R}_{ii}$  = estimate of landed catch (harvest) in year *i* from brood year *j*,

 $I\hat{M}_{ji}$  = incidental mortality in year *i* from brood year *j*, and

 $AEQ_{ii}$  = adult equivalent in year *i* from brood year *j*.

 $AEQ_{ji}$  is the probability that a fish of a given age (year *i* from brood year *j*) will return to the Unuk River in the absence of fishing in the current and all future years (Morishima 2004).

AEQs reduce  $\hat{R}_{ji}$  and  $I\hat{M}_{ji}$  to account for the fact that fish that are harvested and experience incidental mortality were not necessarily returning to the Unuk River that year (feeder fish). Adult equivalents are stock, brood, and age specific. AEQs for the Unuk stock are derived from returns to hatcheries with Unuk River brood stock (McPherson and Carlile 1997) and were provided by the northern U.S. CTC co-chair (John Carlile, ADF&G, Division of Commercial Fisheries, Juneau, personal communication).

The estimated variance of  $\hat{T}_i$  was calculated as:

$$\operatorname{var}(\hat{T}_{j}) = \sum_{i=1}^{L} \operatorname{var}(\hat{N}_{ji}) + \sum_{i=1}^{L} \operatorname{var}(\hat{R}_{ji}) AEQ_{ji}^{2} + \operatorname{var}\left[\sum_{i=1}^{L} I\hat{M}_{ji} AEQ_{ji}\right]$$
(32)

where var  $\left[\sum_{i=1}^{L} I\hat{M}_{ji} AEQ_{ji}\right]$  was calculated using Eq 32 with terms adjusted for AEQ.

For brood year j, the exploitation rate  $\hat{U}_j$  and its associated variance was estimated as:

$$\hat{U}_{j} = \frac{FM_{j}}{\hat{T}_{j}} \tag{33}$$

where total production and fishing mortality are expressed in AEQs. An approximation of the variance, incorporating the covariance between  $F\hat{M}_j$  and  $\hat{T}_j (= \operatorname{var}(\hat{R}_j) + \operatorname{var}(\hat{I}_j))$  was calculated via the delta method (Seber 1982, p. 8):

$$\operatorname{var}(\hat{U}_{j}) \approx \frac{F\hat{M}_{j}^{2}}{\hat{T}_{j}^{2}} \left[ \frac{\operatorname{var}(F\hat{M}_{j})}{F\hat{M}_{j}^{2}} + \frac{\operatorname{var}(\hat{T}_{j})}{\hat{T}_{j}^{2}} - 2\frac{\operatorname{var}(F\hat{M}_{j})}{(F\hat{M}_{j})\hat{T}_{j}} \right]$$
(34)

and:

$$\operatorname{var}(F\hat{M}_{j}) = \operatorname{var}(I\hat{M}_{j}) + \operatorname{var}(\hat{R}_{j})$$
(35)

Simulation shows the approximation in Eq 34 to be excellent.

Marine survival  $\hat{Q}$  for brood year j was estimated as:

$$\hat{Q}_{j} = \frac{\hat{T}_{j}}{\hat{N}_{smolt,j}}$$
(36)

$$\operatorname{var}(\hat{Q}_{j}) = \left[\frac{\hat{T}_{j}}{\hat{N}_{smolt, j}}\right]^{2} \left[\frac{\operatorname{var}(\hat{T}_{j})}{\hat{T}_{j}^{2}} + \frac{\operatorname{var}(\hat{N}_{smolt, j})}{\hat{N}^{2}_{smolt, j}}\right]$$
(37)

## RESULTS

### **2007 MARK RECAPTURE STUDY**

#### **Event 1: Sampling in the Lower River**

Between 12 June and 2 August 2007, 637 C hinook salmon were sampled in the lower river, of which 623 (46 fish <660 mm MEF and 577 large fish) were marked and released (Table 2). Five captured fish died prior to or during the marking process. Fishing effort at the set gillnets was maintained at relatively constant levels, with the exception of 10–17 July when exceptionally high water levels negated attempts to operate the set gillnets, and the period after 27 July when personnel shortages limited effort (Figure 9). The water levels during 10–17 July were judged to be the highest in a d ecade by the senior staff member on site (Roger Hayward, ADF&G, Division of Sport Fish, Ketchikan, personal communication). A total of 51 fish were missing adipose fins, of which 7 were sacrificed and 2 died prior to or during marking; the rest were marked and released in good condition. Of the 9 heads recovered during event 1, 6 had valid CWTs for this stock and 3 were without CWTs. Among the fish that were missing adipose fins and of those sacrificed, 41% and 78%, respectively, were males. Both fish that died prior to marking were females.



Figure 9.–Effort (in hours of soak time) and catch of Chinook salmon by date at SN1 on the Unuk River, 2007. SN = setnet.

#### **Event 2: Sampling on the Spawning Grounds**

During event 2, 1,319 fish were inspected (191 fish <660 mm MEF and 1,127 large fish), of which 123 w ere recaptured fish (9 <660 mm MEF and 114 large; Table 2). The smallest recaptured fish was 595 mm MEF. No sampled fish had shed their spaghetti tags, but one

spaghetti tag number was misrecorded. Adipose fins were missing on 135 fish sampled during event 2, and 40 of these were sacrificed. Of the 40 adipose-clipped fish sacrificed, 33 carried a valid CWT for this stock. Among the fish that were missing adipose fins and of those sacrificed, 61% and 73%, respectively, were males.

Table 2.–Numbers of marked Chinook salmon  $\geq 660 \text{ mm MEF}$  (large; PANEL A) and 595–659 mm MEF (PANEL B) released in the lower Unuk River in 2007, and the numbers of marked Chinook salmon  $\geq 660 \text{ mm MEF}$  (PANEL C) and 540–659 mm MEF (PANEL D) released in the lower Unuk River in 2008, by marking period, and the number inspected for marks and recaptured at each recovery location.

| PANEL A: LARGE (≥660 mm MEF) CHINOOK SALMON IN 2007 |        |            |         |         |         |              |           |          |       |          |
|-----------------------------------------------------|--------|------------|---------|---------|---------|--------------|-----------|----------|-------|----------|
| Recovery location                                   |        |            |         |         |         |              |           |          |       |          |
| Marking dates                                       | Number | Eulachon   | Clear   | Lake    | Kerr    | Genes Lake   | Cripple   | Boundary | Total | Fraction |
| 12 June - 18 July                                   | 99     |            | 4       |         |         | 4            | 1         |          | 9     | 0.091    |
| 19 July – 25 July                                   | 357    | 3          | 15      | 7       | 4       | 41           | 11        | 2        | 83    | 0.232    |
| 26 July – 2 August                                  | 121    | 5          | 1       | 1       | 1       | 9            | 4         |          | 21    | 0.174    |
| Total/proportion <sup>a</sup>                       | 577    | 8          | 20      | 8       | 5       | 54           | 17        | 2        | 114   | 0.198    |
| Number inspected                                    |        | 58         | 203     | 36      | 30      | 485          | 298       | 17       | 1,127 |          |
| Fraction marked                                     |        | 0.14       | 0.10    | 0.22    | 0.17    | 0.11         | 0.06      | 0.12     | 0.10  |          |
|                                                     |        | PANE       | LB: CH  | IINOOK  | SALM    | ON <660 mm 1 | MEF IN 20 | 007      |       |          |
|                                                     |        |            |         | ]       | Recover | y location   |           |          |       |          |
| Marking dates                                       | Number | Eulachon   | Clear   | Lake    | Kerr    | Genes Lake   | Cripple   | Boundary | Total | Fraction |
| 12 June – 18 July                                   | 8      |            | 1       |         |         | 2            |           |          | 3     | 0.38     |
| 19 July – 25 July                                   | 25     | 1          |         |         |         | 3            | 1         |          | 5     | 0.20     |
| 26 July – 2 August                                  | 13     |            |         |         |         | 1            |           |          | 1     | 0.08     |
| Total/proportion                                    | 46     | 1          | 1       |         |         | 6            | 1         |          | 9     | 0.20     |
| Number inspected                                    |        | 4          | 12      | 11      | 1       | 129          | 33        | 1        | 191   |          |
| Fraction marked                                     |        | 0.25       | 0.08    | 0.00    | 0.00    | 0.05         | 0.03      | 0.00     | 0.05  |          |
|                                                     | ]      | PANEL C: 1 | LARGE   | (≥660 r | nm MEF  | F) CHINOOK S | SALMON    | IN 2008  |       |          |
|                                                     |        |            |         | ]       | Recover | y location   |           |          |       |          |
| Marking dates                                       | Number | Eulachon   | Clear   | Lake    | Kerr    | Genes Lake   | Cripple   | Boundary | Total | Fraction |
| 17 June – 17 July                                   | 172    |            | 3       | 1       |         | 3            | 1         |          | 8     | 0.047    |
| 18 July – 24 July                                   | 195    |            | 9       | 3       |         | 6            |           |          | 18    | 0.092    |
| 25 July – 4 August                                  | 190    |            | 14      | 1       | 2       | 9            |           |          | 26    | 0.137    |
| Total/proportion <sup>b</sup>                       | 557    |            | 27      | 5       | 3       | 18           | 1         |          | 54    | 0.097    |
| Number inspected                                    |        | 2          | 126     | 24      | 14      | 123          | 16        |          | 305   |          |
| Fraction marked                                     |        | 0.00       | 0.21    | 0.21    | 0.21    | 0.15         | 0.06      |          | 0.18  |          |
|                                                     |        | PANE       | L D: CH | HNOOK   | SALM    | ON <660 mm ! | MEF IN 20 | 008      |       |          |
|                                                     |        |            |         | ]       | Recover | y location   |           |          |       |          |
| Marking dates                                       | Number | Eulachon   | Clear   | Lake    | Kerr    | Genes Lake   | Cripple   | Boundary | Total | Fraction |
| 17 June – 17 July                                   | 29     |            |         |         |         | 1            |           |          | 1     | 0.03     |
| 18 July – 24 July                                   | 31     |            | 1       |         |         |              |           |          | 1     | 0.03     |
| 25 July – 4 August                                  | 32     |            | 2       |         |         | 1            |           |          | 3     | 0.09     |
| Total/proportion                                    | 92     |            | 3       |         |         | 2            |           |          | 5     | 0.05     |
| Number inspected                                    |        |            | 41      | 4       | 4       | 35           | 2         |          | 86    |          |
| Fraction marked                                     |        |            | 0.07    | 0.00    | 0.00    | 0.06         | 0.00      |          | 0.06  |          |

<sup>a</sup> Total recoveries for Cripple Creek include one tagged fish with an unknown (misrecorded) tag number.

<sup>b</sup> Total recoveries for Clear and Kerr creeks each include one tagged fish with an unknown (shed) tag number.

#### Abundance by Size

Length distributions of large fish that were marked and recaptured were not significantly different (P = 0.988, D = 0.044; Figure 10; M vs. R in Appendix A1). Likewise, no difference was detected in the length distributions of large fish that were marked and inspected (P = 0.677, D = 0.036, Figure 11; M vs. C in Appendix A1) or inspected and recaptured (P = 0.985, D = 0.044, Figure 12; C vs. R in Appendix A1). These results indicate that size selective sampling did not occur during either event for large-sized fish (Case I, Appendix A1).

There was evidence of gender selectivity between sampling events for large fish ( $\chi^2 = 15.125$ , df = 1, P < 0.001 for M vs. C,  $\chi^2 = 3.987$ , df = 1, P = 0.046 for M vs. R, and  $\chi^2 = 0.002$ , df = 1, P = 0.963 for R vs. C). For recaptured large age-1.3 fish, however, of 48 fish identified as females during event 1, 10 (20.8%) were found to be males upon recapture during event 2. Of 47 large age-1.3 fish identified as male during event 1, 3 (6.4%) were subsequently found to be females during event 2. No gender misidentification was identified for fish of other age classes. Based on the observed proportion of gender misidentification during event 1, a n estimated 55 large age-1.3 fish were misidentified as female, and 13 fish were misidentification of gender during event 1 accordingly, contingency table analysis suggests the apparent gender bias was attributed to misidentification of gender during event 1 rather than selectivity during either sampling event ( $\chi^2 = 2.109$ , df = 1, P = 0.146 for M vs. C and  $\chi^2 = 0.592$ , df = 1, P = 0.442 for M vs. R). Because of the gender misidentification problems during event 1, only fish sampled on the spawning grounds were used to estimate the length and sex and age composition of the escapement.



Figure 10.–Cumulative relative frequencies of large Chinook salmon ( $\geq$ 660 mm MEF) marked in the lower Unuk River in 2007 compared with those recaptured on the spawning grounds.


Figure 11.–Cumulative relative frequencies of large Chinook salmon ( $\geq$ 660 mm MEF) marked in the lower Unuk River in 2007 compared with those inspected on the spawning grounds.



Figure 12.–Cumulative relative frequencies of large Chinook salmon ( $\geq 660 \text{ mm MEF}$ ) inspected on the spawning grounds in 2007 compared with those recaptured on the spawning grounds.

The probability of capturing a large fish during event 2 that was tagged during event 1 was not significantly different if the fish was among the first approximately 50% of fish tagged during event 1 (12 June – 21 July) or not (22 July – 2 August;  $\chi^2 = 0.297$ , df = 1, P = 0.586; Table 2), satisfying the complete mixing test (Appendix A2).

Results from the diagnostic tests above indicated that the pooled estimator (Eq 1) was appropriate for estimating abundance of large Chinook salmon. Estimated abundance of large fish is 5,668 ( $M_L = 577$ ;  $C_L = 1,127$ ;  $R_L = 114$ ; SE = 446; 95% CI = 4,900 - 6,685), roughly 1,800 fish more than the high end of the BEG range (3,800; Table 3, Figure 13).

Length distributions of fish between 595 mm MEF, the size of the smallest recaptured fish, and 659 mm MEF that were marked and inspected were significantly different (P = 0.027; Figure 14; M vs. C in Appendix A1). No difference was detected in the length distributions of fish 595-659 mm MEF that were marked and recaptured (P = 0.476; Figure 15; M vs. R in Appendix A1) or inspected and recaptured (P = 0.346; Figure 16; C vs. R in Appendix A1). These results indicate that further evaluation was required (Appendix A1) to determine if size-selective sampling occurred. The statistics did not fit any of the A-D scenarios in Appendix A1. We had small sample sizes for all of marked (35), recaptured (9), and inspected (100) fish, making option D the best candidate. P values for the C vs. R test and marked versus recaptured test were large at 0.35 and 0.48, respectively, however. We chose Case IV to be conservative. Case IV recommends stratification of data for one or both sampling events, which given the sparse number of recaptured fish, was an unsuitable alternative. Consequently, abundance of fish <660 mm MEF was estimated indirectly by expanding the estimate for large fish by the estimated size composition of the spawning escapement (Eq 3; McPherson et al. 1997). Testing of the spawning grounds samples collected in 1994 and 1997-2005 has consistently found no evidence of size or gender selectivity (Pahlke et al. 1996; Jones III et al. 1998; Jones III and McPherson 1999, 2000, 2002, Weller and McPherson 2003a-b. 2004, 2006a-b). Estimated abundance of fish <660 mm MEF is 961 (SE = 106), based on 191 fish <660 mm MEF and 1,127 large samples collected on the spawning grounds. Statistical bias of the estimate is 0.7% and the bootstrap-derived 95% confidence interval for the estimated abundance is 770 to 1,199.

| Table      | 3.– | Peak  | survey | counts, | mar | k-recaptu | re estim | ates  | of | abundance, | expansion | factors, | and   | other |
|------------|-----|-------|--------|---------|-----|-----------|----------|-------|----|------------|-----------|----------|-------|-------|
| statistics | for | large | (≥660  | mm M    | EF) | Chinook   | salmon   | in tł | ne | Unuk River | (1997–200 | )8 and   | 1997- | -2008 |
| average).  |     |       |        |         |     |           |          |       |    |            |           |          |       |       |

|                                    |       |       |       |       |        |       |       |       |       |       |       |       | Ave<br>1997–      |
|------------------------------------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------------------|
|                                    | 1997  | 1998  | 1999  | 2000  | 2001   | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2008              |
| Survey count                       | 636   | 840   | 680   | 1,341 | 2,019  | 897   | 1,121 | 1,008 | 929   | 940   | 709   | 242   | 947               |
| m2                                 | 78    | 79    | 50    | 69    | 74     | 66    | 114   | 105   | 101   | 102   | 114   | 54    | 84                |
| n1                                 | 307   | 466   | 380   | 570   | 778    | 725   | 646   | 501   | 644   | 853   | 577   | 557   | 583               |
| n2                                 | 761   | 707   | 523   | 719   | 1,014  | 644   | 985   | 836   | 749   | 680   | 1,127 | 305   | 754               |
| Mark-recapture (M-R) est           | 2,970 | 4,132 | 3,914 | 5,872 | 10,541 | 6,988 | 5,546 | 3,963 | 4,742 | 5,645 | 5,668 | 3,104 | 5,257             |
| SE (M-R)                           | 277   | 413   | 490   | 644   | 1,181  | 805   | 433   | 325   | 396   | 476   | 446   | 357   | 520               |
| Survey count/ (M-R) (%)            | 21.4  | 20.3  | 17.4  | 22.8  | 19.2   | 12.8  | 20.2  | 25.4  | 19.6  | 16.7  | 12.5  | 7.8   | 18.0              |
| CV (M-R) (%)                       | 9.3   | 10.0  | 12.5  | 11.0  | 11.2   | 11.5  | 7.8   | 8.2   | 8.4   | 8.4   | 8.0   | 11.5  | 9.9               |
| 95% RP M-R estimate (%)            | 18.3  | 19.6  | 24.5  | 21.5  | 22.0   | 22.6  | 15.3  | 16.1  | 16.4  | 16.5  | 15.4  | 22.5  | 19.3              |
| Expansion factor (EF) <sup>a</sup> | 4.67  | 4.92  | 5.76  | 4.38  | 5.22   | 7.79  | 4.95  | 3.93  | 5.10  | 6.01  | 7.99  | 12.83 | 5.52              |
| SE (EF) <sup>a</sup>               | 0.44  | 0.49  | 0.72  | 0.48  | 0.58   | 0.90  | 0.39  | 0.32  | 0.43  | 0.50  | 0.63  | 1.48  | 0.53 <sup>b</sup> |
| CV (EF) <sup>a</sup>               | 9     | 10    | 13    | 11    | 11     | 12    | 8     | 8     | 8     | 8     | 17    | 12    | 18                |
| 95% RP (EF) <sup>a</sup>           | 18    | 20    | 25    | 21    | 22     | 23    | 15    | 16    | 16    | 16    | 32    | 23    | 35                |
| M-R lower 95% C.I.                 | 2,499 | 3,433 | 3,110 | 4,848 | 8,705  | 5,775 | 4,814 | 3,406 | 4,094 | 4,808 | 4,900 | 2,528 | 4,410             |
| M-R upper 95% C.I.                 | 3,636 | 4,974 | 5,071 | 7,347 | 13,253 | 8,845 | 6,530 | 4,684 | 5,579 | 6,786 | 6,685 | 3,991 | 6,448             |
| Estimated bias (%)                 | 0.1   | 0.6   | 1.5   | 1.1   | 0.9    | 0.6   | 0.03  | 0.50  | 0.5   | 0.5   | 0.3   | 1.6   | 0.7               |

<sup>a</sup> 1997–2008 average does not include the 2008 EF.

<sup>b</sup> The standard error for prediction ( $\sqrt{var(\pi_p)}$  as defined in Eq 15 in Appendix A3) using 1997–2007 data is 1.32. The value is used in Appendix A4 in calculation of SE ( $\hat{N}$ ) for years when there was no mark-recapture estimate.

# **EXPANSION FACTOR**

The peak survey count of large Chinook salmon in the six index streams of the Unuk River was 709 fish in 2007 (Table 3; Appendix A4; Pahlke 2009). Of the estimated 5,668 large Chinook salmon immigrating to the Unuk River in 2007, 12.5% were counted during peak survey counts. This percentage was the lowest on r ecord (Table 3; Pahlke et al 1996), and was attributed in part to our inability to completely survey Genes Lake Creek (high water) and Cripple Creek (high water and obstinate bears) during the peak of spawning. Using the 1997–2007 mark recapture estimates and peak survey counts, the long-term mean expansion factor is 5.52 (Table 3); the SE(mean expansion factor) is 1.30 (Eq 12 i n Appendix A3), while SE(prediction), is 1.32 (Eq 15 in Appendix A3). The latter value is required for calculation of variances of predicted escapements for years in which there was no mark-recapture estimate (Appendix A4, column 6).

# AGE AND SEX COMPOSITION

There was evidence of gender misidentification during event 1; therefore only event 2 samples were used to estimate the age, sex, and length composition of the spawning population. An estimated 68.2% (SE = 1.3%) of the spawning population of Chinook salmon was comprised of age-1.3 fish (Table 5). Since 1997, only the escapement in 2005 has had a larger proportion of the escapement represented by age-1.3 fish (68.6%: Appendix A6). Age-1.4 fish comprised 15.6% (SE = 1.0%) of the estimated spawning population, the second lowest contribution to the escapement since 1997 (2005, 15.1%; Appendix A6). Age-1.2 fish comprised 12.6% (SE = 0.9%) of the estimated spawning population. Since 1997, the percentage of age-1.2 fish in the spawning population has ranged from 15.1% (2005) to 38.8% (1997), and averaged 27.1% (Appendix A6).



Figure 13.–Preferred estimates of spawning abundance and associated standard errors for large ( $\geq 660$  mm MEF) Chinook salmon in the Unuk River relative to the biological escapement goal range (1,800–3,800; gray shaded bar), 1977–2008 (see Appendix A4 for numerical values).



Figure 14.–Cumulative relative frequencies of Chinook salmon 595–659 mm MEF marked in the lower Unuk River in 2007 compared with those inspected on the spawning grounds.



Figure 15.–Cumulative relative frequencies of Chinook salmon 595–659 mm MEF marked in the lower Unuk River in 2007 compared with those recaptured on the spawning grounds.

# **MIGRATORY TIMING**

Migration past SN1 in 2007 was the latest on record (21 July; 1997–2007; Table 4). The mean date of migration past SN1 was estimated to be 22 July for those Chinook salmon marked at the set gillnet site and subsequently recovered on the spawning grounds. This compares to an average date of 11 July from 1997 through 2006. The earliest estimated mean migration date was for fish destined for Clear Creek (21 July). The latest mean migration date was 27 July for the Eulachon River stock.

For fish captured more than once at SN1, an average of 3.75 days elapsed between the time fish were tagged and released and when they were subsequently recaptured at SN1 (sulking behavior; Appendix A5).

|           |            | PANEL A: I | ESTIMAT | ED MEA    | N DATE C | OF MIGRATION | I AT SN1  |          |             |  |  |
|-----------|------------|------------|---------|-----------|----------|--------------|-----------|----------|-------------|--|--|
| Tributary |            |            |         |           |          |              |           |          |             |  |  |
|           |            | Eulachon   | Clear   | Lake      | Kerr     | Genes Lake   | Cripple   | Boundary | Tributaries |  |  |
| Year      | SN1        | River      | Creek   | Creek     | Creek    | Creek        | Creek     | Creek    | combined    |  |  |
| 1997      | 7-Jul      | 12-Jul     | 6-Jul   |           | 7-Jul    | 6-Jul        | 9-Jul     |          | 8-Jul       |  |  |
| 1998      | 3-Jul      | 10-Jul     | 5-Jul   | 21-Jun    | 29-Jun   | 2-Jul        | 4-Jul     | 3-Jul    | 3-Jul       |  |  |
| 1999      | 12-Jul     |            | 11-Jul  |           | 14-Jul   | 11-Jul       | 13-Jul    |          | 12-Jul      |  |  |
| 2000      | 11-Jul     | 15-Jul     | 11-Jul  | 10-Jul    | 14-Jul   | 13-Jul       | 15-Jul    |          | 13-Jul      |  |  |
| 2001      | 15-Jul     | 21-Jul     | 16-Jul  | 4-Jul     | 17-Jul   | 15-Jul       | 10-Jul    | 9-Jul    | 13-Jul      |  |  |
| 2002      | 15-Jul     | 19-Jul     | 11-Jul  | 22-Jul    | 20-Jul   | 17-Jul       | 17-Jul    | 26-Jul   | 17-Jul      |  |  |
| 2003      | 12-Jul     | 14-Jul     | 13-Jul  | 13-Jul    | 14-Jul   | 9-Jul        | 6-Jul     | 8-Jul    | 11-Jul      |  |  |
| 2004      | 9-Jul      | 18-Jul     | 8-Jul   | 10-Jul    | 9-Jul    | 7-Jul        | 9-Jul     |          | 9-Jul       |  |  |
| 2005      | 8-Jul      | 10-Jul     | 8-Jul   | 3-Jul     | 10-Jul   | 11-Jul       | 6-Jul     | 9-Jul    | 8-Jul       |  |  |
| 2006      | 9-Jul      | 14-Jul     | 11-Jul  | 5-Jul     | 3-Jul    | 9-Jul        | 11-Jul    | 12-Jul   | 10-Jul      |  |  |
| 2007      | 21-Jul     | 27-Jul     | 21-Jul  | 23-Jul    | 22-Jul   | 22-Jul       | 23-Jul    | 23-Jul   | 22-Jul      |  |  |
| 2008      | 19-Jul     |            | 22-Jul  | 20-Jul    | 29-Jul   | 21-Jul       | 13-Jul    |          | 22-Jul      |  |  |
| 1997–2006 | 10-Jul     | 15-Jul     | 10-Jul  | 8-Jul     | 11-Jul   | 10-Jul       | 10-Jul    | 11-Jul   | 11-Jul      |  |  |
|           | PANEL I    | B: STANDA  | RD ERRC | ORS OF TI | HE MEAN  | DATE OF MIC  | GRATION ( | in days) |             |  |  |
| 1997      | 0.36       | 3.59       | 1.54    |           | 1.28     | 1.36         | 0.73      |          | 0.59        |  |  |
| 1998      | 0.44       | 2.50       | 2.41    |           | 1.71     | 2.24         | 1.39      |          | 0.94        |  |  |
| 1999      | 0.43       |            | 1.56    |           | 4.01     | 1.92         | 1.67      |          | 1.02        |  |  |
| 2000      | 0.48       |            | 2.46    | 5.11      | 3.56     | 2.24         | 1.50      |          | 1.11        |  |  |
| 2001      | 0.38       | 3.84       | 3.46    | 6.81      | 0.33     | 1.67         | 1.65      | 6.67     | 1.15        |  |  |
| 2002      | 0.34       | 4.89       | 2.13    | 6.50      | 2.27     | 1.29         | 1.85      | 6.00     | 0.95        |  |  |
| 2003      | 0.39       | 5.50       | 2.10    | 2.70      | 1.70     | 1.28         | 2.90      | 7.37     | 0.87        |  |  |
| 2004      | 0.42       | 3.40       | 2.38    | 2.28      | 3.24     | 1.28         | 1.60      |          | 0.84        |  |  |
| 2005      | 0.32       | 0.79       | 1.11    | 5.07      | 3.45     | 0.98         | 1.02      | 0.49     | 0.61        |  |  |
| 2006      | 0.35       |            | 3.41    | 1.85      |          | 1.19         | 1.65      | 5.98     | 0.86        |  |  |
| 2007      | 0.31       | 0.97       | 0.86    | 1.21      | 1.54     | 0.47         | 0.77      | 2.50     | 0.34        |  |  |
| 2008      | 0.37       |            | 1.38    | 1.45      | 1.00     | 2.21         |           |          | 1.07        |  |  |
| ]         | PANEL C: N | UMBER OF   | FISH MA | RKED A    | T SN1 AN | D RECAPTURI  | ED ON TRI | BUTARIES |             |  |  |
| 1997      | 383        | 5          | 20      |           | 9        | 18           | 38        |          | 90          |  |  |
| 1998      | 550        | 2          | 21      | 1         | 13       | 18           | 37        | 1        | 93          |  |  |
| 1999      | 504        |            | 13      |           | 6        | 11           | 29        |          | 59          |  |  |
| 2000      | 697        | 1          | 15      | 7         | 6        | 19           | 18        |          | 66          |  |  |
| 2001      | 853        | 3          | 13      | 3         | 3        | 15           | 28        | 3        | 68          |  |  |
| 2002      | 873        | 5          | 5       | 2         | 5        | 25           | 22        | 2        | 66          |  |  |
| 2003      | 703        | 2          | 22      | 9         | 21       | 37           | 10        | 4        | 105         |  |  |
| 2004      | 690        | 9          | 17      | 10        | 13       | 53           | 27        |          | 129         |  |  |
| 2005      | 714        | 6          | 18      | 4         | 7        | 26           | 46        | 6        | 113         |  |  |
| 2006      | 1,004      | 1          | 9       | 7         | 2        | 54           | 40        | 4        | 117         |  |  |
| 2007      | 623        | 9          | 21      | 8         | 5        | 60           | 17        | 2        | 122         |  |  |
| 2008      | 649        |            | 29      | 5         | 2        | 20           | 1         |          | 57          |  |  |

Table 4.–Estimated mean date of migration of Chinook salmon stocks past SN1 on the Unuk River from 1997–2008 (Panel A), standard error (Panel B), and sample size (Panel C). SN = setnet.

Note: 2000, 2004, and 2008 are leap years.

Table 5.–Estimated age and sex composition of the escapement of small (<660 mm MEF; PANEL A), large ( $\geq$ 660 mm MEF; PANEL B), and combined small- and large-sized (PANEL C) Chinook salmon in the Unuk River in 2007, as determined from spawning grounds samples.

|          |                            |           |             |             | Brood y     | ear and a   | ge class    |        |             |             |       |
|----------|----------------------------|-----------|-------------|-------------|-------------|-------------|-------------|--------|-------------|-------------|-------|
|          |                            | 2005      | <u>2004</u> | <u>2003</u> | <u>2004</u> | <u>2003</u> | <u>2002</u> | 2001   | <u>2001</u> | <u>2000</u> |       |
|          | DA                         | 1.0       | 1.1         | 2.1         | 0.2         | 1.2         | 1.3         | 2.3    | 1.4         | 1.5         | Total |
| Malaa    | FA.                        | NEL A. AU | 25          | 1           |             |             | NUUK SA     | LWON   |             |             | 100   |
| Males    | sample size                | 1         | 33<br>19.6  | 1           | 1           | 141         | 4.9         |        |             |             | 100.0 |
|          | $p_{ijk} \times 100$       | 0.5       | 18.0        | 0.5         | 0.5         | /5.0        | 4.8         |        |             |             | 100.0 |
|          | $SE(p_{ijk}) \times 100$   | 0.5       | 2.8         | 0.5         | 0.5         | 3.2         | 1.0         |        |             |             | 0(1   |
|          | N <sub>ijk</sub>           | 5         | 1/9         | 5           | 5           | /21         | 46          |        |             |             | 961   |
| ~        | $SE(N_{ijk})$              | 3         | 34          | 3           | 5           | 85          | 16          |        |             |             | 106   |
| Sexes    | Sample size                | 1         | 35          | 1           | 1           | 141         | 9           |        |             |             | 188   |
| combined | $p_{ij} \times 100$        | 0.5       | 18.6        | 0.5         | 0.5         | 75.0        | 4.8         |        |             |             | 100.0 |
|          | $SE(p_{ij}) \times 100$    | 0.5       | 2.8         | 0.5         | 0.5         | 3.2         | 1.6         |        |             |             |       |
|          | N <sub>ij</sub>            | 5         | 179         | 5           | 5           | 721         | 46          |        |             |             | 961   |
|          | SE(N <sub>ij</sub> )       | 5         | 34          | 5           | 5           | 85          | 16          |        |             |             | 106   |
|          | PA                         | NEL B: AG | E COMPO     | OSITION     | OF LAR      | GE CHIN     | NOOK SA     | LMON   |             |             |       |
| Males    | Sample size                |           |             |             |             | 23          | 507         | 1      | 64          |             | 595   |
|          | p <sub>ijk</sub> x100      |           |             |             |             | 2.1         | 45.4        | 0.1    | 5.7         |             | 53.3  |
|          | $SE(p_{ijk}) \times 100$   |           |             |             |             | 0.4         | 1.5         | 0.1    | 0.7         |             | 1.5   |
|          | N <sub>ijk</sub>           |           |             |             |             | 117         | 2,573       | 5      | 325         |             | 3,019 |
|          | SE(N <sub>ijk</sub> )      |           |             |             |             | 26          | 219         | 5      | 47          |             | 252   |
| Females  | Sample size                |           |             |             |             |             | 375         | 1      | 140         | 6           | 522   |
|          | p <sub>ijk</sub> x100      |           |             |             |             |             | 33.6        | 0.1    | 12.5        | 0.5         | 46.7  |
|          | SE(p <sub>ijk</sub> ) x100 |           |             |             |             |             | 1.4         | 0.1    | 1.0         | 0.2         | 1.5   |
|          | N <sub>ijk</sub>           |           |             |             |             |             | 1,903       | 5      | 710         | 30          | 2,649 |
|          | SE(N <sub>ijk</sub> )      |           |             |             |             |             | 170         | 5      | 79          | 13          | 225   |
| Sexes    | Sample size                |           |             |             |             | 23          | 882         | 2      | 204         | 6           | 1,117 |
| combined | p <sub>ij</sub> x100       |           |             |             |             | 2.1         | 79.0        | 0.2    | 18.3        | 0.5         | 100.0 |
|          | $SE(p_{ij}) \times 100$    |           |             |             |             | 0.4         | 1.2         | 0.1    | 1.2         | 0.2         |       |
|          | N <sub>ij</sub>            |           |             |             |             | 117         | 4,476       | 10     | 1,035       | 30          | 5,668 |
|          | SE(N <sub>ij</sub> )       |           |             |             |             | 26          | 359         | 7      | 104         | 13          | 446   |
|          |                            | 1.0       | 1.1         | 2.1         | 0.2         | 1.2         | 1.3         | 2.3    | 1.4         | 1.5         | Total |
|          | PANEL C:                   | AGE COM   | POSITIO     | N OF SM     | IALL AN     | ID LARG     | E CHINO     | OK SAL | MON         |             |       |
| Males    | Sample size                | 1         | 35          | 1           | 1           | 164         | 516         | 1      | 64          |             | 783   |
|          | p <sub>ik</sub> x100       | 0.1       | 2.7         | 0.1         | 0.1         | 12.6        | 39.5        | 0.1    | 4.9         |             | 60.0  |
|          | SE(p <sub>ik</sub> ) x100  | 0.1       | 0.5         | 0.1         | 0.1         | 0.9         | 1.4         | 0.1    | 0.6         |             | 1.4   |
|          | N <sub>ik</sub>            | 5         | 179         | 5           | 5           | 837         | 2,619       | 5      | 325         |             | 3,980 |
|          | SE(N <sub>ik</sub> )       | 5         | 34          | 5           | 5           | 94          | 221         | 5      | 47          |             | 329   |
| Females  | Sample size                |           |             |             |             |             | 375         | 1      | 140         | 6           | 522   |
|          | p <sub>ik</sub> x100       |           |             |             |             |             | 28.7        | 0.1    | 10.7        | 0.5         | 40.0  |
|          | $SE(p_{ik}) \times 100$    |           |             |             |             |             | 1.3         | 0.1    | 0.9         | 0.2         | 1.4   |
|          | N <sub>ik</sub>            |           |             |             |             |             | 1,903       | 5      | 710         | 30          | 2,649 |
|          | $SE(N_{ik})$               |           |             |             |             |             | 168         | 5      | 78          | 13          | 227   |
| Sexes    | Sample size                | 1         | 35          | 1           | 1           | 164         | 891         | 2      | 204         | 6           | 1.305 |
| combined | p; x100                    | 0.1       | 2.7         | 0.1         | 0.1         | 12.6        | 68.2        | 0.2    | 15.6        | 0.5         | 100.0 |
|          | $SE(p_i) \times 100$       | 0.1       | 0.5         | 0.1         | 0.1         | 0.9         | 1.3         | 0.1    | 1.0         | 0.2         |       |
|          | Ni                         | 5         | 179         | 5           | 5           | 837         | 4.522       | 10     | 1.035       | 30          | 6,629 |
|          | SE(N <sub>i</sub> )        | 5         | 34          | 5           | 5           | 95          | 360         | 7      | 104         | 13          | 527   |
|          | ×                          |           |             |             |             |             |             |        |             |             |       |

An estimated 40% (SE = 1.4%) of the spawning population was female in 2007, similar to the previous 10-year average of 38.8% (Table 5, Appendix A6). There were an estimated 2,649 (SE = 227) spawning females in 2007 (Table 5). Estimated average lengths by age and sex were similar between events 1 and 2 in 2007 (Table 6).



Figure 16.–Cumulative relative frequencies of Chinook salmon 595–659 mm MEF inspected on the spawning grounds in 2007 compared with those recaptured on the spawning grounds.



Figure 17.–Effort (in hours of soak time) and catch of Chinook salmon by date at SN1 on the Unuk River, 2008. SN = setnet.

|                       |             | Brood year and age class |        |         |         |        |         |        |      |      |       |  |  |  |
|-----------------------|-------------|--------------------------|--------|---------|---------|--------|---------|--------|------|------|-------|--|--|--|
|                       |             | 2005                     | 2004   | 2003    | 2004    | 2003   | 2002    | 2001   | 2001 | 2000 |       |  |  |  |
|                       |             | 1.0                      | 1.1    | 2.1     | 0.2     | 1.2    | 1.3     | 2.3    | 1.4  | 1.5  | Total |  |  |  |
|                       |             | PANEL A:                 | EVENT  | 1, LOW  | ER UNU  | K RIVE | R SET G | ILLNET |      |      |       |  |  |  |
| Males <sup>a</sup>    | Sample size |                          | 3      |         |         | 64     | 211     |        | 23   |      | 307   |  |  |  |
|                       | Avg. length |                          | 400    |         |         | 629    | 800     |        | 867  |      | 764   |  |  |  |
|                       | SD          |                          | 23     |         |         | 52     | 65      |        | 71   |      | 106   |  |  |  |
|                       | SE          |                          | 13     |         |         | 7      | 4       |        | 15   |      | 6     |  |  |  |
| Females <sup>b</sup>  | Sample size |                          |        |         |         |        | 261     |        | 60   | 2    | 330   |  |  |  |
|                       | Avg. length |                          |        |         |         |        | 819     |        | 877  | 915  | 830   |  |  |  |
|                       | SD          |                          |        |         |         |        | 44      |        | 42   |      | 50    |  |  |  |
|                       | SE          |                          |        |         |         |        | 3       |        | 5    |      | 3     |  |  |  |
| Sexes                 | Sample size |                          | 3      |         |         | 64     | 472     |        | 83   | 2    | 637   |  |  |  |
| combined <sup>c</sup> | Avg. length |                          | 400    |         |         | 629    | 811     |        | 874  | 915  | 798   |  |  |  |
|                       | SD          |                          | 23     |         |         | 52     | 55      |        | 52   |      | 88    |  |  |  |
|                       | SE          |                          | 13     |         |         | 7      | 3       |        | 6    |      | 3     |  |  |  |
|                       |             | PA                       | NEL B: | EVENT 2 | 2, SPAW | NING G | ROUND   | S      |      |      |       |  |  |  |
| Males <sup>d</sup>    | Sample size | 1                        | 34     | 1       | 1       | 164    | 516     | 1      | 65   |      | 791   |  |  |  |
|                       | Avg. length | 245                      | 391    | 430     | 565     | 610    | 794     | 805    | 873  |      | 743   |  |  |  |
|                       | SD          |                          | 39     |         |         | 54     | 60      |        | 75   |      | 128   |  |  |  |
|                       | SE          |                          | 7      |         |         | 4      | 3       |        | 9    |      | 5     |  |  |  |
| Females <sup>e</sup>  | Sample size |                          |        |         |         |        | 375     | 1      | 140  | 6    | 527   |  |  |  |
|                       | Avg. length |                          |        |         |         |        | 815     | 740    | 869  | 862  | 830   |  |  |  |
|                       | SD          |                          |        |         |         |        | 41      |        | 40   | 39   | 48    |  |  |  |
|                       | SE          |                          |        |         |         |        | 2       |        | 3    | 16   | 2     |  |  |  |
| Sexes                 | Sample size | 1                        | 34     | 1       | 1       | 164    | 891     | 2      | 205  | 6    | 1,318 |  |  |  |
| combined <sup>f</sup> | Avg. length | 245                      | 391    | 430     | 565     | 610    | 803     | 773    | 870  | 862  | 778   |  |  |  |
|                       | SD          |                          | 39     |         |         | 54     | 54      | 46     | 54   | 39   | 112   |  |  |  |
|                       | SE          |                          | 7      |         |         | 4      | 2       | 33     | 4    | 16   | 3     |  |  |  |

Table 6.-Estimated average length (MEF in mm) by age class, sex, and sampling event of Chinook salmon sampled in the Unuk River in 2007

<sup>a</sup> Male total includes 6 fish of undetermined age.

<sup>b</sup> Female total includes 7 fish of undetermined age.

<sup>c</sup> Total includes 13 fish of undetermined age.

<sup>d</sup> Male total includes 8 fish of undetermined age.

<sup>e</sup> Female total includes 5 fish of undetermined age.

<sup>f</sup> Total includes 13 fish of undetermined age.

# 2008 MARK RECAPTURE STUDY

# **Event 1: Sampling in the Lower River**

Between 11 June and 4 August 2008, 665 C hinook salmon were sampled in the lower river, of which 649 (92 fish <660 mm MEF and 557 large) were marked and released (Table 2). Seven captured fish died prior to or during the marking process. Fishing effort at the set gillnets was maintained at relatively constant levels through 4 August (Figure 17). Persistent flooding began on 5 August and effectively ended event 1 activities. A total of 52 fish were missing adipose fins, of which 8 were sacrificed and 2 died prior to or during marking; the rest were marked and released in good condition. Of the 10 heads recovered during event 1, 4 had valid CWTs for this stock, 3 heads were purloined by ravens, and three were without CWTs. Among the fish that were missing adipose fins and of those sacrificed, 33% and 80%, respectively, were males. Both adipose-clipped fish that died prior to marking were females, and neither fish was subsequently determined to have had a CWT.

#### **Event 2: Sampling on the Spawning Grounds**

During event 2, 391 f ish were inspected (86 fish <660 mm MEF and 305 large), of which 59 were recaptured fish (5 <660 mm MEF and 54 large; Table 2). The smallest recaptured fish was 540 mm MEF. Two sampled fish had shed their spaghetti tags. Adipose fins were missing on 51 fish sampled during event 2, and 15 of these were sacrificed. Of the 15 adipose-clipped fish sacrificed, 10 carried a valid CWT for this stock. All five sacrificed fish that did not contain a CWT were determined to be age-1.2 fish. Among the fish that were missing adipose fins and of those sacrificed, 67% and 87%, respectively, were males.

Because of persistent flooding from 5 to 18 August, the effectiveness of escapement sampling at Genes Lake and Clear Creek was seriously degraded. During this period it was also impossible to safely reach other escapement tributaries, impossible to capture fish in other tributaries, or both. This period encompassed the traditional peak spawning dates on the various tributaries of the Unuk River. Cripple Creek, which typically supports 1 of the 2 largest spawning populations in the Unuk River watershed, was first sampled on 20 A ugust and few fish or fish carcasses remained.



Figure 18.–Cumulative relative frequencies of large Chinook salmon ( $\geq$ 660 mm MEF) marked in the lower Unuk River in 2008 compared with those recaptured on the spawning grounds.



Figure 19.–Cumulative relative frequencies of large Chinook salmon  $\geq$  PP0() PDUNGIQWKH ORZ HJ8 QXN5 LYHJQ FRP SDJHGZ DWK WKRVHIQVSHFWG RQ WKHVSDZ QQI JUKXQCV

## Abundance by Size

Length distributions of large fish that were marked and recaptured were not significantly different (P = 0.953, D = 0.071; Figure 18; M vs. R in Appendix A1). Likewise, no difference was detected in the length distributions of large fish that were marked and inspected (P = 0.161, D = 0.078, Figure 19; M vs. C in Appendix A1) or inspected and recaptured (P = 0.888, D = 0.081, Figure 20; C vs. R in Appendix A1).



Figure 20.–Cumulative relative frequencies of large Chinook salmon ( $\geq 660 \text{ mm MEF}$ ) inspected on the spawning grounds in 2008 compared with those recaptured on the spawning grounds.

These results indicate that size-selective sampling did not occur during either event for large-sized fish (Case I, Appendix A1).

There was evidence of gender selectivity during event 2 sampling of large fish ( $\chi^2 = 3.137$ , df = 1, P = 0.077 for M vs. C;  $\chi^2 = 4.305$ , df = 1, P = 0.038 for M vs. R; and  $\chi^2 = 1.309$ , df = 1, P = 0.253 for C vs. R; Case II, Appendix A1). This is an atypical result and reflects multiple event 2 sampling limitations caused by the extensive flooding that occurred from 5 to 19 August; the major population at Cripple Creek was basically unsampled, total sample size was much lower than in prior years, sampling was almost totally reliant on hook-and-line snag gear, few carcasses were available for sampling, and both sampling and sampling effectiveness were skewed towards the latter stages of the spawning event in most if not all tributaries.

The results of the chi-square test suggest that for large fish, the set gillnets were not gender selective. However, gender misidentification did occur during event 1; of 52 fish with spaghetti tags that were sampled during event 2, 2 females and 1 male were misidentified during event 1. These results suggest that a bias of from approximately 2 to 6% would occur if event 1 samples were used to estimate the gender composition of the inriver return.

The samples from neither event could therefore be used to produce an unbiased estimate of gender composition and we believe the best alternative was to estimate the sex composition of large fish based on event 1 samples. Although the result could have a gender bias of up to 6% attributed to misidentification, the event 1 samples uniformly spanned the vast majority of the

migration and gender selectivity was not otherwise indicated. In contrast, during event 2, testing indicated gender selectivity of significant but unknown magnitude did occur and sampling did not uniformly span the entire spawning population in either temporal or spatial terms.

The probability of capturing a large fish during event 2 that was tagged during event 1 was not significantly different between sampling locations ( $\chi^2 = 4.161$ , df = 5, P = 0.527; Table 2), satisfying the equal proportions test (Appendix A2). The mixing test was marginally significant ( $\chi^2 = 16.9$ , df = 10, P = 0.08), while the complete mixing test was significant ( $\chi^2 = 8.7$ , df = 2, P = 0.012).

Results from the diagnostic tests above indicated that the pooled estimator (Eq 1) was appropriate for estimating abundance of large Chinook salmon. Estimated abundance of large fish is 3,104 ( $M_L = 557$ ;  $C_L = 305$ ;  $R_L = 54$ ; SE = 357; 95% CI = 2,528 - 3,991) which lies within the BEG range (1,800–3,800; Table 3, Figure 13).

Length distributions of fish between 540 mm MEF, the size of the smallest recaptured fish, and 659 mm MEF that were marked and inspected were significantly different (P = 0.078; Figure 21; M vs. C in Appendix A1). No difference was detected in the length distributions of fish 540-659 mm MEF that were marked and recaptured (P = 0.389; Figure 22; M vs. R in Appendix A1) or inspected and recaptured (P = 0.972; Figure 23; C vs. R in Appendix A1). These results indicate that further evaluation was required (Appendix A1) to determine if size-selective sampling occurred. The statistics did not fit any of the A-D scenarios in Appendix A1. We had small sample sizes for all of marked (84), recaptured (5) fish and inspected (64) fish, making option D the only candidate. P values for the inspected vs. recaptured test and marked vs. recaptured test were large at 0.98 and 0.39, respectively, however. We chose Case IV to be conservative. Case *IV* recommends stratification of data for one or both sampling events, which given the sparse number of recaptured fish, was an unsuitable alternative. Abundance of fish <660 mm MEF was therefore estimated indirectly by expanding the estimate for large fish by the estimated size composition of the spawning escapement (Eq 3; McPherson et al. 1997). Testing of the spawning grounds samples collected in 1994 and 1997-2007 has consistently found no evidence of size selectivity (Pahlke et al. 1996; Jones III et al. 1998; Jones III and McPherson 1999, 2000, 2002, Weller and McPherson 2003a-b. 2004, 2006a-b). No sampled fish <660 mm MEF was determined to be female during this study, consequently gender selectivity was considered to be irrelevant in estimating the sex composition of fish <660 mm MEF. Estimated abundance of fish <660 mm MEF is 875 (SE = 146), based on 86 fish <660 mm MEF and 305 large samples collected on the spawning grounds. Statistical bias of the estimate is 2% and the bootstrap-derived 95% confidence interval for the estimated abundance is 632 to 1,228.

# **EXPANSION FACTOR**

In 2008 the peak survey count of large Chinook salmon in the six index streams of the Unuk River was 242 fish (Table 3; Appendix A4; Pahlke 2010). Of the estimated 3,104 large Chinook salmon immigrating to the Unuk River in 2008, 7.8% were counted during peak survey counts. This percentage was the lowest on record (Table 3; Pahlke et al 1996), and was attributed to flooding during the peak of spawning that precluded our ability to survey Cripple Creek and resulted in poor and/or incomplete surveys in the remaining five index streams. The 2008 expansion factor is 12.8 (Table 3). As the 2008 survey data was incomplete, the long-term mean expansion factor was not revised from 2007.



Figure 21.–Cumulative relative frequencies of Chinook salmon 540–659 mm MEF marked in the lower Unuk River in 2008 compared with those inspected on the spawning grounds.



Figure 22.–Cumulative relative frequencies of Chinook salmon 540–659 mm MEF marked in the lower Unuk River in 2008 compared with those recaptured on the spawning grounds.



Figure 23.–Cumulative relative frequencies of Chinook salmon 540–659 mm MEF inspected on the spawning grounds in 2008 compared with those recaptured on the spawning grounds.

# **MIGRATORY TIMING**

Migration past SN1 in 2008 was the second latest on record (19 July; 1997–2008; Table 4). The mean date of migration past SN1 was estimated to be 22 July for those Chinook salmon marked at the set gillnet site and subsequently recovered on the spawning grounds (Table 4). This compares to an average date of 11 July from 1997 through 2006.

For fish captured more than once at SN1, an average of 5.54 days elapsed between the time fish were tagged and released and they were subsequently recaptured at SN1 (sulking behavior; Appendix A7).

# AGE AND SEX COMPOSITION

There was evidence of gender selectivity of large fish during event 2; therefore only event 1 samples were used to estimate the age and sex composition of large fish in the spawning population. Event 2 samples were used to estimate the age and sex composition of fish <660 mm MEF (see above). An estimated 41.0% (SE = 2.0%) of the spawning population of Chinook salmon was comprised of age-1.4 fish (Table 7). Age-1.3 and age-1.2 fish comprised 30.9% (SE = 1.8%) and 23.5% (SE = 2.0%) of the estimated spawning population, respectively.

There were an estimated 1,717 (SE = 209) spawning females, representing approximately 43% of the total spawning population in 2008 (Table 7). Estimated average lengths by age and sex were similar between events 1 and 2 in 2008 (Table 8).

Table 7.–Estimated age and sex composition of the escapement of small (<660 mm MEF; PANEL A), large ( $\geq$ 660 mm MEF; PANEL B), and combined small and large sized (PANEL C) Chinook salmon in the Unuk River in 2008, as determined from inriver set gillnet (large fish) and spawning grounds samples (small fish).

|          | _                          |               | Br          | ood year and | age class  |            |      |              |
|----------|----------------------------|---------------|-------------|--------------|------------|------------|------|--------------|
|          |                            | 2005          | 2004        | 2004         | 2003       | 2002       | 2001 |              |
|          |                            | 1.1           | 1.2         | 0.3          | 1.3        | 1.4        | 1.5  | Total        |
|          | PANE                       | EL A: AGE COM | 1POSITION   | OF SMALL C   | CHINOOK SA | ALMON      |      |              |
| Males    | Sample size                | 16            | 69          |              | 1          |            |      | 86           |
|          | p <sub>ijk</sub> x100      | 18.6          | 80.2        |              | 1.2        |            |      | 100.0        |
|          | SE(p <sub>ijk</sub> ) x100 | 4.2           | 4.3         |              | 1.2        |            |      |              |
|          | N <sub>ijk</sub>           | 163           | 702         |              | 10         |            |      | 875          |
|          | SE(N <sub>ijk</sub> )      | 45            | 123         |              | 10         |            |      | 146          |
| Sexes    | Sample size                | 16            | 69          |              | 1          |            |      | 86           |
| combined | p <sub>ij</sub> x100       | 18.6          | 80.2        |              | 1.2        |            |      | 100.0        |
|          | $SE(p_{ij}) \times 100$    | 4.2           | 4.3         |              | 1.2        |            |      |              |
|          | N <sub>ij</sub>            | 163           | 702         |              | 10         |            |      | 875          |
|          | SE(N <sub>ij</sub> )       | 45            | 123         |              | 10         |            |      | 146          |
|          | <b>D</b> ( ) / 7           | 1.1           | 1.2         | 0.3          | 1.3        | 1.4        | 1.5  | Total        |
|          | PANE                       | EL B: AGE CON | APOSITION ( | OF LARGE C   | CHINOOK SA |            |      |              |
| Males    | Sample size                |               | 42          | 1            | 122        | 82         | 1    | 248          |
|          | $p_{ijk} \times 100$       |               | 7.6         | 0.2          | 22.0       | 14.8       | 0.2  | 44.7         |
|          | $SE(p_{ijk}) \times 100$   |               | 1.1         | 0.2          | 1.8        | 1.5        | 0.2  | 2.1          |
|          | N <sub>ijk</sub>           |               | 235         | 6            | 682        | 459        | 6    | 1,387        |
|          | SE(N <sub>ijk</sub> )      |               | 44          | 6            | 95         | 70         | 6    | 172          |
| Females  | Sample size                |               |             |              | 96         | 210        | 1    | 307          |
|          | $p_{ijk} \times 100$       |               |             |              | 17.3       | 37.8       | 0.2  | 55.3         |
|          | $SE(p_{ijk}) \ge 100$      |               |             |              | 1.6        | 2.1        | 0.2  | 2.1          |
|          | N <sub>ijk</sub>           |               |             |              | 537        | 1,174      | 6    | 1,717        |
| ~        | SE(N <sub>ijk</sub> )      |               |             |              | 79         | 149        | 6    | 208          |
| Sexes    | Sample size                |               | 42          | 1            | 218        | 292        | 2    | 555          |
| combined | $p_{ij} \times 100$        |               | 7.6         | 0.2          | 39.3       | 52.6       | 0.4  | 100.0        |
|          | $SE(p_{ij}) \times 100$    |               | 1.1         | 0.2          | 2.1        | 2.1        | 0.3  |              |
|          | N <sub>ij</sub>            |               | 235         | 6            | 1,219      | 1,633      | 11   | 3,104        |
|          | SE(N <sub>ij</sub> )       |               | 44          | 6            | 154        | 199        | 8    | 357          |
|          | PANEL C: A                 | GE COMPOSIT   | TON OF SMA  | ALL AND LA   | ARGE CHINC | DOK SALMON | N    |              |
| Males    | Sample size                | 16            | 111         |              | 123        | 82         |      | 334          |
|          | $p_{ik} \times 100$        | 4.1           | 23.5        | 0.1          | 1/.4       | 11.5       | 0.1  | 56.8         |
|          | $SE(p_{ik}) \times 100$    | 1.0           | 2.0         | 0.1          | 1.5        | 1.2        | 0.1  | 2.0          |
|          | N <sub>jk</sub>            | 163           | 937         | 6            | 692        | 459        | 6    | 2,262        |
| <b>F</b> | $SE(N_{jk})$               | 40            | 149         | 0            | 97         | 210        | 0    | 290          |
| Females  | Sample size                |               |             |              | 96<br>12.5 | 210        |      | 307          |
|          | $p_{ik} \times 100$        |               |             |              | 13.5       | 29.5       | 0.1  | 43.2         |
|          | $SE(p_{ik}) \times 100$    |               |             |              | 1.5        | 1.8        | 0.1  | 2.0          |
|          | N <sub>jk</sub>            |               |             |              | 537        | 1,1/4      | 6    | 1,/1/        |
| <u></u>  | $SE(N_{jk})$               | 16            | 111         | 1            | 210        | 150        | 6    | 209          |
| Sexes    | Sample size                | 16            | 111         |              | 219        | 292        | 2    | 641<br>100 0 |
| combined | $p_j x_{100}$              | 4.1           | 23.5        | 0.1          | 50.9       | 41.0       | 0.3  | 100.0        |
|          | $SE(p_j) \times 100$       | 1.0           | 2.0         | 0.1          | 1.8        | 2.0        | 0.2  | 2 070        |
|          | N <sub>j</sub><br>SE(N1)   | 163           | 95/         | 0            | 1,229      | 1,033      | 11   | 3,9/9        |
|          | $SE(N_j)$                  | 46            | 149         | 6            | 155        | 198        | 8    | 4/0          |

|                       |             |             | Bro        | od year and | age class  |      |      |       |
|-----------------------|-------------|-------------|------------|-------------|------------|------|------|-------|
|                       |             | 2005        | 2004       | 2004        | 2003       | 2002 | 2001 |       |
|                       |             | 1.1         | 1.2        | 0.3         | 1.3        | 1.4  | 1.5  | Total |
|                       | PANEL .     | A: EVENT 1, | LOWER UI   | NUK RIVE    | R SET GILI | LNET |      |       |
| Males                 | Sample size | 8           | 131        | 1           | 126        | 83   | 1    | 350   |
|                       | Avg. length | 399         | 634        | 750         | 764        | 905  | 930  | 741   |
|                       | SD          | 30          | 47         |             | 64         | 57   |      | 129   |
|                       | SE          | 11          | 4          |             | 6          | 6    |      | 7     |
| Females <sup>a</sup>  | Sample size |             |            |             | 97         | 214  | 2    | 315   |
|                       | Avg. length |             |            |             | 806        | 886  | 913  | 861   |
|                       | SD          |             |            |             | 48         | 42   | 25   | 57    |
|                       | SE          |             |            |             | 5          | 3    | 18   | 3     |
| Sexes <sup>a</sup>    | Sample size | 8           | 131        | 1           | 223        | 297  | 3    | 665   |
| combined              | Avg. length | 399         | 634        | 750         | 782        | 891  | 918  | 798   |
|                       | SD          | 30          | 47         |             | 61         | 48   | 20   | 118   |
|                       | SE          | 11          | 4          |             | 4          | 3    | 12   | 5     |
|                       | Р           | ANEL B: EVI | ENT 2, SPA | WNING G     | ROUNDS     |      |      |       |
| Males                 | Sample size | 16          | 98         |             | 72         | 54   | 1    | 241   |
|                       | Avg. length | 393         | 623        |             | 780        | 896  | 955  | 717   |
|                       | SD          | 34          | 56         |             | 56         | 62   |      | 150   |
|                       | SE          | 8           | 6          |             | 7          | 8    |      | 10    |
| Females <sup>b</sup>  | Sample size |             |            |             | 49         | 99   | 1    | 150   |
|                       | Avg. length |             |            |             | 802        | 876  | 855  | 851   |
|                       | SD          |             |            |             | 47         | 39   |      | 54    |
|                       | SE          |             |            |             | 7          | 4    |      | 4     |
| Sexes                 | Sample size | 16          | 98         |             | 121        | 153  | 2    | 391   |
| combined <sup>b</sup> | Avg. length | 393         | 623        |             | 789        | 883  | 905  | 768   |
|                       | SD          | 34          | 56         |             | 54         | 49   | 71   | 138   |
|                       | SE          | 8           | 6          |             | 5          | 4    | 50   | 7     |

Table 8.–Estimated average length (MEF in mm) by age class, sex, and sampling event of Chinook salmon sampled in the Unuk River in 2008.

<sup>a</sup> Total includes two fish of undetermined age.

<sup>a</sup> Total includes one fish of undetermined age.

# SMOLT ABUNDANCE AND OVERWINTER SURVIVAL

Details of daily catch, CPUE, and tagging of juvenile Chinook salmon from 1993–2004 are reported in Hendrich et al. (2008; Tables D1–D3). Details of daily catch, CPUE, and tagging of juvenile Chinook salmon from 2005 through spring 2009 are provided in Appendices B1–B3, and mean length and weight of juvenile Chinook salmon from 1978 through spring of 2009 are provided in Appendix B4.

#### Brood Year 1992

A total of 13,789 fingerlings and 2,642 smolt from 1992 brood were released with valid CWTs (Table 9; Appendix B1; Hendrich et al. 2008). The proportion of adipose-finclipped brood year 1992 fingerlings that survived to smolt, overwinter survival or  $\hat{S}$ , was estimated to be 0.805 (SE = 0.400), resulting in an estimated total of 13,856 finclipped smolt emigrating from the Unuk River in 1994 (Table 9). The estimated abundance of brood year 1992 fingerlings and smolt was 507,650 (SE = 334,752) and 408,521 (SE = 176,932;  $cv_{smolt} = 44.3\%$ ), respectively (Table 10).

## Brood Year 1993

A total of 20,526 fingerlings and 3,227 smolt from brood year 1993 were released with valid CWTs (Table 9; Appendix B1; Hendrich et al. 2008). Overwinter survival of fingerlings was estimated to be 0.738 (SE = 0.169), resulting in an estimated total of 18,380 finclipped smolt emigrating from the Unuk River in 1995 (Table 9). The estimated abundance of brood year 1993 fingerlings and smolt was 255,674 (SE = 78,576) and 188,746 (SE = 38,709;  $cv_{smolt}$  = 20.5%), respectively (Table 10).

#### **Brood Year1994**

A total of 40,206 fingerlings and 7,456 smolt from brood year 1994 were released with valid CWTs (Table 9; Appendix B1; Hendrich et al. 2008). Overwinter survival of fingerlings was estimated to be 0.343 (SE = 0.082), resulting in an estimated total of 21,263 finclipped smolt emigrating from the Unuk River in 1996 (Table 9). The estimated abundance of brood year 1994 fingerlings and smolt was 693,103 (SE = 208,312) and 238,023 (SE = 43,531;  $cv_{smolt}$  = 18.3%), respectively (Table 10).

#### **Brood Year1995**

A total of 39,177 fingerlings and 12,517 smolt from brood year 1995 were released with valid CWTs (Table 9; Appendix B1; Hendrich et al. 2008). Overwinter survival of fingerlings was estimated to be 0.574 (SE = 0.083), resulting in an estimated total of 35,014 finclipped smolt emigrating from the Unuk River in 1997 (Table 9). The estimated abundance of brood year 1995 fingerlings and smolt was 547,876 (SE = 101,921) and 314,609 (SE = 35,875;  $cv_{smolt}$  = 11.4%), respectively (Table 10).

#### **Brood Year 1996**

A total of 61,905 fingerlings and 17,121 smolt from brood year 1996 were released with valid CWTs (Table 9; appendix B1; Hendrich et al. 2008). Overwinter survival of fingerlings was estimated to be 0.636 (SE = 0.093), resulting in an estimated total of 56,474 finclipped smolt emigrating from the Unuk River in 1998 (Table 9). The estimated abundance of brood year 1996 fingerlings and smolt was 765,584 (SE = 143,055) and 486,678 (SE = 56,694;  $cv_{smolt}$  = 11.6%), respectively (Table 10).

#### Brood Year 1997

A total of 33,888 fingerlings and 7,948 smolt from brood year 1997 were released with valid CWTs (Table 9; Appendix B1; Hendrich et al. 2008). Overwinter survival of fingerlings was estimated to be 0.678 (SE = 0.185), resulting in an estimated total of 30,909 finclipped smolt emigrating from the Unuk River in 1999 (Table 9). The estimated abundance of brood year 1997

fingerlings and smolt was 462,826 (SE = 162,422) and 313,589 (SE = 69,072;  $cv_{smolt}$  = 22.0%), respectively (Table 10).

#### **Brood Year 1998**

A total of 16,661 fingerlings and 13,333 smolt from the brood year 1998 were released with valid CWTs (Table 9; Appendix B1; Hendrich et al. 2008). Overwinter survival of fingerlings was estimated to be 0.736 (SE = 0.135), resulting in an estimated total of 25,591 finclipped smolt emigrating from the Unuk River in 2000 (Table 9). The estimated abundance of brood year 1998 fingerlings and smolt was 369,347 (SE = 78,984) and 271,735 (SE = 30,003;  $cv_{smolt}$  = 11.0%), respectively (Table 10).

#### Brood Year 1999

A total of 31,925 fingerlings and 16,561 smolt from brood year 1999 were released with valid CWTs (Table 9; Appendix B1; Hendrich et al. 2008). Overwinter survival was estimated to be 0.483 (SE = 0.129), resulting in an estimated total of 31,980 finclipped smolt emigrating from the Unuk River in 2001 (Table 9). The estimated abundance of brood year 1999 fingerlings and smolt was 623,264 (SE = 196,006) and 301,019 (SE = 49,889;  $cv_{smolt}$  = 16.6%), respectively (Table 10).

#### Brood Year 2000

A total of 44,371 fingerlings and 11,971 smolt from brood year 2000 were released with valid CWTs (Table 9; Appendix B1; Hendrich et al. 2008). Overwinter survival was estimated to be 0.531 (SE = 0.082), resulting in an estimated total of 35,545 finclipped smolt emigrating from the Unuk River in 2002 (Table 9). The estimated abundance of brood year 2000 fingerlings and smolt was 779,643 (SE = 152,740) and 414,007 (SE = 49,935;  $cv_{smolt}$  = 12.1%), respectively (Table 10).

#### Brood Year 2001

A total of 54,546 fingerlings and 11,837 smolt from brood year 2001 were released with valid CWTs (Table 9; Appendix B1; Hendrich et al. 2008). Overwinter survival was estimated to be 0.273 (SE = 0.058), resulting in an estimated total of 26,709 finclipped smolt emigrating from the Unuk River in 2003 (Table 9). The estimated abundance of brood year 2001 fingerlings and smolt was 954,079 (SE = 248,475) and 260,132 (SE = 38,476;  $cv_{smolt}$  = 14.8%), respectively (Table 10).

#### Brood Year 2002

A total of 44,498 fingerlings and 14,396 smolt from brood year 2002 were released with valid CWTs (Table 9; Appendix B1). Overwinter survival was estimated to be 0.599 (SE = 0.108), resulting in an estimated total of 41,044 finclipped smolt emigrating from the Unuk River in 2004 (Table 9). The estimated abundance of brood year 2002 fingerlings and smolt was 754,516 (SE = 169,230) and 451,847 (SE = 59,987;  $cv_{smolt}$  = 13.3%), respectively (Table 10). BY 2002 estimates are preliminary pending returns of age-1.5 fish in 2009.

Table 9.-Number of fall fingerlings  $M_f$  and spring smolt  $M_s$  released with adipose fin clips, the estimated number of those fish that were released with valid CWTs ( $\hat{M}_{f,valid}$ ,  $\hat{M}_{s,valid}$ ), the number of fish with valid coded wire tags that were subsequently recovered ( $\hat{v}_{\bullet,f}$ ,  $\hat{v}_{\bullet,s}$ ), the estimated proportion of coded wire tagged fingerlings that survived to the following spring  $\hat{S}$ , the estimated number of adipose-finclipped fingerlings that survived to smolt  $\hat{M}_{f\to s}$ , and the estimated total number of adipose-finclipped smolt  $\hat{M}$ , 1992–2005 brood years. Note that estimates for the 2002–2005 brood years are preliminary, pending complete brood year returns.

|   |       |        | Season    |                     |                     |                       |                |               |       |               |                   |                   |           |
|---|-------|--------|-----------|---------------------|---------------------|-----------------------|----------------|---------------|-------|---------------|-------------------|-------------------|-----------|
|   | Brood | Year   | fish were | <i>M</i> . <i>M</i> | $\hat{M}$ $\hat{M}$ | $\hat{v}$ , $\hat{v}$ | -              | -             | â     | $SE(\hat{S})$ | $\hat{M}$         | $SE(\hat{M})$     | $\hat{M}$ |
| _ | year  | tagged | marked    | $f, m_s$            | f,valid, in s,valid | •,f', ••,s            | Recovery years | Recovery ages | S     | SE(S)         | $f \rightarrow s$ | $SL(m_{f \to s})$ | 1/1       |
|   | 1992  | 1993   | Fall      | 13,935              | 13,789              | 21                    | 1996–1999      | 1.2–1.5       | 0.805 | 0.400         | 11,214            | 5,518             |           |
| _ | 1992  | 1994   | Spring    | 2,642               | 2,642               | 5                     | 1996–1999      | 1.2-1.5       |       |               |                   |                   | 13,856    |
|   | 1993  | 1994   | Fall      | 20,526              | 20,526              | 108                   | 1996-2000      | 1.1-1.5       | 0.738 | 0.169         | 15,153            | 3,468             |           |
| _ | 1993  | 1995   | Spring    | 3,227               | 3,227               | 23                    | 1996-2000      | 1.1-1.5       |       |               |                   |                   | 18,380    |
|   | 1994  | 1995   | Fall      | 40,206              | 40,206              | 50                    | 1997-2001      | 1.1-1.5       | 0.343 | 0.082         | 13,807            | 3,293             |           |
|   | 1994  | 1996   | Spring    | 7,456               | 7,456               | 27                    | 1997-2001      | 1.1-1.5       |       |               |                   |                   | 21,263    |
|   | 1995  | 1996   | Fall      | 39,177              | 39,177              | 133                   | 1998-2002      | 1.1-1.5       | 0.574 | 0.083         | 22,497            | 3,255             |           |
|   | 1995  | 1997   | Spring    | 12,517              | 12,517              | 74                    | 1998-2002      | 1.1-1.5       |       |               |                   |                   | 35,014    |
|   | 1996  | 1997   | Fall      | 61,905              | 61,905              | 154                   | 1999–2003      | 1.1-1.5       | 0.636 | 0.093         | 39,353            | 5,749             |           |
|   | 1996  | 1998   | Spring    | 17,121              | 17,121              | 67                    | 1999-2003      | 1.1-1.5       |       |               |                   |                   | 56,474    |
|   | 1997  | 1998   | Fall      | 33,888              | 33,888              | 52                    | 2000-2004      | 1.1-1.5       | 0.678 | 0.185         | 22,961            | 6,273             |           |
|   | 1997  | 1999   | Spring    | 7,948               | 7,948               | 18                    | 2000-2004      | 1.1-1.5       |       |               |                   |                   | 30,909    |
|   | 1998  | 1999   | Fall      | 16,661              | 16,661              | 57                    | 2001-2005      | 1.1-1.5       | 0.736 | 0.135         | 12,258            | 2,245             |           |
|   | 1998  | 2000   | Spring    | 13,333              | 13,333              | 62                    | 2001-2005      | 1.1-1.5       |       |               |                   |                   | 25,591    |
| - | 1999  | 2000   | Fall      | 31,925              | 31,925              | 27                    | 2002-2006      | 1.1-1.5       | 0.483 | 0.129         | 15,419            | 4,121             |           |
|   | 1999  | 2001   | Spring    | 16,561              | 16,561              | 29                    | 2002-2006      | 1.1-1.5       |       |               |                   |                   | 31,980    |
|   | 2000  | 2001   | Fall      | 44,394              | 44,371              | 124                   | 2003-2007      | 1.1-1.5       | 0.531 | 0.082         | 23,574            | 3,637             |           |
|   | 2000  | 2002   | Spring    | 11,971              | 11,971              | 63                    | 2003-2007      | 1.1-1.5       |       |               |                   |                   | 35,545    |
|   | 2001  | 2002   | Fall      | 54,546              | 54,546              | 49                    | 2004-2008      | 1.1-1.5       | 0.273 | 0.058         | 14,872            | 3,188             |           |
|   | 2001  | 2003   | Spring    | 11,837              | 11,837              | 39                    | 2004-2008      | 1.1-1.5       |       |               |                   |                   | 26,709    |
|   | 2002  | 2003   | Fall      | 44,498              | 44,498              | 87                    | 2005-2008      | 1.1-1.4       | 0.599 | 0.108         | 26,648            | 4,817             |           |
|   | 2002  | 2004   | Spring    | 14,396              | 14,396              | 47                    | 2005-2008      | 1.1-1.4       |       |               | ·                 | ŕ                 | 41,044    |
|   | 2003  | 2004   | Fall      | 27,129              | 27,129              | 18                    | 2006-2008      | 1.1-1.3       | 0.300 | 0.099         | 8,133             | 2,073             |           |
|   | 2003  | 2005   | Spring    | 8,618               | 8,585               | 19                    | 2006-2008      | 1.1-1.3       |       |               |                   |                   | 16,751    |
|   | 2004  | 2005   | Fall      | 24,271              | 24,271              | 9                     | 2007-2008      | 1.1-1.2       | 0.670 | 0.316         | 16,269            | 7,668             | <u> </u>  |
|   | 2004  | 2006   | Spring    | 16,371              | 16,269              | 9                     | 2007-2008      | 1.1-1.2       |       |               | ·                 | ·                 | 32,640    |
|   | 2005  | 2006   | Fall      | 32,799              | 32,799              | 2                     | 2007-2008      | 1.0-1.1       |       |               |                   |                   | <u> </u>  |
|   | 2005  | 2007   | Spring    | 4,731               | 4,721               | 0                     | 2007-2008      | 1.0-1.1       |       |               |                   |                   |           |
| - |       |        | ÷ •       |                     |                     |                       |                |               |       |               |                   |                   |           |

-continued-

Table 9.–Page 2 of 2.

|       |        | Season    |               |                               |                                   |                                                                              |
|-------|--------|-----------|---------------|-------------------------------|-----------------------------------|------------------------------------------------------------------------------|
| Brood | Year   | fish were | мМ            | $\hat{M}$ $\hat{M}$           | û û                               | $\hat{\alpha} = \sigma r(\hat{a}) \hat{M} = \sigma r(\hat{M}) \hat{M}$       |
| year  | tagged | marked    | $M_f$ , $M_s$ | $M_{f,valid}$ , $M_{s,valid}$ | $V_{\bullet,f}$ , $V_{\bullet,s}$ | Recovery years Recovery ages $S \ SE(S) \ M_{f \to s} \ SE(M_{f \to s}) \ M$ |
| 2006  | 2007   | Fall      | 45,148        | 45,089                        | 0                                 |                                                                              |
| 2006  | 2008   | Spring    | 10,519        | 10,489                        | 0                                 |                                                                              |
| 2007  | 2008   | Fall      | 16,608        | 16,595                        | 0                                 |                                                                              |
| 2007  | 2009   | Spring    | 5,581         | 5,573                         | 0                                 |                                                                              |

Table 10.-The estimated total number of smolt released with adipose fin clips  $\hat{M}$ , the number of returning adults that were examined in river for the presence of an adipose fin clip  $n_{\bullet}$ , the number of fish examined that possessed an adipose fin clip  $a_{\bullet}$ , the estimated abundance of smolt  $\hat{N}_{smolt}$  and the associated standard error of the estimate  $SE(\hat{N}_{smolt})$ , and the estimated abundance of fingerlings  $\hat{N}_{fingerling}$  and the associated error of the estimate  $SE(\hat{N}_{fingerling})$ , 1992–2005 brood years. Note that estimates for the 2002–2005 brood years are preliminary, pending complete brood year returns.

| Brood vear | Recovery ages | $\hat{M}$ | Recovery years | n.    | $a_{\bullet}$ | $\hat{N}_{smolt}$ | $SE(\hat{N}_{smolt})$ | $\hat{N}_{fingerling}$ | $SE(\hat{N}_{fingerling})$ |
|------------|---------------|-----------|----------------|-------|---------------|-------------------|-----------------------|------------------------|----------------------------|
| 1992       | 1.1–1.5       | 13,856    | 1995–1999      | 795   | 26            | 408,521           | 176,932               | 507,650                | 334,752                    |
| 1993       | 1.1-1.5       | 18,380    | 1996-2000      | 1,375 | 133           | 188,746           | 38,709                | 255,674                | 78,576                     |
| 1994       | 1.1-1.5       | 21,263    | 1997-2001      | 1,040 | 92            | 238,023           | 43,531                | 693,103                | 208,312                    |
| 1995       | 1.1-1.5       | 35,014    | 1998-2002      | 1,805 | 200           | 314,609           | 35,875                | 547,876                | 101,921                    |
| 1996       | 1.1-1.5       | 56,474    | 1998-2003      | 2,343 | 271           | 486,678           | 56,694                | 765,584                | 143,055                    |
| 1997       | 0.1-1.5       | 30,909    | 2000-2004      | 1,186 | 116           | 313,589           | 69,072                | 462,826                | 162,422                    |
| 1998       | 1.1-1.5       | 25,591    | 2001-2005      | 2,112 | 198           | 271,735           | 30,003                | 369,347                | 78,984                     |
| 1999       | 1.1-1.5       | 31,980    | 2002-2006      | 752   | 79            | 301,019           | 49,889                | 623,264                | 196,006                    |
| 2000       | 1.1-1.5       | 35,545    | 2003-2007      | 2,573 | 220           | 414,007           | 49,935                | 779,643                | 152,740                    |
| 2001       | 1.1-1.5       | 26,709    | 2004-2008      | 1,119 | 114           | 260,132           | 38,476                | 954,079                | 248,475                    |
| 2002       | 1.1-1.4       | 41,044    | 2005-2008      | 2,553 | 231           | 451,847           | 59,987                | 754,516                | 169,230                    |
| 2003       | 1.1-1.3       | 16,751    | 2006-2008      | 571   | 54            | 174,221           | 35,371                | 581,134                | 224,517                    |
| 2004       | 1.1-1.2       | 32,640    | 2007-2008      | 256   | 23            | 349,530           | 104,579               | 521,448                | 291,102                    |
| 2005       | 0.1-1.1       |           | 2008           | 26    | 2             |                   |                       |                        |                            |

# Brood Year 2003

A total of 27,129 fingerlings and 8,585 smolt from brood year 2003 were released with valid CWTs (Table 9; Appendix B1). Overwinter survival was estimated to be 0.300 (SE = 0.099), resulting in an estimated total of 16,751 finclipped smolt emigrating from the Unuk River in 2005 (Table 9). The estimated abundance of brood year 2003 fingerlings and smolt was 581,134 (SE =224,517) and 174,221 (SE = 35,371), respectively (Table 10). Brood year 2003 estimates are preliminary pending returns of age-1.4 in 2009 and age-1.5 fish in 2010.

# Brood Year 2004

A total of 24,271 fingerlings and 16,269 smolt from brood year 2004 were released with valid CWTs (Table 9; Appendix B1). Preliminary estimates of overwinter survival and juvenile abundance based on age-1.1 and -1.2 returns are presented in Tables 9 and 10.

# Brood Year 2005

A total of 32,799 fingerlings and 4,721 smolt from brood year 2005 were released with valid CWTs (Table 9; Appendix B1).

## Brood Year 2006

A total of 45,089 fingerlings and 10,489 smolt from brood year 2006 were released with valid CWTs (Table 9; Appendix B1).

## Brood Year 2007

A total of 16,595 fingerlings and 5,573 smolt from brood year 2007 were released with valid CWTs (Table 9; Appendix B1).

# HARVEST, INCIDENTAL FISHING MORTALITY, TOTAL FISHING MORTALITY, PRODUCTION, EXPLOITATION RATE, AND MARINE SURVIVAL RATE ESTIMATES

Incidental mortality, fishing mortality (harvest), spawning abundance of age-1.1 fish, total production, and exploitation rate estimates for the 1992–1998 broods include revisions of previously published results (Hendrich et al. 2008). Results for the 2002–2005 broods are incomplete, pending further cohort returns. Results in tables presented by age class and brood or return year are subject to rounding error.

# **Estimation of Fraction of Adults Bearing CWTs**

The estimated fractions of Chinook salmon bearing a valid CWT ( $\hat{\theta}$ ) from the 1992–2001 brood years (broods with completed returns) ranged from .0282 (SE = 0.0055) for brood year 1992 to 0.1075 (SE = 0.0065) for brood year 1996 (Table 11; Appendix B5; Hendrich et al. 2008). Preliminary estimates of  $\hat{\theta}$  from the 2002–2005 broods, pending further returns, ranged from 0.0615 (SE = 0.0056) for the 2002 brood to 0.0832 (SE = 0.0116) for brood year 2003.

Two strays from Crystal Lake Hatchery were recovered in the Unuk River: one in 1998 (released at Neets Bay, District 101-95; brood year 1995; Figure 5), and one in 2006 (released at Anita Bay, District 107-35; brood year 2001; Figure 5). One brood year 1999 stray from Deer Mountain Hatchery (released at Ketchikan Creek; District 101-47) was recovered in the Unuk River in 2003 (Figure 5).

## Fishing Mortality, Production, Exploitation, and Marine Survival

## Brood Year 1992

An estimated 538 (SE = 237) fish were harvested from brood year 1992 returns (Table 12; Appendix B6). The half-width of the calculated 95% confidence interval is 86.3% of the harvest estimate. Use of AEQ factors (Table 13) results in an estimated harvest of 492 (SE = 224) AEQs (Table 14). An estimated 205 (SE = 144) fish were harvested by troll gear, approximately 38% of the total harvest (Table 15; hereafter, all estimates of harvest by gear or location are in nominal fish). Approximately 29% of the harvest was by recreational gear (155 fish; SE = 155). Drift gillnet (143 fish; SE = 101) and purse seine (35 fish; SE = 35) gear accounted for roughly 27% and 7% of the estimated total harvest, respectively (Table 15). Harvest only occurred in the Northwest (47%; 255 fish; SE = 184), Southeast (46%; 248 fish; SE = 146), and Northeast (7%; 35 fish; SE = 35) Quadrants of SEAK (Table 16). Age-1.3 and age-1.4 fish accounted for roughly 50% (267 fish; SE = 157) and 29% (155 fish; SE = 155) of the estimated harvest, respectively (Table 12).

An estimated 261 fish (SE = 260) from the 1992 brood died as a result of incidental fishing mortality (nominal fish; Table 12). Use of AEQ factors (Table 13) results in an estimated incidental mortality of 181 (SE = 209) adult equivalents (Table 14).

Table 11.—The number of returning adults that were examined inriver for the presence of an adipose fin clip  $n_i$ , the number of fish examined that possessed an adipose fin clip  $a_i$ , the number of adiposefinclipped fish that were sacrificed for coded wire tag verification  $a'_i$ , the number of sacrificed fish that possessed a valid Unuk River Chinook salmon coded wire tag  $\hat{t}_i$ , the estimated fraction of adults that possessed a valid Unuk River Chinook salmon coded wire tag  $\hat{\theta}$  and the associated standard error, and the estimated variance (var) and squared coefficient of variability (G) for  $\hat{\theta^{-1}}$ , 1992–2005 brood years. Note that estimates for the 2002–2005 brood years are preliminary, pending complete brood year returns.

| Brood<br>year | $n_i$ | $a_i$ | $a'_i$ | t <sub>i</sub> | $\widehat{	heta}$ | $SE(\hat{\theta})$ | $var(\widehat{\theta^{-1}})$ | $G(\widehat{\theta^{-1}})$ |
|---------------|-------|-------|--------|----------------|-------------------|--------------------|------------------------------|----------------------------|
| 1992          | 795   | 26    | 22     | 19             | 0.0282447         | 0.0055462          | 61.1658980                   | 0.0487959                  |
| 1993          | 1,375 | 133   | 103    | 94             | 0.0882754         | 0.0073500          | 0.9397383                    | 0.0073230                  |
| 1994          | 1,040 | 92    | 53     | 46             | 0.0767779         | 0.0080460          | 2.0152755                    | 0.0118798                  |
| 1995          | 1,805 | 200   | 99     | 94             | 0.1052072         | 0.0071420          | 0.4272615                    | 0.0047292                  |
| 1996          | 2,343 | 271   | 113    | 105            | 0.1074751         | 0.0065360          | 0.3269891                    | 0.0037770                  |
| 1997          | 1,186 | 116   | 37     | 29             | 0.0766601         | 0.0087904          | 2.4286386                    | 0.0142726                  |
| 1998          | 2,112 | 198   | 53     | 53             | 0.0937500         | 0.0063111          | 0.5258979                    | 0.0046221                  |
| 1999          | 752   | 79    | 22     | 19             | 0.0907278         | 0.0117072          | 2.3067048                    | 0.0189877                  |
| 2000          | 2,573 | 220   | 74     | 71             | 0.0820370         | 0.0053940          | 0.6638722                    | 0.0044679                  |
| 2001          | 1,119 | 114   | 36     | 33             | 0.0933870         | 0.0093547          | 1.2188911                    | 0.0106301                  |
| 2002          | 2,553 | 231   | 74     | 54             | 0.0660273         | 0.0056358          | 1.7379676                    | 0.0075768                  |
| 2003          | 571   | 54    | 25     | 22             | 0.0832224         | 0.0116422          | 3.2363218                    | 0.0224147                  |
| 2004          | 256   | 23    | 19     | 13             | 0.0614720         | 0.0128740          | 15.4162400                   | 0.0582551                  |
| 2005          | 26    | 2     | 2      | 2              | 0.0769231         | 0.0465864          | 60.4654451                   | 0.3577837                  |

Total fishing mortality for the 1992 brood was estimated to be 672 (SE = 307) AEQs (Table 17). Based on an estimated spawning abundance of 3,199 (SE = 397) fish (Jones III et al. 1998; Jones III and McPherson 1999, 2000; Hendrich et al. 2008; Table 12), production was estimated to be 3,871 AEQs (SE = 502), and the exploitation rate was therefore estimated to be 0.1737 (SE = 0.0679; Table 17). The marine survival rate was estimated to be 0.00948 (SE = 0.00441; Table 17).

## Brood Year 1993

An estimated 1,288 (SE = 249) fish were harvested from brood year 1993 returns (Table 12; Appendix B6). The half-width of the calculated 95% confidence interval is 37.8% of the harvest estimate. Use of AEQ conversion factors (Table 13) results in an estimated harvest of 1,233 (SE = 242) AEQs (Table 14). An estimated 645 (SE = 158) fish were harvested by troll gear, approximately 50% of the total harvest (Table 15). Approximately 38% of the harvest was by recreational gear (486 fish; SE = 178). Drift gillnet (77 fish; SE = 46) and high seas trawl (43 fish; SE = 43) gear accounted for roughly 6% and 3% of the estimated total harvest, respectively (Table 15). Harvest primarily occurred in the Southeast (41%; 530 fish; SE = 167), Northwest (32%; 418 fish; SE = 137), and Northeast (15%; 197 fish; SE = 90) Quadrants of SEAK (Table 16). An estimated 3% of harvest (36 fish; SE = 36) occurred in Canadian waters and roughly 3% of harvest occurred in the Gulf of Alaska (trawl fisheries; 43 fish; SE = 43; Table 16). Age-1.4 and age-1.3 fish accounted for roughly 55% (707 fish; SE = 198) and 33% (420 fish; SE = 134) of the estimated harvest, respectively (Table 12).

An estimated 448 fish (SE = 225) from the 1993 brood died as a result of incidental fishing mortality (nominal fish; Table 12). Use of AEQ factors (Table 13) results in an estimated incidental mortality of 312 (SE = 182) AEQs (Table 14).

Total fishing mortality for the 1993 brood was estimated to be 1,545 (SE = 303) AEQs (Table 17). Based on an estimated spawning abundance of 5,142 (SE = 375) fish (Jones III et al. 1998; Jones III and McPherson 1999, 2000, 2002; Hendrich et al. 2008; Table 12), production was estimated to be 6,687 AEQs (SE = 482), and the exploitation rate was therefore estimated to be 0.2310 (SE = 0.0371; Table 17). The marine survival rate was estimated to be 0.03543 (SE = 0.00774; Table 17).

#### Brood Year 1994

An estimated 1,082 (SE = 240) fish were harvested from brood year 1994 returns (Table 12; Appendix B6). The half-width of the calculated 95% confidence interval is 43.3% of the harvest estimate. Use of AEQ conversion factors (Table 13) results in an estimated harvest of 1,024 (SE = 229) AEQs (Table 14). An estimated 573 (SE = 203) fish were harvested by recreational gear, approximately 53% of the total harvest (Table 15). Approximately 44% of the harvest was by commercial troll gear (471 fish; SE = 125), and drift gillnet (38 fish; SE = 26) accounted for the remaining 4% of the estimated total harvest (Table 15). Harvest primarily occurred in the Southeast (50%; 546 fish; SE = 188), Northwest (40%; 444 fish; SE = 139), and Northeast (5%; 58 fish; SE = 41) Quadrants of SEAK (Table 14). Approximately 3% of the estimated harvest occurred in Cook Inlet (recreational fisheries; 34 fish; SE = 33; Table 16). Age-1.3 and age-1.4 fish accounted for roughly 53% (573 fish; SE = 186) and 33% (362 fish; SE = 132) of the estimated harvest, respectively (Table 12).

An estimated 373 fish (SE = 216) from the 1994 brood died as a result of incidental fishing mortality (nominal fish; Table 12). Use of AEQs (Table 13) results in an estimated incidental mortality of 254 (SE = 171) AEQs (Table 14).

Total fishing mortality for the 1994 brood was estimated to be 1,278 (SE = 285) AEQs (Table 17). Based on an estimated spawning abundance of 4,704 (SE = 394) fish (Jones III et al. 1998; Jones III and McPherson 1999, 2000, 2002; Weller and McPherson 2003a; Table 12), production was estimated to be 5,982 AEQs (SE = 486), and the exploitation rate was therefore estimated to be 0.2136 (SE = 0.0401; Table 17). The marine survival rate was estimated to be 0.02513 (SE = 0.00506; Table 17).

#### Brood Year 1995

An estimated 2,135 (SE = 271) fish were harvested from brood year 1995 returns (Table 12; Appendix B6). The half-width of the calculated 95% confidence interval is 25.0% of the harvest estimate. Use of AEQ conversion factors (Table 13) results in an estimated harvest of 1,980 (SE = 250) AEQs (Table 14). An estimated 1,212 (SE = 169) fish were harvested by troll gear, approximately 57% of the total harvest (Table 15). Approximately 23% of the harvest was by recreational gear (489 fish; SE = 174). Purse seine (101 fish; SE = 73), drift gillnet (99 fish; SE = 51), and trawl (94 fish; SE = 66) gear each accounted for roughly 5% of the estimated total harvest (Table 15). Harvest occurred primarily in the Southeast (41%; 884 fish; SE = 188) and Northwest (39%; 823 fish; SE = 154) Quadrants of SEAK (Table 16). An estimated 4% of harvest (83 fish; SE = 45) occurred in Canadian waters, 3% of harvest occurred in Cook Inlet (73 fish; SE = 41), and roughly 4% of harvest occurred in the Gulf of Alaska (trawl fisheries; 94 fish; SE = 66; Table 16). Age-1.3 and age-1.4 fish accounted for roughly 56% (1,204 fish; SE = 219) and 28% (608 fish; SE = 118) of the estimated harvest, respectively (Table 12).

An estimated 721 fish (SE = 241) from the 1995 brood died as a result of incidental fishing mortality (nominal fish; Table 12). Use of AEQs (Table 13) results in an estimated incidental mortality of 521 (SE = 193) adult equivalents (Table 14).

Total fishing mortality for the 1995 brood was estimated to be 2,501 (SE = 316) AEQs (Table 17). Based on a n estimated spawning abundance of 9,553 (SE = 784) fish (Jones III and McPherson 1999, 2000, 2002; Weller and McPherson 2003a-b; Table 12), production was estimated to be 12,054 AEQs (SE = 845), and the exploitation rate was therefore estimated to be 0.2075 (SE = 0.0248; Table 17). The marine survival rate was estimated to be 0.03831 (SE = 0.00514; Table 17).

#### Brood Year 1996

An estimated 2,506 (SE = 330) fish were harvested from brood year 1996 returns (Table 12; Appendix B6). The half-width of the calculated 95% confidence interval is 25.4% of the harvest estimate. Use of AEQ conversion factors (Table 13) results in an estimated harvest of 2,327 (SE = 297) AEQs (Table 14). An estimated 1,118 (SE = 280) fish were harvested by recreational gear, approximately 45% of the total harvest (Table 15). An estimated 41% of the harvest was by commercial troll gear (1,034 fish; SE = 140). Approximately 5% of the estimated harvest was by drift gillnet gear (130 fish; SE = 56), while high seas trawl and private non-profit (PNP) hatchery fisheries each accounted for roughly 3% of total harvest (Table 15). Harvest occurred primarily in the Southeast (67%; 1,678 f ish; SE = 288), Northwest (16%; 396 f ish; SE = 99), and Southwest (8%: 203 fish; SE = 96) Quadrants of SEAK (Table 16). An estimated 5% of harvest (116 fish; SE = 62) occurred in Canadian waters, and roughly 3% of harvest occurred in the Gulf of Alaska (trawl fisheries; 75 fish; SE = 53; Table 16). Age-1.3, -1.4, and -1.2 fish accounted for roughly 42% (1,046 fish; SE = 181), 30% (755 fish; SE = 154), and 27% (686 fish; SE = 228) of the estimated harvest, respectively (Table 12).

|       | Landed catch |     |          |     |     |       | Incidental mortality |     |          |     | Spawning abundance <sup>a</sup> |     |       |         | a     |     |        | Tot | al retu | Irn     |       |     |        |
|-------|--------------|-----|----------|-----|-----|-------|----------------------|-----|----------|-----|---------------------------------|-----|-------|---------|-------|-----|--------|-----|---------|---------|-------|-----|--------|
| _     |              | Ag  | ge class | 5   |     |       |                      | Aş  | ge class | 5   |                                 |     | A     | ge clas | S     |     |        |     | A       | ge clas | s     |     |        |
| Brood |              |     |          |     |     |       |                      |     |          |     |                                 |     |       |         |       |     |        |     |         |         |       |     |        |
| year  | 1.1          | 1.2 | 1.3      | 1.4 | 1.5 | Total | 1.1                  | 1.2 | 1.3      | 1.4 | 1.5 Total                       | 1.1 | 1.2   | 1.3     | 1.4   | 1.5 | Total  | 1.1 | 1.2     | 1.3     | 1.4   | 1.5 | Total  |
| 1992  | 35           | 81  | 267      | 155 |     | 538   | 129                  | 111 | 15       | 6   | 261                             |     | 736   | 1,240   | 1,207 | 16  | 3,199  | 165 | 927     | 1,523   | 1,368 | 16  | 3,999  |
| SE    | 35           | 80  | 157      | 155 |     | 237   |                      |     |          |     | 260                             |     | 349   | 128     | 140   | 12  | 397    | 35  | 358     | 203     | 209   | 12  | 531    |
| 1993  |              | 161 | 420      | 707 |     | 1,288 | 206                  | 197 | 15       | 29  | 448                             |     | 916   | 2,595   | 1,581 | 50  | 5,142  | 206 | 1,274   | 3,030   | 2,317 | 50  | 6,878  |
| SE    |              | 67  | 134      | 198 |     | 249   |                      |     |          |     | 225                             |     | 151   | 267     | 215   | 21  | 375    | 0   | 165     | 299     | 292   | 21  | 503    |
| 1994  |              | 147 | 573      | 362 |     | 1,082 | 218                  | 115 | 31       | 9   | 373                             | 49  | 1,269 | 1,918   | 1,447 | 21  | 4,704  | 267 | 1,531   | 2,522   | 1,818 | 21  | 6,159  |
| SE    |              | 73  | 186      | 132 |     | 240   |                      |     |          |     | 216                             | 18  | 235   | 255     | 185   | 15  | 394    | 18  | 246     | 316     | 228   | 15  | 509    |
| 1995  | 101          | 223 | 1,204    | 608 |     | 2,135 | 291                  | 345 | 67       | 18  | 721                             | 224 | 2,427 | 3,499   | 3,337 | 66  | 9,553  | 616 | 2,994   | 4,771   | 3,962 | 66  | 12,410 |
| SE    | 73           | 81  | 219      | 118 |     | 271   |                      |     |          |     | 241                             | 62  | 540   | 394     | 404   | 28  | 784    | 96  | 546     | 451     | 421   | 28  | 864    |
| 1996  | 19           | 686 | 1,046    | 755 |     | 2,506 | 702                  | 442 | 76       | 16  | 1,236                           | 240 | 3,140 | 6,923   | 3,188 | 46  | 13,537 | 962 | 4,268   | 8,045   | 3,958 | 46  | 17,279 |
| SE    | 13           | 228 | 181      | 154 |     | 330   |                      |     |          |     | 366                             | 78  | 947   | 789     | 392   | 17  | 1,296  | 79  | 974     | 810     | 421   | 17  | 1,386  |
| 1997  |              | 96  | 630      | 566 | 23  | 1,315 | 267                  | 126 | 19       | 13  | 425                             | 15  | 946   | 2,887   | 1,474 | 19  | 5,341  | 282 | 1,169   | 3,536   | 2,053 | 42  | 7,082  |
| SE    |              | 50  | 164      | 187 | 23  | 254   |                      |     |          |     | 221                             | 15  | 127   | 358     | 139   | 10  | 405    | 15  | 137     | 394     | 233   | 25  | 527    |
| 1998  | 59           | 244 | 829      | 222 | 41  | 1,396 | 294                  | 212 | 24       | 4   | 534                             | 83  | 2,485 | 3,941   | 1,756 | 13  | 8,278  | 435 | 2,942   | 4,794   | 1,982 | 54  | 10,208 |
| SE    | 58           | 86  | 191      | 67  | 41  | 231   |                      |     |          |     | 221                             | 31  | 697   | 317     | 160   | 9   | 783    | 66  | 702     | 370     | 174   | 42  | 846    |
| 1999  |              | 81  | 658      | 493 | 59  | 1,291 | 136                  | 100 | 231      | 18  | 480                             |     | 592   | 1,289   | 842   |     | 2,723  | 136 | 773     | 2,178   | 1,346 | 59  | 4,493  |
|       |              | 53  | 414      | 142 | 59  | 445   |                      |     |          |     | 418                             |     | 69    | 122     | 97    |     | 170    | 0   | 87      | 432     | 172   | 59  | 634    |
| 2000  | 12           | 488 | 2,083    | 906 |     | 3,490 | 508                  | 894 | 60       | 17  | 1,479                           | 191 | 2,937 | 3,808   | 2,100 | 30  | 9,066  | 711 | 4,319   | 5,951   | 3,025 | 30  | 14,036 |
| SE    | 12           | 205 | 309      | 188 |     | 417   |                      |     |          |     | 423                             | 37  | 335   | 321     | 215   | 13  | 513    | 39  | 393     | 447     | 285   | 13  | 785    |
| 2001  | 21           | 67  | 572      | 462 |     | 1,122 | 233                  | 198 | 19       | 10  | 460                             | 76  | 521   | 2,147   | 1,045 | 11  | 3,800  | 330 | 786     | 2,738   | 1,517 | 11  | 5,382  |
| SE    | 5            | 34  | 140      | 141 |     | 201   |                      |     |          |     | 200                             | 24  | 106   | 215     | 105   | 8   | 263    | 24  | 111     | 256     | 176   | 8   | 387    |
| 2002  | 15           | 713 | 1,593    | 384 |     | 2,705 | 544                  | 608 | 126      | 8   | 1,287                           | 237 | 3,256 | 4,522   | 1,633 |     | 9,648  | 797 | 4,586   | 6,241   | 2,025 |     | 13,639 |
| SE    | 15           | 182 | 260      | 110 |     | 336   |                      |     |          |     | 365                             | 67  | 436   | 360     | 198   |     | 603    | 69  | 472     | 444     | 227   |     | 781    |
| 2003  | 16           | 45  | 358      |     |     | 419   | 184                  | 224 | 17       |     | 425                             | 221 | 842   | 1,229   |       |     | 2,292  | 421 | 1,111   | 1,604   |       |     | 3,136  |
| SE    | 15           | 26  | 105      |     |     | 110   |                      |     |          |     | 192                             | 47  | 95    | 155     |       |     | 188    | 49  | 99      | 187     |       |     | 290    |
| 2004  |              | 97  |          |     |     | 97    | 306                  | 83  |          |     | 389                             | 184 | 943   |         |       |     | 1,127  | 490 | 1,123   |         |       |     | 1,613  |
| SE    |              | 51  |          |     |     | 51    |                      |     |          |     | 248                             | 34  | 149   |         |       |     | 153    | 34  | 157     |         |       |     | 296    |
| 2005  |              |     |          |     |     | 0     | 446                  |     |          |     | 446                             | 163 |       |         |       |     | 163    | 609 |         |         |       |     | 609    |
| SE    |              |     |          |     |     | 0     |                      |     |          |     |                                 | 46  |       |         |       |     | 46     | 46  |         |         |       |     | 46     |

Table 12.-Nominal estimates of landed catch, incidental mortality, spawning abundance, and total returns of Unuk River Chinook salmon, by age class, for brood years 1992–2005. Rounding error is present.

<sup>a</sup> Estimates of spawning abundance (and associated standard errors) of fish from minor age classes are included in the spawning abundance estimates for fish from major age classes of the same total age and brood year e.g.an estimated spawning abundance of 10 age-2.3 fish from BY 2001 are included in the spawning abundance estimate of age-1.4 fish in BY 2001.

An estimated 1,236 fish (SE = 366) from the 1996 brood died as a result of incidental fishing mortality (nominal fish; Table 12). Use of AEQ factors (Table 13) results in an estimated incidental mortality of 846 (SE = 275) AEQs (Table 14).

Total fishing mortality for the 1996 brood was estimated to be 3,173 (SE = 405) AEQs (Table 17). Based on an estimated spawning abundance of 13,537 (SE = 1,296) fish (Jones III and McPherson 2000, 2002; Weller and McPherson 2003a-b, 2004; Table 12), production was estimated to be 16,710 AEQs (SE = 1,358), and the exploitation rate was therefore estimated to be 0.1899 (SE = 0.0245; Table 17). The marine survival rate was estimated to be 0.03433 (SE = 0.00489; Table 17).

# Brood Year 1997

An estimated 1,315 (SE = 254) fish were harvested from brood year 1997 returns (Table 12; Appendix B6). The half-width of the calculated 95% confidence interval is 37.9% of the harvest estimate. Use of AEQ conversion factors (Table 13) results in an estimated harvest of 1,267 (SE = 248) AEQs (Table 14). An estimated 810 (SE = 189) fish were harvested by troll gear, approximately 62% of the total harvest (Table 15). Approximately 33% of the harvest was by recreational gear (432 fish; SE = 154), and the remaining 5% of total harvest occurred in PNP fisheries (Table 15). Harvest occurred primarily in the Southeast (47%; 614 fish; SE = 162), Northwest (28%; 366 fish; SE = 129), and Northeast (7%; 94 fish; SE = 54) Quadrants of SEAK (Table 16). An estimated 13% of harvest (170 fish; SE = 126) occurred in Canadian waters, and roughly 4% of harvest occurred in Cook Inlet (50 fish; SE = 49; Table 16). Age-1.3 and age-1.4 fish accounted for roughly 48% (630 fish; SE = 164), and 43% (566 fish; SE = 187) of the estimated harvest, respectively (Table 12).

An estimated 425 fish (SE = 221) from the 1997 brood died as a result of incidental fishing mortality (nominal fish; Table 12). Use of AEQs (Table 13) results in an estimated incidental mortality of 279 (SE = 174) adult equivalents (Table 14).

|            |        |        | Age class |        |        |
|------------|--------|--------|-----------|--------|--------|
| Brood year | 1.1    | 1.2    | 1.3       | 1.4    | 1.5    |
| 1992       | 0.5572 | 0.7960 | 0.9460    | 1.0000 | 1.0000 |
| 1993       | 0.5507 | 0.7867 | 0.9492    | 1.0000 | 1.0000 |
| 1994       | 0.5643 | 0.8033 | 0.9496    | 1.0000 | 1.0000 |
| 1995       | 0.5636 | 0.7986 | 0.9447    | 1.0000 | 1.0000 |
| 1996       | 0.5698 | 0.8088 | 0.9616    | 1.0000 | 1.0000 |
| 1997       | 0.5549 | 0.7919 | 0.9559    | 1.0000 | 1.0000 |
| 1998       | 0.5747 | 0.8195 | 0.9623    | 1.0000 | 1.0000 |
| 1999       | 0.5530 | 0.7883 | 0.9533    | 1.0000 | 1.0000 |
| 2000       | 0.5712 | 0.8109 | 0.9536    | 1.0000 | 1.0000 |
| 2001       | 0.5546 | 0.7862 | 0.9572    | 1.0000 | 1.0000 |
| 2002       | 0.5837 | 0.8274 | 0.9682    | 1.0000 |        |
| 2003       | 0.5635 | 0.8016 | 0.9547    |        |        |
| 2004       | 0.5635 | 0.8016 |           |        |        |
| 2005       | 0.5635 |        |           |        |        |

Table 13.–Adult equivalent conversion factors for Unuk River Chinook salmon by age class and brood year (1992–2005).

*Note*:Conversion factors provided by John Carlile of ADF&G.

|       |     | ]   | Landed   | catch |           | Incidental mortality |     |          |     |           | Spawning abundance |       |         |       |     |        | Total return |       |         |       |     |        |
|-------|-----|-----|----------|-------|-----------|----------------------|-----|----------|-----|-----------|--------------------|-------|---------|-------|-----|--------|--------------|-------|---------|-------|-----|--------|
|       |     | A   | ge class | S     |           |                      | Ag  | ge class | 5   |           |                    | Α     | ge clas | s     |     | _      |              | A     | ge clas | s     |     |        |
| Brood |     |     |          |       |           |                      |     |          |     |           |                    |       |         |       |     |        |              |       |         |       |     |        |
| year  | 1.1 | 1.2 | 1.3      | 1.4   | 1.5 Total | 1.1                  | 1.2 | 1.3      | 1.4 | 1.5 Total | 1.1                | 1.2   | 1.3     | 1.4   | 1.5 | Total  | 1.1          | 1.2   | 1.3     | 1.4   | 1.5 | Total  |
| 1992  | 20  | 64  | 253      | 155   | 492       | 72                   | 88  | 15       | 6   | 181       |                    | 736   | 1,240   | 1,207 | 16  | 3,199  | 92           | 888   | 1,507   | 1,368 | 16  | 3,871  |
| SE    | 19  | 64  | 148      | 155   | 224       |                      |     |          |     | 209       |                    | 349   | 128     | 140   | 12  | 397    |              |       |         |       |     | 502    |
| 1993  |     | 126 | 399      | 707   | 1,233     | 114                  | 155 | 14       | 29  | 312       |                    | 916   | 2,595   | 1,581 | 50  | 5,142  | 114          | 1,198 | 3,008   | 2,317 | 50  | 6,687  |
| SE    |     | 53  | 128      | 198   | 242       |                      |     |          |     | 182       |                    | 151   | 267     | 215   | 21  | 375    |              |       |         |       |     | 482    |
| 1994  |     | 118 | 544      | 362   | 1,024     | 123                  | 93  | 30       | 9   | 254       | 49                 | 1,269 | 1,918   | 1,447 | 21  | 4,704  | 172          | 1,480 | 2,492   | 1,818 | 21  | 5,982  |
| SE    |     | 58  | 177      | 132   | 229       |                      |     |          |     | 171       | 18                 | 235   | 255     | 185   | 15  | 394    |              |       |         |       |     | 486    |
| 1995  | 57  | 178 | 1,138    | 608   | 1,980     | 164                  | 275 | 64       | 18  | 521       | 224                | 2,427 | 3,499   | 3,337 | 66  | 9,553  | 445          | 2,880 | 4,700   | 3,962 | 66  | 12,054 |
| SE    | 41  | 65  | 207      | 118   | 250       |                      |     |          |     | 193       | 62                 | 540   | 394     | 404   | 28  | 784    |              |       |         |       |     | 845    |
| 1996  | 11  | 555 | 1,006    | 755   | 2,327     | 400                  | 358 | 73       | 16  | 846       | 240                | 3,140 | 6,923   | 3,188 | 46  | 13,537 | 651          | 4,052 | 8,002   | 3,958 | 46  | 16,710 |
| SE    | 7   | 185 | 174      | 154   | 297       |                      |     |          |     | 275       | 78                 | 947   | 789     | 392   | 17  | 1,296  |              |       |         |       |     | 1,358  |
| 1997  |     | 76  | 602      | 566   | 23 1,267  | 148                  | 100 | 18       | 13  | 279       | 15                 | 946   | 2,887   | 1,474 | 19  | 5,341  | 163          | 1,122 | 3,507   | 2,053 | 42  | 6,888  |
| SE    |     | 40  | 156      | 187   | 23 248    |                      |     |          |     | 174       | 15                 | 127   | 358     | 139   | 10  | 405    |              |       |         |       |     | 506    |
| 1998  | 34  | 200 | 798      | 222   | 41 1,295  | 169                  | 174 | 23       | 4   | 370       | 83                 | 2,485 | 3,941   | 1,756 | 13  | 8,278  | 286          | 2,859 | 4,762   | 1,982 | 54  | 9,944  |
| SE    | 34  | 71  | 184      | 67    | 41 215    |                      |     |          |     | 174       | 31                 | 697   | 317     | 160   | 9   | 783    |              |       |         |       |     | 830    |
| 1999  |     | 64  | 627      | 493   | 59 1,243  | 75                   | 79  | 221      | 12  | 387       |                    | 592   | 1,289   | 842   |     | 2,723  | 75           | 735   | 2,136   | 1,346 | 59  | 4,352  |
| SE    |     | 42  | 395      | 142   | 59 426    |                      |     |          |     | 361       |                    | 69    | 122     | 97    |     | 170    |              |       |         |       |     | 584    |
| 2000  | 7   | 396 | 1,986    | 906   | 3,296     | 290                  | 725 | 57       | 17  | 1,090     | 191                | 2,937 | 3,808   | 2,100 | 30  | 9,066  | 488          | 4,058 | 5,852   | 3,024 | 30  | 13,451 |
| SE    | 7   | 166 | 296      | 188   | 388       |                      |     |          |     | 341       | 37                 | 335   | 321     | 215   | 13  | 513    |              |       |         |       |     | 728    |
| 2001  | 12  | 53  | 547      | 462   | 1,074     | 129                  | 156 | 18       | 10  | 313       | 76                 | 521   | 2,147   | 1,045 | 11  | 3,800  | 217          | 729   | 2,712   | 1,517 | 11  | 5,187  |
| SE    | 3   | 27  | 134      | 141   | 196       |                      |     |          |     | 160       | 24                 | 106   | 215     | 105   | 8   | 263    |              |       |         |       |     | 365    |
| 2002  | 9   | 590 | 1,542    | 384   | 2,525     | 318                  | 503 | 122      | 8   | 951       | 237                | 3,256 | 4,522   | 1,633 |     | 9,648  | 564          | 4,348 | 6,186   | 2,025 |     | 13,124 |
| SE    | 9   | 150 | 252      | 110   | 313       |                      |     |          |     | 297       | 67                 | 436   | 360     | 198   |     | 603    |              |       |         |       |     | 741    |
| 2003  | 9   | 36  | 342      |       | 387       | 104                  | 179 | 17       |     | 300       | 221                | 842   | 1,229   |       |     | 2,292  | 334          | 1,057 | 1,587   |       |     | 2,978  |
| SE    | 9   | 21  | 100      |       | 103       |                      |     |          |     | 151       | 47                 | 95    | 155     |       |     | 188    |              |       |         |       |     | 262    |
| 2004  |     | 78  |          |       | 78        | 173                  | 66  |          |     | 239       | 184                | 943   |         |       |     | 1,127  | 357          | 1,087 |         |       |     | 1,444  |
| SE    |     | 41  |          |       | 41        |                      |     |          |     | 160       | 34                 | 149   |         |       |     | 153    |              |       |         |       |     | 225    |
| 2005  |     |     |          |       |           | 251                  |     |          |     | 251       | 163                |       |         |       |     | 163    | 414          |       |         |       |     | 414    |
| SE    |     |     |          |       |           |                      |     |          |     |           | 46                 |       |         |       |     | 46     |              |       |         |       |     | 46     |

Table 14.–Estimates of landed catch, incidental mortality, spawning abundance, total return, and exploitation rate of Unuk River Chinook salmon in adult equivalents (AEQs) for the 1992–2005 broods through return year 2008. Rounding error present.

|         |         |        |              | G             | ear type    |                  |       |                    |        |
|---------|---------|--------|--------------|---------------|-------------|------------------|-------|--------------------|--------|
| Brood   | Age     |        |              |               |             |                  |       |                    |        |
| year    | classes | Troll  | Recreational | Drift gillnet | Purse seine | PNP <sup>a</sup> | Trawl | Other <sup>b</sup> | Total  |
| 1992    | 1.1-1.5 | 205    | 155          | 143           | 35          |                  |       |                    | 538    |
| SE      |         | 144    | 155          | 101           | 35          |                  |       |                    | 237    |
| 1993    | 1.1-1.5 | 645    | 486          | 77            |             |                  | 43    | 36                 | 1,288  |
| SE      |         | 158    | 178          | 46            |             |                  | 43    | 36                 | 249    |
| 1994    | 1.1-1.5 | 471    | 573          | 38            |             |                  |       |                    | 1,082  |
| SE      |         | 125    | 203          | 26            |             |                  |       |                    | 240    |
| 1995    | 1.1-1.5 | 1,212  | 489          | 99            | 101         | 51               | 94    | 89                 | 2,135  |
| SE      |         | 169    | 174          | 51            | 73          | 26               | 66    | 46                 | 271    |
| 1996    | 1.1-1.5 | 1,034  | 1,118        | 130           | 19          | 64               | 75    | 65                 | 2,506  |
| SE      |         | 140    | 280          | 56            | 4           | 53               | 53    | 46                 | 330    |
| 1997    | 1.1-1.5 | 810    | 432          |               |             | 73               |       |                    | 1,315  |
| SE      |         | 189    | 154          |               |             | 73               |       |                    | 254    |
| 1998    | 1.1-1.5 | 844    | 487          | 46            |             |                  | 19    |                    | 1,396  |
| SE      |         | 163    | 160          | 32            |             |                  | 18    |                    | 231    |
| 1999    | 1.1-1.5 | 405    | 364          | 505           |             |                  |       | 16                 | 1,291  |
| SE      |         | 127    | 135          | 404           |             |                  |       | 16                 | 445    |
| 2000    | 1.1-1.5 | 1,929  | 933          | 603           | 12          |                  |       | 12                 | 3,490  |
| SE      |         | 262    | 247          | 209           | 12          |                  |       | 12                 | 417    |
| 2001    | 1.1-1.5 | 659    | 287          | 66            | 89          |                  |       | 21                 | 1,122  |
| SE      |         | 145    | 121          | 37            | 57          |                  |       | 14                 | 202    |
| 2002    | 1.1-1.4 | 1,776  | 315          | 470           | 153         |                  |       |                    | 2,705  |
| SE      |         | 266    | 115          | 150           | 83          |                  |       |                    | 336    |
| 2003    | 1.1-1.3 | 342    | 36           | 12            | 28          |                  |       |                    | 419    |
| SE      |         | 104    | 25           | 12            | 19          |                  |       |                    | 110    |
| 2004    | 1.1-1.2 |        |              | 43            | 16          | 38               |       |                    | 97     |
| SE      |         |        |              | 30            | 16          | 37               |       |                    | 51     |
| 2005    | 1.1-1.1 |        |              |               |             |                  |       |                    | 0      |
| SE      |         |        |              |               |             |                  |       |                    |        |
| Total   |         | 10,322 | 5,677        | 2,232         | 453         | 226              | 232   | 241                | 19,383 |
| SE      |         | 599    | 602          | 502           | 132         | 101              | 96    | 78                 | 1,008  |
| Percent |         | 53     | 29           | 12            | 2           | 1                | 1     | 1                  | 100    |

Table 15.–Nominal harvest estimates of Unuk River Chinook salmon from the 1992–2005 broods, by gear type, through 2008. Rounding error is present.

<sup>a</sup> Private non-profit fisheries in this case have unknown gear type.
 <sup>b</sup> Includes all Canadian mixed net and seine, test fishery, and set gillnet gear.

|         |         |        |            |         | Harves   | st location |          |          |          |        |
|---------|---------|--------|------------|---------|----------|-------------|----------|----------|----------|--------|
| Brood   | Age     |        |            | Gulf of | NW       | NE          | SW       | SE       | British  |        |
| year    | classes | Kodiak | Cook Inlet | Alaska  | Quadrant | Quadrant    | Quadrant | Quadrant | Columbia | Total  |
| 1992    | 1.1-1.5 |        |            |         | 255      | 35          |          | 248      |          | 538    |
| SE      |         |        |            |         | 184      | 35          |          | 146      |          | 237    |
| 1993    | 1.1-1.5 |        |            | 43      | 418      | 197         | 64       | 530      | 36       | 1,288  |
| SE      |         |        |            | 43      | 137      | 90          | 64       | 167      | 36       | 249    |
| 1994    | 1.1-1.5 |        | 34         |         | 444      | 58          |          | 546      |          | 1,082  |
| SE      |         |        | 33         |         | 139      | 41          |          | 188      |          | 240    |
| 1995    | 1.1-1.5 | 16     | 73         | 94      | 823      | 148         | 15       | 884      | 83       | 2,135  |
| SE      |         | 15     | 41         | 66      | 154      | 78          | 14       | 188      | 45       | 271    |
| 1996    | 1.1-1.5 |        |            | 75      | 396      | 38          | 203      | 1,678    | 116      | 2,506  |
| SE      |         |        |            | 53      | 99       | 18          | 96       | 288      | 62       | 330    |
| 1997    | 1.1-1.5 |        | 50         |         | 366      | 94          | 20       | 614      | 170      | 1,315  |
| SE      |         |        | 49         |         | 129      | 54          | 20       | 162      | 126      | 254    |
| 1998    | 1.1-1.5 |        |            | 19      | 353      | 95          | 20       | 909      |          | 1,396  |
| SE      |         |        |            | 18      | 120      | 66          | 20       | 185      |          | 231    |
| 1999    | 1.1-1.5 |        |            |         | 293      | 82          | 58       | 778      | 80       | 1,291  |
| SE      |         |        |            |         | 125      | 67          | 57       | 412      | 65       | 445    |
| 2000    | 1.1-1.5 |        |            |         | 1,052    | 393         | 151      | 1,874    | 20       | 3,490  |
| SE      |         |        |            |         | 210      | 131         | 81       | 325      | 19       | 417    |
| 2001    | 1.1-1.5 |        |            |         | 375      | 26          | 27       | 678      | 17       | 1,122  |
| SE      |         |        |            |         | 114      | 18          | 26       | 163      | 17       | 202    |
| 2002    | 1.1-1.4 |        |            |         | 815      | 180         | 356      | 1,222    | 131      | 2,705  |
| SE      |         |        |            |         | 203      | 68          | 110      | 221      | 79       | 336    |
| 2003    | 1.1-1.3 |        |            |         | 97       | 73          |          | 248      |          | 419    |
| SE      |         |        |            |         | 56       | 36          |          | 87       |          | 110    |
| 2004    | 1.1-1.2 |        |            |         |          |             |          | 97       |          | 97     |
| SE      |         |        |            |         |          |             |          | 51       |          | 51     |
| 2005    | 1.1     |        |            |         |          |             |          |          |          | 0      |
| SE      |         |        |            |         |          |             |          |          |          |        |
| Total   |         | 16     | 156        | 232     | 5,685    | 1,420       | 915      | 10,306   | 654      | 19,383 |
| SE      |         | 15     | 72         | 96      | 503      | 230         | 193      | 790      | 185      | 1,008  |
| Percent |         | 0.1    | 0.8        | 1.2     | 29.3     | 7.3         | 4.7      | 53.2     | 3.4      | 100    |

Table 16.–Nominal harvest estimates of Unuk River Chinook salmon from the 1992–2005 broods, by harvest location, through 2008. Rounding error is present.

| Brood year        | $\hat{N}$ | Â     | IŴ    | $E\hat{M}$ | $\hat{T}$ | Û      | Ô                   |
|-------------------|-----------|-------|-------|------------|-----------|--------|---------------------|
| 1992              | 3 199     | 492   | 181   | <u>672</u> | 3 871     | 0 1737 | $\frac{2}{0.00948}$ |
| SE                | 397       | 224   | 209   | 307        | 502       | 0.0679 | 0.00441             |
| 1993              | 5.142     | 1.233 | 312   | 1.545      | 6.687     | 0.2310 | 0.03543             |
| SE                | 375       | 242   | 182   | 303        | 482       | 0.0371 | 0.00774             |
| 1994              | 4,704     | 1,024 | 254   | 1,278      | 5,982     | 0.2136 | 0.02513             |
| SE                | 394       | 229   | 171   | 285        | 486       | 0.0401 | 0.00506             |
| 1995              | 9,553     | 1,980 | 521   | 2,501      | 12,054    | 0.2075 | 0.03831             |
| SE                | 784       | 250   | 193   | 316        | 845       | 0.0248 | 0.00514             |
| 1996              | 13,537    | 2,327 | 846   | 3,173      | 16,710    | 0.1899 | 0.03433             |
| SE                | 1,296     | 297   | 275   | 405        | 1,358     | 0.0245 | 0.00489             |
| 1997              | 5,341     | 1,267 | 279   | 1,547      | 6,888     | 0.2246 | 0.02196             |
| SE                | 405       | 248   | 174   | 303        | 506       | 0.0365 | 0.00513             |
| 1998              | 8,278     | 1,295 | 370   | 1,666      | 9,944     | 0.1675 | 0.03659             |
| SE                | 783       | 215   | 174   | 276        | 830       | 0.0266 | 0.00508             |
| 1999              | 2,723     | 1,243 | 387   | 1,629      | 4,352     | 0.3744 | 0.01446             |
| SE                | 170       | 426   | 361   | 558        | 584       | 0.0816 | 0.00310             |
| 2000              | 9,066     | 3,296 | 1,090 | 4,385      | 13,451    | 0.3260 | 0.03249             |
| SE                | 513       | 388   | 341   | 517        | 728       | 0.0287 | 0.00431             |
| 2001              | 3,800     | 1,074 | 313   | 1,387      | 5,187     | 0.2674 | 0.01994             |
| SE                | 263       | 196   | 160   | 253        | 365       | 0.0382 | 0.00328             |
| $2002^{a}$        | 9,648     | 2,525 | 951   | 3,476      | 13,124    | 0.2649 | 0.02905             |
| SE                | 603       | 313   | 297   | 431        | 741       | 0.0271 | 0.00420             |
| 2003 <sup>a</sup> | 2,292     | 387   | 300   | 686        | 2,978     | 0.2304 | 0.01709             |
| SE                | 188       | 103   | 151   | 183        | 262       | 0.0495 | 0.00382             |
| 2004 <sup>a</sup> | 1,127     | 78    | 239   | 317        | 1,444     | 0.2195 | 0.00413             |
| SE                | 153       | 41    | 160   | 165        | 225       | 0.0921 | 0.00142             |
| 2005 <sup>a</sup> | 163       |       | 251   | 251        | 414       |        |                     |
| SE                | 46        |       |       |            | 46        |        |                     |

Table 17.–Estimated spawning abundance  $\hat{N}$ , landed catch  $\hat{R}$ , incidental fishing mortality  $I\hat{M}$ , fishing mortality  $F\hat{M}$  (rounding error present), total return or production  $\hat{T}$ , exploitation rate  $\hat{U}$ , and marine survival rate  $\hat{Q}$  for the 1992–2005 broods, through 2008, using adult equivalents.

<sup>a</sup>Brood year returns are incomplete pending the return of additional age class(es).

Total fishing mortality for the 1997 brood was estimated to be 1,547 (SE = 303) AEQs (Table 17). Based on a n estimated spawning abundance of 5,341 (SE = 405) fish (Jones III and McPherson, 2002; Weller and McPherson 2003a-b, 2004 2006 a; Table 12), production was estimated to be 6,888 AEQs (SE = 506), and the exploitation rate was therefore estimated to be 0.2246 (SE = 0.0365; Table 17). The marine survival rate was estimated to be 0.02196 (SE = 0.00513; Table 17).

## Brood Year 1998

An estimated 1,396 (SE = 231) fish were harvested from brood year 1998 returns (Table 12; Appendix B6). The half-width of the calculated 95% confidence interval is 32.2% of the harvest estimate. Use of AEQ conversion factors (Table 13) results in an estimated harvest of 1,295 (SE = 215) adult equivalents (Table 14). An estimated 844 (SE = 163) fish were harvested by troll gear, approximately 60% of the total harvest (Table 15). Roughly 35% of the harvest was by

recreational gear (487 fish; SE = 160; Table 15). Harvest occurred primarily in the Southeast (65%; 909 fish; SE = 185), Northwest (25%; 353 fish; SE = 120), and Northeast (7%; 95 fish; SE = 66) Quadrants of SEAK (Table 16). Roughly 1% of harvest occurred in the Gulf of Alaska (trawl fisheries; 19 fish; SE = 18; Table 16). Age-1.3, -1.2, and -1.4 fish accounted for roughly 59% (829 fish; SE = 191), 17% (244 fish; SE = 86), and 16% (222 fish; SE = 67) of the estimated harvest, respectively (Table 12).

An estimated 534 fish (SE = 221) from the 1998 brood died as a result of incidental fishing mortality (nominal fish; Table 12). Use of AEQ factors (Table 13) results in an estimated incidental mortality of 370 (SE = 174) AEQs (Table 14).

Total fishing mortality for the 1998 brood was estimated to be 1,666 (SE = 276) AEQs (Table 17). Based on an estimated spawning abundance of 8,278 (SE = 783) fish (Weller and McPherson 2003a-, 2004 2006a-b; Table 12), production was estimated to be 9,944 AEQs (SE = 830), and the exploitation rate was therefore estimated to be 0.1675 (SE = 0.0266; Table 17). The marine survival rate was estimated to be 0.03659 (SE = 0.00508; Table 17).

## **Brood Year 1999**

An estimated 1,291 (SE = 445) fish were harvested from brood year 1999 returns (Table 12; Appendix B6). The half-width of the calculated 95% confidence interval is 67.6% of the harvest estimate. Use of AEQ conversion factors (Table 13) results in an estimated harvest of 1,243 (SE = 426) AEQs (Table 14). An estimated 505 (SE = 404) fish were harvested by drift gillnet gear, approximately 39% of the total harvest (Table 15). Recreational (364 fish; SE = 135) and troll (405 fish; SE = 127) gear each accounted for approximately 28% and 31% of the total estimated harvest, respectively (Table 15). Harvest occurred primarily in the Southeast (60%; 778 fish; SE = 412) and Northwest (23%; 293 fish; SE = 125) Quadrants of SEAK (Table 16). Roughly 6% of harvest occurred in the waters of British Columbia (80 fish; SE = 65) and in the Northeast Quadrant (82 fish; SE = 67; Table 14). Age-1.3 and age-1.4 fish accounted for roughly 51% (658 fish; SE = 414) and 38% (493 fish; SE = 142) of the estimated harvest, respectively (Table 12).

An estimated 480 fish (SE = 418) from the 1999 brood died as a result of incidental fishing mortality (nominal fish; Tables 12). Use of AEQ factors (Table 13) results in an estimated incidental mortality of 387 (SE = 361) AEQs (Table 14).

Total fishing mortality for the 1999 brood was estimated to be 1,629 (SE = 558) AEQs (Table 17). Based on a n estimated spawning abundance of 2,723 (SE = 170) fish (Weller and McPherson 2003b, 2004, 2006a-b; Weller and Evans 2009; Table 12), production was estimated to be 4,352 AEQs (SE = 584), and the exploitation rate was therefore estimated to be 0.3744 (SE = 0.0816; Table 17). The marine survival rate was estimated to be 0.01446 (SE = 0.00310; Table 17).

#### Brood Year 2000

An estimated 3,490 (SE = 417) fish were harvested from brood year 2000 returns (Table 12; Appendix B6). The half-width of the calculated 95% confidence interval is 23.3% of the harvest estimate. Use of AEQ conversion factors (Table 13) results in an estimated harvest of 3,296 (SE = 388) AEQs (Table 14). An estimated 1,929 (SE = 262) fish were harvested by commercial troll gear, approximately 55% of the total harvest (Table 15). Recreational (933 fish; SE = 247) and drift gillnet (603 fish; SE = 209) gear accounted for approximately 27% and 17% of the total estimated harvest, respectively (Table 15). Harvest occurred primarily in the Southeast (54%;

1,874 fish; SE = 325), Northwest (30%; 1,052 fish; SE = 210), and Northeast (11%; 393 fish; SE = 131) Quadrants of SEAK (Table 16). Approximately 1% of harvest occurred in the waters of British Columbia (20 fish; SE = 19; Table 16). Age-1.3 and age-1.4 fish accounted for roughly 60% (2,083 fish; SE = 309) and 26% (906 fish; SE = 188) of the estimated harvest, respectively (Table 12).

An estimated 1,479 fish (SE = 423) from the 2000 brood died as a result of incidental fishing mortality (nominal fish; Table 12). Use of AEQ factors (Table 13) results in an estimated incidental mortality of 1,090 (SE = 341) AEQs (Table 14).

Total fishing mortality for the 2000 brood was estimated to be 4,385 (SE = 517) AEQs (Table 17). Based on a n estimated spawning abundance of 9,066 (SE = 513) fish (Weller and McPherson 2004, 2006a-b; Weller and Evans 2009; Table 12), production was estimated to be 13,451 AEQs (SE = 728), and the exploitation rate was therefore estimated to be 0.3260 (SE = 0.0287; Table 17). The marine survival rate was estimated to be 0.03249 (SE = 0.00431; Table 17).

# Brood Year 2001

An estimated 1,122 (SE = 201) fish were harvested from brood year 2001 returns (Table 12; Appendix B6). The half-width of the calculated 95% confidence interval is 35.1% of the harvest estimate. Use of AEQ conversion factors (Table 13) results in an estimated harvest of 1,074 (SE = 196) AEQs (Table 14). An estimated 659 (SE = 145) fish were harvested by commercial troll gear, approximately 59% of the total harvest (Table 15). Recreational (287 fish; SE = 121), purse seine (89; SE = 57), and drift gillnet (66 fish; SE = 37) gear accounted for approximately 26%, 8%, and 6% of the total estimated harvest, respectively (Table 15). Harvest occurred primarily in the Southeast (60%; 678 fish; SE = 163) and Northwest (33%; 375 fish; SE = 114) Quadrants of SEAK (Table 16). An estimated 2% of harvest occurred in the waters of British Columbia (17 fish; SE = 17; Table 16). Age-1.3 and age-1.4 fish accounted for roughly 51% (572 fish; SE = 140) and 41% (462 fish; SE = 141) of the estimated harvest, respectively (Table 12).

An estimated 460 fish (SE = 200) from the 2001 brood died as a result of incidental fishing mortality (nominal fish; Table 12). Use of AEQ factors (Table 13) results in an estimated incidental mortality of 313 (SE = 160) AEQs (Table 14).

Total fishing mortality for the 2001 brood was estimated to be 1,387 (SE = 253) AEQs (Table 17). Based on a n estimated spawning abundance of 3,800 (SE = 263) fish (Weller and McPherson 2006a, 2006b; Weller and Evans 2009; Table and 12), production was estimated to be 5,187 AEQs (SE = 365), and the exploitation rate was therefore estimated to be 0.2674 (SE = 0.0382; Table 17). The marine survival rate was estimated to be0 .01994 (SE = 0.00328; Table 17).

#### Brood Year 2002

Brood year 2002 returns are incomplete pending the return of age-1.5 fish in 2009. However, through 2008 an estimated 2,705 (SE = 336) fish were harvested from brood year 2002 returns (Table 12; Appendix B6). The half-width of the calculated 95% confidence interval is 24.2% of the harvest estimate. Use of AEQ conversion factors (Table 13) results in an estimated harvest of 2,525 (SE = 313) AEQs (Table 14). An estimated 1,776 (SE = 266) fish were harvested by commercial troll gear, approximately 66% of the total harvest (Table 15). Drift gillnet (470 fish; SE = 150), recreational (315 fish; SE = 115), and purse seine (153; SE = 83) gear accounted for

approximately 17%, 12%, and 6% of the total estimated harvest, respectively (Table 15). Harvest occurred primarily in the Southeast (45%; 1,222 fish; SE = 221), Northwest (30%; 815 fish; SE = 203), and Southwest (13%; 356 fish; SE = 110) Quadrants of SEAK (Table 16). Approximately 5% of harvest occurred in the waters of British Columbia (131 fish; SE = 79; Table 16). Through 2008, age-1.3, -1.2, and -1.4 fish accounted for roughly 59% (1,593 fish; SE = 260), 26% (713 fish; SE = 182), and 14% (384; SE = 110) of the estimated harvest, respectively (Table 12).

Through 2008, an estimated 1,287 fish (SE = 365) from the 2002 brood died as a result of incidental fishing mortality (nominal fish; Table 12). Use of AEQ factors (Table 13) results in an estimated incidental mortality of 951 (SE = 297) AEQs (Table 14).

Through 2008, total fishing mortality for the 2002 brood was estimated to be 3,476 (SE = 431) AEQs (Table 17). Based on an estimated spawning abundance of 9,648 (SE = 603) fish (Weller and McPherson 2006b; Weller and Evans 2009; Table 12), production through 2008 was estimated to be 13,124 AEQs (SE = 741), and the exploitation rate was therefore estimated to be 0.2649 (SE = 0.0271; Table 17). The marine survival rate was estimated to be 0.02906 (SE = 0.00420; Table 17).

# Brood Year 2003

Brood year 2003 returns are incomplete pending the return of age-1.4 fish in 2009 and age-1.5 fish in 2010. Through 2008, an estimated 419 (SE = 110) fish have been harvested from brood year 2003 returns (Table 12; Appendix B6). Use of AEQ conversion factors (Table 13) results in an estimated harvest of 387 (SE = 103) AEQs (Table 14). An estimated 342 (SE = 104) fish were harvested by commercial troll gear, approximately 82% of the total harvest (Table 15). Recreational (36 fish; SE = 25), purse seine (28 fish; SE = 19), and drift gillnet (12 fish; SE = 12) gear accounted for approximately 9%, 7%, and 3% of the total estimated harvest, respectively (Table 15). Harvest only occurred in the Southeast (248 fish; SE = 87), Northwest (97 fish; SE = 56), and Northeast (73 fish; SE = 36) Quadrants of SEAK (Table 16).

An estimated 425 fish (SE = 192) from the 2003 brood died as a result of incidental fishing mortality (nominal fish; Table 12). Use of AEQ factors (Table 13) results in an estimated incidental mortality of 300 (SE = 151) AEQs (Table 14).

# Brood Year 2004

An estimated 97 (SE = 51) age-1.2 fish were harvested in 2008, no harvest of age-1.1 fish occurred in 2007 (Table 12; Appendix B6). Incidental mortality was estimated to be 389 fish (Table 12).

# Brood Year 2005

No age-1.1 fish were harvested from the 2005 brood in 2008, however incidental mortality was estimate to be 446 fish (Table 12).

#### Estimates by return year

Total returns averaged 9,324 fish from 1998 to 2008, and ranged from an estimated 6,546 (SE = 1,777) fish in 1998 to 13,633 (SE = 9.25) fish in 2001 (Table 18). In AEQs, total production averaged 9,011 AEQs from 1998 to 2008, and ranged from 6,301 AEQs (SE = 442) in 1998 to 13,394 AEQs (SE = 922) in 2001 (Table 19). During this period, harvest and incidental mortality averaged 1,614 and 521 AEQs, respectively, for an average annual fishing mortality of 2,135 AEQs and an average exploitation rate of 22.9%.

|                   |     | L    | anded    | catch |           |     | Incid | lental r | nortalit | у         | Spawning abundance |       |         |       |     |        | Total return |       |       |       |     |        |
|-------------------|-----|------|----------|-------|-----------|-----|-------|----------|----------|-----------|--------------------|-------|---------|-------|-----|--------|--------------|-------|-------|-------|-----|--------|
| _                 |     | Ag   | ge class |       |           |     | Ag    | e class  |          |           |                    | Ag    | ge clas | S     |     |        | Age class    |       |       |       |     |        |
| Return            | 1.1 | 1.2  | 1.3      | 1.4   | 1.5 Total | 1.1 | 1.2   | 1.3      | 1.4      | 1.5 Total | 1.1                | 1.2   | 1.3     | 1.4   | 1.5 | Total  | 1.1          | 1.2   | 1.3   | 1.4   | 1.5 | Total  |
| 1995              | 35  |      |          |       | 35        | 129 |       |          |          | 129       |                    |       |         |       |     | 0      | 165          |       |       |       |     | 165    |
| SE                | 35  |      |          |       | 35        |     |       |          |          |           |                    |       |         |       |     | 0      | 35           |       |       |       |     | 35     |
| 1996              |     | 81   |          |       | 81        | 206 | 111   |          |          | 317       |                    | 736   |         |       |     | 736    | 206          | 927   |       |       |     | 1,134  |
| SE                |     | 80   |          |       | 80        |     |       |          |          |           |                    | 349   |         |       |     | 349    |              | 358   |       |       |     | 358    |
| 1997              |     | 161  | 267      |       | 428       | 218 | 197   | 15       |          | 430       | 49                 | 916   | 1,240   |       |     | 2,205  | 267          | 1,274 | 1,523 |       |     | 3,063  |
| SE                |     | 67   | 157      |       | 171       |     |       |          |          |           | 18                 | 151   | 128     |       |     | 199    | 18           | 165   | 203   |       |     | 262    |
| 1998              | 101 | 147  | 420      | 155   | 823       | 291 | 115   | 15       | 6        | 428       | 224                | 1,269 | 2,595   | 1,207 |     | 5,295  | 616          | 1,531 | 3,030 | 1,368 |     | 6,546  |
| SE                | 73  | 73   | 134      | 707   | 727       |     |       |          |          |           | 62                 | 235   | 267     | 1,581 |     | 1,622  | 96           | 246   | 299   | 1,732 |     | 1,777  |
| 1999              | 19  | 223  | 573      | 707   | 1,522     | 702 | 345   | 31       | 29       | 1,107     | 240                | 2,427 | 1,918   | 1,581 | 16  | 6,182  | 962          | 2,994 | 2,522 | 2,317 | 16  | 8,811  |
| SE                | 13  | 81   | 186      | 198   | 284       |     |       |          |          |           | 78                 | 540   | 255     | 215   | 12  | 640    | 79           | 546   | 316   | 292   | 12  | 700    |
| 2000              |     | 686  | 1,204    | 362   | 2,252     | 267 | 442   | 67       | 9        | 786       | 15                 | 3,140 | 3,499   | 1,447 | 50  | 8,151  | 282          | 4,268 | 4,771 | 1,818 | 50  | 11,189 |
| SE                |     | 228  | 219      | 132   | 343       |     |       |          |          |           | 15                 | 947   | 394     | 185   | 21  | 1,043  | 15           | 974   | 451   | 228   | 21  | 1,098  |
| 2001              | 59  | 96   | 1,046    | 608   | 1,809     | 294 | 126   | 76       | 18       | 514       | 83                 | 946   | 6,923   | 3,337 | 21  | 11,310 | 435          | 1,169 | 8,045 | 3,962 | 21  | 13,633 |
| SE                | 58  | 50   | 181      | 118   | 229       |     |       |          |          |           | 31                 | 127   | 789     | 404   | 15  | 896    | 66           | 137   | 810   | 421   | 15  | 925    |
| 2002              |     | 244  | 630      | 755   | 1,629     | 136 | 212   | 19       | 16       | 383       |                    | 2,485 | 2,887   | 3,188 | 66  | 8,626  | 136          | 2,942 | 3,536 | 3,958 | 66  | 10,638 |
| SE                |     | 86   | 164      | 154   | 240       |     |       |          |          |           |                    | 697   | 358     | 392   | 28  | 877    |              | 702   | 394   | 421   | 28  | 909    |
| 2003              | 12  | 81   | 829      | 566   | 1,488     | 508 | 100   | 24       | 13       | 645       | 191                | 592   | 3,941   | 1,474 | 46  | 6,244  | 711          | 773   | 4,794 | 2,053 | 46  | 8,377  |
| SE                | 12  | 53   | 191      | 187   | 273       |     |       |          |          |           | 37                 | 69    | 317     | 139   | 17  | 355    | 39           | 87    | 370   | 233   | 17  | 448    |
| 2004              | 21  | 488  | 658      | 222   | 23 1,413  | 233 | 894   | 231      | 4        | 1,362     | 76                 | 2,937 | 1,289   | 1,756 | 19  | 6,077  | 330          | 4,319 | 2,178 | 1,982 | 42  | 8,852  |
| SE                | 4   | 205  | 414      | 67    | 23 467    |     |       |          |          |           | 24                 | 335   | 122     | 160   | 10  | 392    | 24           | 393   | 432   | 174   | 25  | 610    |
| 2005              | 15  | 67 1 | 2,083    | 493   | 41 2,699  | 544 | 198   | 60       | 128      | 814       | 237                | 521   | 3,808   | 842   | 13  | 5,421  | 797          | 786   | 5,951 | 1,346 | 54  | 8,934  |
| SE                | 15  | 34   | 311      | 142   | 41 346    |     |       |          |          |           | 67                 | 106   | 321     | 97    | 9   | 358    | 69           | 111   | 447   | 172   | 42  | 498    |
| 2006              | 16  | 713  | 572      | 906   | 59 2,266  | 184 | 608   | 19       | 17       | 828       | 221                | 3,256 | 2,147   | 2,100 |     | 7,724  | 421          | 4,576 | 2,738 | 3,024 | 59  | 10,818 |
| SE                | 15  | 182  | 140      | 188   | 59 303    |     |       |          |          |           | 47                 | 436   | 215     | 215   |     | 534    | 49           | 472   | 256   | 285   | 59  | 613    |
| 2007 <sup>a</sup> |     | 45   | 1,593    | 462   | 2,099     | 306 | 224   | 126      | 10       | 667       | 184                | 842   | 4,522   | 1,045 | 30  | 6,623  | 490          | 1,111 | 6,241 | 1,517 | 30  | 9,384  |
| SE                |     | 26   | 260      | 141   | 297       |     |       |          |          |           | 34                 | 95    | 360     | 105   | 13  | 389    | 34           | 99    | 444   | 176   | 13  | 489    |
| 2008              |     | 97   | 358      | 384   | 839       | 446 | 83    | 17       | 8        | 554       | 163                | 943   | 1,229   | 1,633 | 11  | 3,979  | 609          | 1,123 | 1,604 | 2,025 | 11  | 5,372  |
| SE                |     | 51   | 105      | 110   | 161       |     |       |          |          |           | 46                 | 149   | 155     | 198   | 8   | 296    | 46           | 157   | 187   | 227   | 8   | 337    |

Table 18.–Nominal estimates of landed catch, incidental mortality, spawning abundance, and total returns of Unuk River Chinook salmon, by age class and return year, 1995–2008. Rounding error is present.

<sup>a</sup>Estimated spawning abundance in 2007 does not include an estimated 5 age-1.0 fish; rounding error also present.

|                   |     | Ι   | Landed   | catch |       |       |     | Incid | lental n | nortalit | у         | Spawning abundance |       |         |       |     |        | Total return |       |       |       |     |        |
|-------------------|-----|-----|----------|-------|-------|-------|-----|-------|----------|----------|-----------|--------------------|-------|---------|-------|-----|--------|--------------|-------|-------|-------|-----|--------|
|                   |     | Ag  | ge class |       |       |       |     | Ag    | e class  |          |           |                    | Ag    | ge clas | S     |     |        | Age class    |       |       |       |     |        |
| Return            | 1.1 | 1.2 | 1.3      | 1.4   | 1.5 7 | Fotal | 1.1 | 1.2   | 1.3      | 1.4      | 1.5 Total | 1.1                | 1.2   | 1.3     | 1.4   | 1.5 | Total  | 1.1          | 1.2   | 1.3   | 1.4   | 1.5 | Total  |
| 1995              | 20  |     |          |       |       | 20    | 72  |       |          |          | 72        |                    |       |         |       |     |        | 92           |       |       |       |     | 92     |
| SE                | 19  |     |          |       |       | 19    |     |       |          |          |           |                    |       |         |       |     |        | 19           |       |       |       |     | 19     |
| 1996              |     | 64  |          |       |       | 64    | 114 | 88    |          |          | 202       |                    | 736   |         |       |     | 736    | 114          | 888   |       |       |     | 1,002  |
| SE                |     | 64  |          |       |       | 64    |     |       |          |          |           |                    | 349   |         |       |     | 349    | 0            | 355   |       |       |     | 355    |
| 1997              |     | 126 | 253      |       |       | 379   | 123 | 155   | 15       |          | 293       | 49                 | 916   | 1,240   |       |     | 2,205  | 172          | 1,198 | 1,507 |       |     | 2,877  |
| SE                |     | 53  | 148      |       |       | 158   |     |       |          |          |           | 18                 | 151   | 128     |       |     | 199    | 18           | 160   | 196   |       |     | 254    |
| 1998              | 57  | 118 | 399      | 155   |       | 729   | 164 | 93    | 14       | 6        | 277       | 224                | 1,269 | 2,595   | 1,207 |     | 5,295  | 445          | 1,480 | 3,008 | 1,368 |     | 6,301  |
| SE                | 41  | 58  | 128      | 155   |       | 213   |     |       |          |          |           | 62                 | 235   | 267     | 140   |     | 387    | 74           | 242   | 296   | 209   |     | 442    |
| 1999              | 11  | 178 | 544      | 707   | 1     | ,440  | 400 | 275   | 30       | 29       | 734       | 240                | 2,427 | 1,918   | 1,581 | 16  | 6,182  | 651          | 2,880 | 2,492 | 2,317 | 16  | 8,356  |
| SE                | 7   | 65  | 177      | 198   |       | 274   |     |       |          |          |           | 78                 | 540   | 255     | 215   | 12  | 640    | 78           | 544   | 310   | 292   | 12  | 696    |
| 2000              |     | 555 | 1,138    | 362   | 2     | 2,054 | 148 | 358   | 64       | 9        | 578       | 15                 | 3,140 | 3,499   | 1,447 | 50  | 8,151  | 163          | 4,052 | 4,700 | 1,818 | 50  | 10,784 |
| SE                |     | 185 | 207      | 132   |       | 307   |     |       |          |          |           | 15                 | 947   | 394     | 185   | 21  | 1,043  | 15           | 965   | 445   | 228   | 21  | 1,087  |
| 2001              | 34  | 76  | 1,006    | 608   | 1     | ,724  | 169 | 100   | 73       | 18       | 360       | 83                 | 946   | 6,923   | 3,337 | 21  | 11,310 | 286          | 1,122 | 8,002 | 3,962 | 21  | 13,394 |
| SE                | 34  | 40  | 174      | 118   |       | 217   |     |       |          |          |           | 31                 | 127   | 789     | 404   | 15  | 896    | 46           | 133   | 808   | 421   | 15  | 922    |
| 2002              |     | 200 | 602      | 755   | 1     | ,557  | 75  | 174   | 18       | 16       | 283       |                    | 2,485 | 2,887   | 3,188 | 66  | 8,626  | 75           | 2,859 | 3,507 | 3,958 | 66  | 10,466 |
| SE                |     | 71  | 157      | 154   |       | 230   |     |       |          |          |           |                    | 697   | 358     | 392   | 28  | 877    | 0            | 701   | 391   | 421   | 28  | 906    |
| 2003              | 7   | 64  | 798      | 566   | 1     | ,434  | 290 | 79    | 23       | 13       | 405       | 191                | 592   | 3,941   | 1,474 | 46  | 6,244  | 488          | 735   | 4,762 | 2,053 | 46  | 8,084  |
| SE                | 7   | 42  | 184      | 187   |       | 266   |     |       |          |          |           | 37                 | 69    | 317     | 139   | 17  | 355    | 38           | 81    | 367   | 233   | 17  | 444    |
| 2004              | 12  | 396 | 627      | 222   | 23 1  | ,280  | 129 | 725   | 221      | 4        | 1,079     | 76                 | 2,937 | 1,289   | 1,756 | 19  | 6,077  | 217          | 4,058 | 2,136 | 1,982 | 42  | 8,436  |
| SE                | 3   | 166 | 395      | 67    | 23    | 434   |     |       |          |          |           | 24                 | 335   | 122     | 160   | 10  | 392    | 24           | 374   | 413   | 174   | 25  | 585    |
| 2005              | 9   | 53  | 1,986    | 493   | 41 2  | 2,582 | 318 | 156   | 57       | 12       | 543       | 237                | 521   | 3,808   | 842   | 13  | 5,421  | 564          | 729   | 5,852 | 1,346 | 54  | 8,545  |
| SE                | 9   | 27  | 296      | 142   | 41    | 332   |     |       |          |          |           | 67                 | 106   | 321     | 97    | 9   | 358    | 68           | 109   | 437   | 172   | 42  | 489    |
| 2006              | 9   | 590 | 547      | 908   | 59 2  | 2,112 | 104 | 503   | 18       | 17       | 642       | 221                | 3,256 | 2,147   | 2,100 |     | 7,724  | 334          | 4,348 | 2,712 | 3,024 | 59  | 10,477 |
| SE                | 9   | 150 | 134      | 188   | 59    | 282   |     |       |          |          |           | 47                 | 436   | 215     | 215   |     | 534    | 48           | 461   | 253   | 285   | 59  | 603    |
| 2007 <sup>a</sup> |     | 35  | 1,542    | 462   | 2     | 2,040 | 173 | 179   | 122      | 10       | 485       | 184                | 842   | 4,522   | 1,045 | 30  | 6,623  | 357          | 1,057 | 6,186 | 1,517 | 30  | 9,148  |
| SE                |     | 21  | 252      | 141   |       | 289   |     |       |          |          |           | 34                 | 95    | 360     | 105   | 13  | 389    | 34           | 97    | 439   | 176   | 13  | 484    |
| 2008              |     | 78  | 342      | 384   |       | 804   | 251 | 66    | 17       | 8        | 342       | 163                | 943   | 1,229   | 1,633 | 11  | 3,979  | 414          | 1,087 | 1,687 | 2,025 | 11  | 5,125  |
| SE                |     | 41  | 101      | 110   |       | 155   |     |       |          |          |           | 46                 | 149   | 155     | 198   | 8   | 296    | 46           | 155   | 185   | 227   | 8   | 334    |

Table 19.–Estimates of landed catch, incidental mortality, spawning abundance, and total returns of Unuk River Chinook salmon in adult equivalents (AEQs), by age class and return year, 1995–2008. Rounding error is present.

<sup>a</sup>Estimated spawning abundance in 2007 does not include an estimated 5 age-1.0 fish; rounding error also present.

# DISCUSSION

Estimates of fishing mortality for age-1.1 Chinook salmon should be considered minimum estimates. Most age-1.1 fish are harvested by purse seine gear, as these fish are generally too small to be entangled by drift gillnet gear, and except in relatively rare situations, length restrictions forbid the retention of Chinook salmon of this size in recreational and commercial troll fisheries. However, the number of jacks (<28 in TL or approximately 710 mm TL) documented as landed catch are known to be under reported. ADF&G management regulations for SEAK traditional purse seine fisheries allow retention, but not sale, of Chinook salmon between 21 and 28 in TL (approximately 530–710 mm TL). These fish are consequently rarely reported and almost never sampled for CWTs. ADF&G management regulations permit the retention and sale of purse seine-caught Chinook salmon <21 in TL. Most individual purse seiners sell their catch to tenders, larger vessels that purchase fish from multiple purse seiners, and subsequently transport the fish to processing plants. In most such instances, pink salmon are kept in separate holds from "money" fish (the more valuable Chinook, sockeye, coho, and chum salmon), or separate vessels purchase pink salmon and "money" fish. For a number of reasons, Chinook salmon <21 in TL are bought by tenders as pink salmon: they are similar in size and appearance to pink salmon, inexperienced purse seine crews often do not distinguish between pink salmon and small Chinook salmon, and the value of these fish is comparable. Dockside samplers rarely sample pink salmon deliveries for jack Chinook salmon CWTs because of cost inefficiencies or fish having been bought from multiple districts and their consequent undesirability for CWT harvest expansion purposes, so many if not most Chinook salmon <21 in TL delivered by tenders go unreported and unsampled. Most CWT samples from jack Chinook salmon occur in the increasingly uncommon event that individual purse seiners deliver their catch directly to a processor, and a CWT sampler is present to look for tagged Chinook and coho salmon. Although sampling of jacks likely represents a relatively small fraction of the catch under these circumstances, the number of jacks sampled is still generally larger than reported catch, and can be 3 times the reported catch from some districts of SEAK (Table 20).

Voluntary recoveries of Unuk River Chinook salmon possessing CWTs occurred in 4 recreational fisheries from 1995 t o 2008; the NBC recreational fishery (5 recoveries), the Ketchikan recreational fishery (6 recoveries), the Cook Inlet (Homer) recreational fishery (1 recovery), and in the District 101 recreational fishery as part of a special ADF&G genetic sampling program of sublegal Chinook salmon (3 recoveries; Appendix B7). Hendrich et al. (2008) used an awareness factor, based on extrapolations of data from previous years by the CTC of the PSC, to expand the NBC and Ketchikan recreational fishery recoveries:

$$\hat{r}_{uj} = 4m_{uj}\hat{\theta}_{j}^{-1}; \quad \operatorname{var}(\hat{r}_{uj}) = (\hat{r}_{uj})^2$$
(38)

where 4 equals the awareness approximation,  $m_{uj}$  equals the number of voluntary CWT recoveries with relevant tag codes from brood year *j* in fishery stratum*u*, and  $\hat{\theta}_j$  equals the estimated fraction of juveniles tagged from brood year *j*. We feel however that the awareness factor is not a defensible scientific method, is in essence little better than a guess, and have therefore not used it to estimate harvest from voluntary recoveries. The presence of the voluntary recoveries in the Canadian recreational fisheries of NBC, where all recoveries are strictly voluntary, indicates that Canadian harvest of Chinook salmon originating from the Unuk River is

underestimated to some unknown degree in 1999, 2000, 2002, and 2005 (Appendix B7). In 5 of the 6 cases when voluntary recoveries occurred in the Ketchikan recreational fishery, recoveries occurred during the period that ADF&G was conducting creel sampling of harvest for CWTs. Expansion of those 5 recoveries would result in overestimation of harvest therefore, and inclusion in the harvest estimation process is contraindicated.

Table 20.–Number of Chinook salmon <21 in TL (approximately 530 m m TL) reported in the ADF&G Division of Commercial Fisheries Mark Tag and Age Laboratory's database as landed catch (harvest), and sampled for coded wire tags, from traditional purse seine fisheries in Southeast Alaska Districts 101–106 (PANEL A) and Districts 107–114 (PANEL B), 1998–2008.

| PANEL A : DISTRICTS 101–106 |         |         |         |         |          |         |         |         |         |         |              |         |  |
|-----------------------------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|--------------|---------|--|
|                             | Distri  | ict 101 | Distri  | ict 102 | Distri   | ict 103 | Distr   | ict 104 | Distr   | ict 105 | District 106 |         |  |
| Year                        | Harvest | Sampled | Harvest | Sampled | Harvest  | Sampled | Harvest | Sampled | Harvest | Sampled | Harvest      | Sampled |  |
| 1998                        | 45      | 183     |         | 9       | 1        |         | 35      | 62      | 5       |         | 8            | 7       |  |
| 1999                        | 279     | 275     | 8       | 67      | 2        |         | 9       | 22      | 3       |         | 10           | 6       |  |
| 2000                        | 144     | 311     | 35      | 203     | 5        | 47      | 29      | 247     | 11      | 6       | 3            | 9       |  |
| 2001                        | 55      | 336     | 39      | 138     | 15       | 22      | 714     | 43      | 19      | 8       | 68           | 65      |  |
| 2002                        | 39      | 22      | 51      | 16      | 10       | 3       | 28      | 3       |         |         |              |         |  |
| 2003                        | 134     | 45      | 78      | 111     | 10       | 4       | 101     | 39      | 11      | 2       | 390          | 771     |  |
| 2004                        | 25      | 272     | 13      | 145     | 2        | 3       | 24      | 73      | 4       |         | 10           | 7       |  |
| 2005                        | 39      | 205     | 35      | 88      | 34       |         | 50      | 21      | 3       |         | 145          | 136     |  |
| 2006                        | 16      | 36      | 31      | 50      | 4        |         | 42      | 29      |         |         | 8            | 7       |  |
| 2007                        | 4       | 205     | 83      | 197     | 29       | 26      | 189     | 242     | 6       |         | 125          | 219     |  |
| 2008                        | 33      | 227     | 59      | 292     | 17       | 4       | 5       | 20      |         |         | 18           | 42      |  |
| Total                       | 813     | 2,117   | 432     | 1,316   | 129      | 109     | 1,226   | 801     | 62      | 16      | 785          | 12,698  |  |
| Percent sample              | d       | 260     |         | 305     |          | 84      |         | 65      |         | 26      |              | 162     |  |
|                             |         |         |         | PAN     | EL B :DI | STRICTS | 107-114 | Ļ       |         |         |              |         |  |
|                             | Distri  | ict 107 | Distri  | ict 109 | Distri   | ict 110 | Distr   | ict 112 | Distr   | ict 113 | Distr        | ict 114 |  |
| Year                        | Harvest | Sampled | Harvest | Sampled | Harvest  | Sampled | Harvest | Sampled | Harvest | Sampled | Harvest      | Sampled |  |
| 1998                        | 37      | 18      | 422     | 218     | 459      | 283     | 28      | 70      | 4       | 3       |              |         |  |
| 1999                        | 341     | 192     | 221     | 171     | 263      | 240     | 114     | 322     | 87      | 35      | 23           | 18      |  |
| 2000                        | 57      | 57      | 90      | 124     | 72       | 115     | 31      | 169     | 16      | 5       | 3            | 9       |  |
| 2001                        | 300     | 137     | 60      | 134     | 61       | 68      | 56      | 220     | 21      | 48      |              | 92      |  |
| 2002                        | 85      | 5       | 177     | 257     | 168      | 230     | 54      | 204     | 59      | 39      | 5            | 46      |  |
| 2003                        | 84      | 28      | 109     | 58      | 144      | 158     | 30      | 58      | 2       | 2       | 10           | 4       |  |
| 2004                        | 13      | 15      | 41      | 37      | 250      | 218     | 178     | 48      | 15      | 5       | 14           | 14      |  |
| 2005                        | 72      | 36      | 15      | 11      | 61       | 69      | 185     | 31      | 22      | 10      | 2            | 3       |  |
| 2006                        | 40      | 13      | 148     | 37      | 104      | 142     | 89      | 105     | 28      | 6       | 1            | 10      |  |
| 2007                        | 114     | 107     | 14      | 17      | 27       | 16      | 350     | 78      | 71      | 10      | 12           | 6       |  |
| 2008                        | 34      | 30      |         |         | 12       | 11      | 5       | 2       | 16      | 8       |              |         |  |
| Total                       | 1.177   | 638     | 1.297   | 1.064   | 1.621    | 1.550   | 1.120   | 1.307   | 341     | 171     | 70           | 202     |  |

# **CONCLUSIONS AND RECOMMENDATIONS**

96

117

50

289

82

54

Percent sampled

Annex IV Chapter 3 of the 2008 PST provides for harvest opportunities on abundant stocks, and mandates harvest regimes be established based on annual estimates of stock abundance and maximum sustained yield (MSY). The escapement range that provides MSY for the Unuk stock has recently been estimated by Hendrich et al. (2008) as 1,800–3,800 large spawning fish, and the revision has been approved by ADF&G and the PSC. Based on point estimates of
spawning abundance from 1997–2006, as determined by annual mark-recapture experiments, the upper range of MSY was exceeded by a minimum of 17,000 fish during this period. No directed fishery on the Unuk River stock has existed since the 1950s because of stock concerns. As one prerequisite to the development of increased harvest opportunities on returns surplus to escapement, a reliable forecast model for the Unuk stock needs to be developed, as noted in Chapter 3, Paragraph 13 of the PST. The forecast model would be based on c ohort analysis and be dependent on high quality harvest and escapement estimation. Consequently we recommend continued collection of high quality harvest and escapement information on this stock, refinement of the current rudimentary forecast model, and development by relevant management entities of possible strategies to harvest returns surplus to escapement.

The current algorithm used by the CTC of the PSC, in some instances, groups dissimilar fisheries when estimating incidental fishing mortality. This practice can lead to significant error in the estimation of incidental fishing mortality for certain relevant fisheries, such as the SEAK gillnet fishery, as previously noted. Although this practice was necessary when the algorithm was first developed as a result of computer memory limitations at that time, we recommend that the CTC incidental fishing mortality algorithm be updated to preclude grouping of dissimilar fisheries. The Chinook salmon recreational fishery in NBC is a mixed stock interception fishery. Reliable harvest and harvest contribution estimates from this fishery are therefore of interest to numerous entities in both the United States and Canada. We recommend the initiation of a defensible scientific sampling program for this fishery.

## ACKNOWLEDGMENTS

We thank the following ADF&G personnel for assistance from 2005 to 2008: Amy Holm and Malika Brunette for their assistance in operational planning, expediting equipment, and data entry; Roger Hayward (mark-recapture crew leader in 2006–2008, CWT crew leader from 2005– 2008), Nicole Zeiser (mark-recapture crew leader in 2005), David Dreyer, Dale Brandenburger, Greg Vaughn, Rich Duncan, Ann Crane, Alex Blaine, Chris S'gro, Kris Maledy, Micah Sanguinetti, Jason Wolle, Stephanie Warnement, Chris Stack, Joe Hancock, and Steve Alicandri for participation in juvenile CWT and/or mark-recapture sampling and field logistics; John Carlile for providing incidental fishing mortality and adult equivalent correction factor information; Keith Pahlke for performing the aerial counts and providing logistical assistance; Regional Research Coordinator John Der Hovanisian for logistical support and editorial review of operational plans and the final report; Scott McPherson for technical assistance; Todd Johnson for logistical, mapping, and organizational assistance; Jody Goffinet for assistance with personnel logistics and paperwork; Sue Millard for determining the ages of adult Chinook salmon scales; and Stacey Poulson who prepared the final document for publication. We are also deeply appreciative of the efforts of the Division of Commercial Fisheries Mark Tag and Age Laboratory and SEAK regional port sampling staffs and the Division of Sport Fish SEAK regional and Cook Inlet creel sampling staffs.

We thank the harvest sampling staffs of the Metlakatla Indian Community, Southern Southeast Regional Aquaculture Association, National Marine Fisheries Service, and the Canadian Department of Fisheries and Oceans.

We thank the many people and entities involved in field logistics: Jeff Carlin, Lorraine Grave, and Luke St. Mar-Windle of Carlin Air; Dave Doyon and Dave Doyon Jr. of Misty Fjords Air;

Eric Eichner and Allen Zink of Temsco Helicopters; and Stretch Chatham of Stimson Towing and Freight.

We also thank the residents of the lower Unuk river whose assistance has been instrumental to the success of this project: Gail and Charlie Pinkapank for the lease of space for equipment storage; John Harrington for the lease of fuel storage space; Don Ross, Jan Ross, and Lori Coates for dock use; Hank and Jodi Aegerter and family; Don Newman; Steve and Laura Huffine, and Lavern Beier.

Development and publication of this manuscript were partially financed by the Federal Aid in Sport fish Restoration Act (16 U.S.C.777-777K), and by resident and non-resident recreational anglers fishing in Alaska.

## **REFERENCES CITED**

- ADF&G (Alaska Department of Fish and Game). 1993. Length, sex, and scale sampling procedure for sampling using the ADF&G adult salmon age-length mark-sense form version 3.0. Commercial Fisheries Management and Development Division, Douglas.
- Arnason, A. N., C. W. Kirby, C. J. Schwarz, and J. R Irvine. 1996. Computer analysis of data from stratified markrecovery experiments for estimation of salmon escapements and other populations. Canadian Technical Report of Fisheries and Aquatic Sciences 2106:37.
- Bailey, N. J. T. 1951. On estimating the size of mobile populations from capture-recapture data. Biometrika 38: 293–306.
- Bailey, N. J. T. 1952. Improvements in the interpretation of recapture data. Journal of Animal Ecology 21: 120–127.
- Begich, R. N. 2007. Contributions of coded wire tagged Chinook salmon stocks to the early-run marine sport fishery in Cook Inlet, 1999 through 2001. Alaska Department of Fish and Game, Fishery Data Series No. 07-54, Anchorage. <u>http://www.sf.adfg.state.ak.us/FedAidPDFs/fds07-54.pdf</u>
- Bernard, D. R., and J. E. Clark. 1996. Estimating salmon harvest based on return of coded-wire tags. Canadian Journal of Fisheries and Aquatic Sciences 53:2323–2332.
- Buckland, S. T. and P. H. Garthwaite. 1991. Quantifying precision of mark-recapture estimates using the bootstrap and related methods. Biometrics 47:255.
- Chapman, D. G. 1951. Some properties of the hypergeometric distribution with applications to zoological censuses. University of California Publications in Statistics. No. 1: 131–160.
- Clark, J. E., and D. R. Bernard. 1987. A compound multivariate binomial-hypergeometric distribution describing coded microwire tag recovery from commercial salmon catches in Southeastern Alaska. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet No. 261, Juneau. http://www.sf.adfg.state.ak.us/FedAidPDFs/afrbil.261.pdf
- Clutter, R., and L. Whitesel. 1956. Collection and interpretation of sockeye salmon scales. Bulletin of the International Pacific Salmon.
- Cochran, W. G. 1977. Sampling techniques, third edition. John Wiley and Sons, New York.
- Conover, W. J. 1980. Practical nonparametric statistics 2nd Ed. John Wiley & Sons, New York. 493pp.
- CTC (Chinook Technical Committee). 1997. Incidental fishing mortality of Chinook salmon: mortality rates applicable to Pacific Salmon Commission fisheries. Pacific Salmon Commission Report RCCHINOOK (97)-1. Vancouver, British Columbia.
- CTC (Chinook Technical Committee). 2004. Estimation and application of incidental fishing mortality in Chinook salmon management under the 1999 agreement to the Pacific Salmon Treaty. Pacific Salmon Commission Report RCCHINOOK (04)-1. Vancouver, British Columbia.

- CTC (Chinook Technical Committee). 2005. Annual exploitation rate analysis and model calibration. Pacific Salmon Commission Report RCCHINOOK (05)-3. Vancouver, British Columbia.
- Darroch, J. N. 1961. The two sample capture-recapture census when tagging and sampling are stratified. Biometrika 48:241–260.
- Davidson, W., P. Doherty, W. Bergmann, K. Monagle, and D. Gordon. 2005a. 2005 Southeast Alaska purse seine fishery: 2005 management plan. Alaska Department of Fish and Game. Fishery Management Report No. 05-35. Douglas. <u>http://www.cf.adfg.state.ak.us/region1/pdfs/salmon/fmr05-36.pdf</u>
- Davidson, W., P. Doherty, W. Bergmann, K. Monagle, D. Gordon, and R. Bachman. 2005b. 2005 Southeast Alaska drift gillnet fishery management plan. Alaska Department of Fish and Game. Fishery Management Report No. 05-24. Douglas. http://www.cf.adfg.state.ak.us/region1/pdfs/salmon/Fmr05-24.pdf
- Davidson, W., P. Doherty, W. Bergmann, K. Monagle, and D. Gordon. 2006a. 2006 Southeast Alaska purse seine fishery: 2006 management plan. Alaska Department of Fish and Game. Fishery Management Report No. 06-30. Douglas. <u>http://www.sf.adfg.state.ak.us/FedAidPDFs/fmr06-30.pdf</u>
- Davidson, W., P. Doherty, W. Bergmann, K. Monagle, D. Gordon, and R. Bachman. 2006b. 2006 Southeast Alaska drift gillnet fishery management plan. Alaska Department of Fish and Game. Fishery Management Report No. 06-22. Douglas. <u>http://www.sf.adfg.state.ak.us/FedAidPDFs/fmr06-22.pdf</u>
- Davidson, W., R. Bachman, W. Bergmann, J. Breese, E. Coonradt, S. Forbes, D. Gordon, D. Harris, B. Meredith, K. Monagle, T. Thynes, A. Tingley, and S. Walker. 2007a. 2007 Southeast Alaska drift gillnet fishery management plan. A laska Department of Fish and Game. Regional Report Series No. 1J07-05. D ouglas. http://www.cf.adfg.state.ak.us/region1/pdfs/salmon/rir 1j07 05 2007.pdf
- Davidson, W., W. Bergmann, D. Gordon, S. Heinl, K. Monagle, and S. Walker. 2007b. 2007 Southeast Alaska purse seine fishery management plan. Alaska Department of Fish and Game. Regional Report Series No. 1J07-10. Douglas. <u>http://www.cf.adfg.state.ak.us/region1/pdfs/salmon/rir\_1j07-10.pdf</u>
- Davidson, W., R. Bachman, W. Bergmann, D. Gordon, S. Heinl, K. Jensen, K. Monagle, and S. Walker. 2008a. Annual management report of the 2007 Southeast Alaska commercial purse seine and drift gillnet fisheries. Alaska Department of Fish and Game. F ishery Management Report No. 08-51. D ouglas. http://www.sf.adfg.state.ak.us/FedAidPDFs/FMR08-51.pdf
- Davidson, W., R. Bachman, W. Bergmann, J. Breese, E. Coonradt, S. Forbes, D. Gordon, D. Harris, B. Meredith, K. Monagle, T. Thynes, A. Tingley, and S. Walker. 2008b. 2008 Southeast Alaska drift gillnet fishery management plan. Department of Fish and Game, Regional Report Series No. 1J08-12, Douglas. http://www.sf.adfg.state.ak.us/FedAidPDFs/RIR.1J.2008.12.pdf
- Efron, B., and R. J. Tibshirani. 1993. An introduction to the bootstrap. Chapman and Hall, New York.
- Geiger, H.J. 1990. Parametric bootstrap confidence intervals for estimating contributions to fisheries from marked salmon populations. American Fisheries Society Symposium 7:667–676.
- Goodman, L. A. 1960. On the exact variance of products. Journal of the American Statistical Association 55:708-713.
- Hendrich, C. F., J. L. Weller, S. A. McPherson, and D. R. Bernard. 2008. Optimal Production of Chinook salmon from the Unuk River. Alaska Department of Fish and Game. F ishery Manuscript No. 08-03. D ouglas. http://www.sf.adfg.state.ak.us/FedAidPDFs/fms08-03.pdf
- Howe, A. L., R. J. Walker, C. Olmes, K. Sundet, and A. E. Bingham. 2001. Participation, catch, and harvest in Alaska sport fisheries during 1999. Alaska Department of Fish and Game, Fisheries Data Series No. 01-08, Anchorage. <u>http://www.sf.adfg.state.ak.us/FedAidPDFs/fds01-08.pdf</u>
- Hubartt, D. J., A. E. Bingham, and P. M. Suchanek. 1999. Harvest estimates for selected marine sport fisheries in Southeast Alaska during 1998. Alaska Department of Fish and Game, Fishery Data Series No. 99-15, Anchorage. http://www.sf.adfg.state.ak.us/FedAidPDFs/fds99-15.pdf

- Jennings, G. B., K. Sundet, A. E. Bingham, and D. Sigurdsson. 2004. Participation, catch, and harvest in Alaska sport fisheries during 2001. Alaska Department of Fish and Game, Fisheries Data Series No. 04-11, Anchorage. http://www.sf.adfg.state.ak.us/FedAidPDFs/fds04-11.pdf
- Jennings, G. B., K. Sundet, A. E. Bingham, and D. Sigurdsson. 2006. Participation, catch, and harvest in Alaska sport fisheries during 2002. Alaska Department of Fish and Game, Fisheries Data Series No. 06-34, Anchorage. <u>http://www.sf.adfg.state.ak.us/FedAidPDFs/fds06-34.pdf</u>
- Jones, E. L. III, and S. A. McPherson. 1999. A mark-recapture experiment to estimate the escapement of Chinook salmon in the Unuk River, 1998. A laska Department of Fish and Game, Fishery Data Series No. 99-14, Anchorage. http://www.sf.adfg.state.ak.us/FedAidPDFs/fds99-14.pdf
- Jones, E. L. III, and S. A. McPherson. 2000. A mark-recapture experiment to estimate the escapement of Chinook salmon in the Unuk River, 1999. A laska Department of Fish and Game, Fishery Data Series No. 00-22, Anchorage. <u>http://www.sf.adfg.state.ak.us/FedAidPDFs/fds00-22.pdf</u>
- Jones, E. L. III, and S. A. McPherson. 2002. A mark-recapture experiment to estimate the escapement of Chinook salmon in the Unuk River, 2000. A laska Department of Fish and Game, Fishery Data Series No. 02-17, Anchorage. <u>http://www.sf.adfg.state.ak.us/FedAidPDFs/fds02-17.pdf</u>
- Jones, E. L. III, S. A. McPherson, and D. L. Magnus. 1998. A mark-recapture experiment to estimate the escapement of Chinook salmon in the Unuk River, 1997. Alaska Department of Fish and Game, Fishery Data Series No. 98-23, Anchorage. <u>http://www.sf.adfg.state.ak.us/FedAidPDFs/fds98-23.pdf</u>
- Jones, E. L. III, S. A. McPherson, and A. B. Holm. 1999. Production of coho salmon from the Unuk River, 1997– 1998. A laska Department of Fish and Game, Fishery Data Series No. 99-43, Anchorage. http://www.sf.adfg.state.ak.us/FedAidPDFs/fds99-43.pdf
- Koerner, J. F. 1977. The use of the coded wire tag injector under remote field conditions. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet No. 172, Juneau. http://www.sf.adfg.state.ak.us/FedAidPDFs/afrbil.172.pdf
- Lynch, B., and P. Skannes. 2005a. Management plan for the spring commercial troll fishery in Southeast Alaska, 2005. A laska Department of Fish and Game, Regional Information Report 1J05-15, Douglas. http://www.sf.adfg.state.ak.us/FedAidPDFs/fmr05-15.pdf
- Lynch, B., and P. Skannes. 2005b. Management plan for the summer commercial troll fishery in Southeast Alaska, 2005. A laska Department of Fish and Game, Regional Information Report 1J05-40, Douglas. http://www.sf.adfg.state.ak.us/FedAidPDFs/fmr05-40.pdf
- Lynch, B., and P. Skannes. 2005c. Management plan for the winter commercial troll fishery in Southeast Alaska, 2006. A laska Department of Fish and Game, Regional Information Report IJ05-52, Douglas. http://www.sf.adfg.state.ak.us/FedAidPDFs/fmr05-52.pdf
- Lynch, B., and P. Skannes. 2006a. Management plan for the spring commercial troll fishery in Southeast Alaska, 2006. A laska Department of Fish and Game, Regional Information Report 1J06-27, Douglas.http://www.sf.adfg.state.ak.us/FedAidPDFs/fmr06-27.pdf
- Lynch, B., and P. Skannes. 2006b. Management plan for the summer commercial troll fishery in Southeast Alaska, 2006. A laska Department of Fish and Game, Regional Information Report 1J06-36, Douglas. http://www.sf.adfg.state.ak.us/FedAidPDFs/fmr06-36.pdf
- Lynch, B., and P. Skannes. 2007a. Management plan for the spring commercial troll fishery in Southeast Alaska, 2007. Alaska Department of Fish and Game, Regional Information Report 1J07-06, Douglas. http://www.sf.adfg.state.ak.us/FedAidpdfs/RIR.1J.2007.06.pdf
- Lynch, B., and P. Skannes. 2007b. 2007 summer troll fishery management plan. Alaska Department of Fish and Game, Regional Information Report IJ07-11, Douglas. http://www.sf.adfg.state.ak.us/FedAidpdfs/RIR.1J.2007.11.pdf

- Lynch, B. and P. Skannes. 2007c. 2007–2008 winter troll fishery management plan. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J07-13, Douglas. http://www.sf.adfg.state.ak.us/FedAidPDFs/RIR.1J.2007.13.pdf
- Lynch, B. and P. Skannes. 2008a. Management plan for the spring commercial troll fishery in Southeast Alaska. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J08-16, Juneau. <u>http://www.sf.adfg.state.ak.us/FedAidPDFs/RIR.1J.2008.16.pdf</u>
- Lynch, B., and P. Skannes. 2008b. Annual management report for the 2008 Southeast Alaska/Yakutat salmon troll. Alaska Department of Fish and Game, Fishery Management Report No. 08-69, Anchorage. http://www.sf.adfg.state.ak.us/FedAidPDFs/FMR08-69.pdf
- McPherson, S. A. and J. K. Carlile. 1997. Spawner-recruit analysis of Behm Canal Chinook salmon stocks. Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Regional Information Report 1J97-08, Juneau.
- McPherson, S. A., D. R. Bernard, M. S. Kelley, P. A. Milligan, and P. Timpany. 1997. Spawning abundance of Chinook salmon in the Taku River in 1996. Alaska Department of Fish and Game, Fishery Data Series No. 97-14, Anchorage. <u>http://www.sf.adfg.state.ak.us/FedAidPDFs/fds97-14.pdf</u>
- Mood, A.M., F.A. Graybill and D.C. Boes. 1974. Introduction to the theory of statistics, 3rd ed. McGraw-Hill Book Co. New York. 564 pp.
- Morishima, G. S. 2004. In a nutshell: coded wire tags and the Pacific Salmon Commissions fishery regimes for Chinook and southern coho salmon. DRAFT Briefing Paper for June 2004 PSC CWT Workshop. Seattle WA.
- Neter, J. and W. Wasserman. 1990. Applied Linear Statistical Models. Richard D Irwin, Inc. Homewood, Ill. 1181 pp.
- Oliver, G. T. 1990. Southeast Alaska port sampling project annual report for the period July 1, 1989 to June 30, 1990. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J90-34, Juneau. <u>http://www.sf.adfg.state.ak.us/FedAidPDFs/rir.1j.1990.34.pdf</u>
- Olsen, M. A. 1995. Abundance, age, sex and size of Chinook salmon catches and escapements in Southeast Alaska in 1988. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report 95-02, Juneau.
- Pahlke, K. A. 1995. Coded-wire tagging studies of Chinook salmon on the Unuk and Chickamin rivers, 1983– 1993. A laska Department of Fish and Game, Alaska Fishery Research Bulletin Series 2(2):93–113. <u>http://www.sf.adfg.state.ak.us/FedAidPDFs/afrb.02.2.093-113.pdf</u>
- Pahlke, K. A. 1996. Escapements of Chinook salmon in Southeast Alaska and transboundary rivers in 1995. Alaska Department of Fish and Game, Fishery Data Series No. 96-35, Anchorage. http://www.sf.adfg.state.ak.us/FedAidPDFs/fds96-35.pdf
- Pahlke, K. A. 1997. Escapements of Chinook salmon in Southeast Alaska and transboundary rivers in 1996. Alaska Department of Fish and Game, Fishery Data Series No. 97-33, Anchorage. http://www.sf.adfg.state.ak.us/FedAidPDFs/fds97-33.pdf
- Pahlke, K. A. 2009. Escapements of Chinook salmon in Southeast Alaska and transboundary rivers in 2007. Alaska Department of Fish and Game, Fishery Data Series No. 09-08, Anchorage. http://www.sf.adfg.state.ak.us/FedAidPDFs/FDS09-08.pdf
- Pahlke, K. A. 2010. Escapements of Chinook salmon in Southeast Alaska and transboundary rivers in 2008. Alaska Department of Fish and Game, Fishery Data Series No. 10-71, Anchorage.
- Pahlke, K. A., S. A. McPherson, and R. P. Marshall. 1996. Chinook salmon research on the Unuk River, 1994. Alaska Department of Fish and Game, Fishery Data Series No. 96-14, Anchorage. http://www.sf.adfg.state.ak.us/FedAidPDFs/fds96-14.pdf
- R Development Core Team. 2005. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL <u>http://www.R-project.org</u>.

- Schwarz, C. J., and C. G. Taylor. 1 998. U se of the stratified-Petersen estimator in fisheries management: estimating the number of pink salmon (Oncorhynchus gorbuscha) spawners in the Fraser River. Canadian Journal of Fisheries and Aquatic Science 55:281–296.
- Seber, G. A. F. 1982. On the estimation of animal abundance and related parameters, second edition. MacMillan and Company, New York.
- Walker, R. J., C. Olmes, K. Sundet, A. L. Howe, and A. E. Bingham. 2003. Participation, catch, and harvest in Alaska sport fisheries during 2000. Alaska Department of Fish and Game, Fisheries Data Series No. 03-05, Anchorage. <u>http://www.sf.adfg.state.ak.us/FedAidPDFs/fds03-05.pdf</u>
- Welander, A. D. 1940. A study of the development of the scale of the Chinook salmon (Oncorhynchus tshawytscha). Master's thesis, University of Washington, Seattle.
- Wendt, K. L., and M. J. Jaenicke. 2011. Harvest estimates for selected marine sport fisheries in Southeast Alaska during 2003. Alaska Department of Fish and Game, Fishery Data Series No. 11-61, Anchorage. http://www.adfg.alaska.gov/FedAidpdfs/FDS11-61.pdf
- Weller, J. L., and S. A. McPherson. 2003a. Estimation of the escapement of Chinook salmon in the Unuk River in 2001. A laska Department of Fish and Game, Fisheries Data Series 03-13, Anchorage. http://www.sf.adfg.state.ak.us/FedAidPDFs/fds03-13.pdf
- Weller, J. L., and S. A. McPherson. 2003b. Estimation of the escapement of Chinook salmon in the Unuk River in 2002. A laska Department of Fish and Game, Fisheries Data Series 03-15, Anchorage. http://www.sf.adfg.state.ak.us/FedAidPDFs/fds03-15.pdf
- Weller, J. L., and S. A. McPherson. 2004. Estimation of the escapement of Chinook salmon in the Unuk River in 2003. A laska Department of Fish and Game, Fisheries Data Series 04-10, Anchorage. http://www.sf.adfg.state.ak.us/FedAidPDFs/fds04-10.pdf
- Weller, J. L., and S. A. McPherson. 2006a. Estimation of the escapement of Chinook salmon in the Unuk River in 2004. A laska Department of Fish and Game, Fisheries Data Series 06-07, Anchorage. http://www.sf.adfg.state.ak.us/FedAidPDFs/fds06-07.pdf
- Weller, J. L., and S. A. McPherson. 2006b. Estimation of the escapement of Chinook salmon in the Unuk River in 2005. A laska Department of Fish and Game, Fisheries Data Series 06-59, Anchorage. http://www.sf.adfg.state.ak.us/FedAidPDFs/fds06-59.pdf
- Weller, J. L., and D. G. Evans. 2009. Estimation of the escapement of Chinook salmon in the Unuk River in 2006. Alaska Department of Fish and Game, Fisheries Data Series 09-02, Anchorage. http://www.sf.adfg.state.ak.us/FedAidPDFs/FDS09-02.pdf

# **APPENDIX A**

Appendix A1.–Detection of size- and/or sex-selective sampling during a two-sample mark-recapture experiment and its effects on estimation of population size and population composition.

Size selective sampling: The Kolmogorov-Smirnov two sample test (Conover 1980) is used to detect significant evidence that size selective sampling occurred during the first and/or second sampling events. The second sampling event is evaluated by comparing the length frequency distribution of all fish marked during the first event (M) with that of marked fish recaptured during the second event (R) by using the null test hypothesis of no difference. The first sampling event is evaluated by comparing the length frequency distribution of all fish inspected for marks during the second event (C) with that of R. A third test that compares M and C is then conducted and used to evaluate the results of the first two tests when sample sizes are small. Guidelines for small sample sizes are <30 for R and <100 for M or C.

Sex selective sampling: Contingency table analysis ( $Chi^2$ -test) is generally used to detect significant evidence that sex selective sampling occurred during the first and/or second sampling events. The counts of observed males to females are compared between M&R, C&R, and M&C using the null hypothesis that the probability that a sampled fish is male or female is independent of sample. If the proportions by gender are estimated for a sample (usually C), rather an observed for all fish in the sample, contingency table analysis is not appropriate and the proportions of females (or males) are then compared between samples using a two sample test (e.g. Students *t*-test).

| M vs. R                                   | C vs. R                          | M vs. C                                   |  |
|-------------------------------------------|----------------------------------|-------------------------------------------|--|
| Case I:                                   |                                  |                                           |  |
| Fail to reject H <sub>o</sub>             | Fail to reject H <sub>o</sub>    | Fail to reject H <sub>o</sub>             |  |
| There is no size/sex selectivit           | y detected during either sampl   | ing event.                                |  |
| Case II:                                  |                                  |                                           |  |
| Reject H <sub>o</sub>                     | Fail to reject Ho                | Reject H <sub>o</sub>                     |  |
| There is no size/sex selectivit sampling. | y detected during the first eve  | nt but there is during the second event   |  |
| Case III:                                 |                                  |                                           |  |
| Fail to reject H <sub>o</sub>             | Reject H <sub>o</sub>            | Reject H <sub>o</sub>                     |  |
| There is no size/sex selectivit sampling. | y detected during the second e   | event but there is during the first event |  |
| Case IV:                                  |                                  |                                           |  |
| Reject H <sub>o</sub>                     | Reject H <sub>o</sub>            | Either result possible                    |  |
| There is size/sex selectivity d           | etected during both the first ar | nd second sampling events.                |  |
| Evaluation Required:                      |                                  |                                           |  |
| Fail to reject H <sub>o</sub>             | Fail to reject H <sub>o</sub>    | Reject H <sub>o</sub>                     |  |

Sample sizes and powers of tests must be considered:

- A. If sample sizes for M vs. R and C vs. R tests are not small and sample sizes for M vs. C test are very large, the M vs. C test is likely detecting small differences which have little potential to result in bias during estimation. *Case I* is appropriate.
- B. If a) sample sizes for M vs. R are small, b) the M vs. R p-value is not large (~0.20 or less), and c) the C vs. R sample sizes are not small and/or the C vs. R p-value is fairly large (~0.30 or more), the rejection of the null in the M vs. C test was likely the result of size/sex selectivity during the second event which the M vs. R test was not powerful enough to detect. *Case I* may be considered but *Case II* is the recommended, conservative interpretation.
- C. If a) sample sizes for C vs. R are small, b) the C vs. R p-value is not large (~0.20 or less), and c) the M vs. R sample sizes are not small and/or the M vs. R p-value is fairly large (~0.30 or more), the rejection of the null in the M vs. C test was likely the result of size/sex selectivity during the first event which the C vs. R test was not powerful enough to detect. *Case I* may be considered but *Case III* is the recommended, conservative interpretation.
- D. If a) sample sizes for C vs. R and M vs. R are both small, and b) both the C vs. R and M vs. R p-values are not large (~0.20 or less), the rejection of the null in the M vs. C test may be the result of size/sex selectivity during both events which the C vs. R and M vs. R tests were not powerful enough to detect. *Cases I, II, or III* may be considered but *Case IV* is the recommended, conservative interpretation

*Case I.* Abundance is calculated using a Petersen-type model from the entire data set without stratification. Composition parameters may be estimated after pooling length, sex, and age data from both sampling events.

*Case II.* Abundance is calculated using a Petersen-type model from the entire data set without stratification. Composition parameters may be estimated using length, sex, and age data from the first sampling event without stratification. If composition is estimated from second event data or after pooling both sampling events, data must first be stratified to eliminate variability in capture probability (detected by the M vs. R test) within strata. Composition parameters are estimated within strata, and abundance for each stratum needs to be estimated using a P etersen-type formula. Overall composition parameters are estimated by combining stratum estimates weighted by estimated stratum abundance according to the formulae below.

*Case III.* Abundance is calculated using a Petersen-type model from the entire data set without stratification. Composition parameters may be estimated using length, sex, and age data from the second sampling event without stratification. If composition is estimated from first event data or after pooling both sampling events, data must first be stratified to eliminate variability in capture probability (detected by the C vs. R test) within strata. Composition parameters are estimated within strata, and abundance for each stratum needs to be estimated using a Petersen-type type formula. Overall composition parameters are estimated by combining stratum estimates weighted by estimated stratum abundance according to the formulae below.

*Case IV.* Data must be stratified to eliminate variability in capture probability within strata for at least one or both sampling events. Abundance is calculated using a Petersen-type model for each stratum, and estimates are summed across strata to estimate overall abundance. Composition parameters may be estimated within the strata as determined above, but only using data from

sampling events where stratification has eliminated variability in capture probabilities within strata. If data from both sampling events are to be used, further stratification may be necessary to meet the condition of capture homogeneity within strata for both events. Overall composition parameters are estimated by combining stratum estimates weighted by estimated stratum abundance.

If stratification by sex or length is necessary prior to estimating composition parameters, then an overall composition parameters  $(p_k)$  is estimated by combining within stratum composition estimates using:

$$\hat{p}_k = \sum_{i=1}^j \frac{\hat{N}_i}{\hat{N}_{\Sigma}} \hat{p}_{ik} \tag{1}$$

$$\hat{V}[\hat{p}_{k}] \approx \frac{1}{\hat{N}_{\Sigma}^{2}} \left( \sum_{i=1}^{j} \hat{N}_{i}^{2} \hat{V}[\hat{p}_{ik}] + (\hat{p}_{ik} - \hat{p}_{k})^{2} \hat{V}[\hat{N}_{i}] \right).$$

$$\tag{2}$$

where:

j

= the number of sex/size strata;

- $\hat{p}_{ik}$  = the estimated proportion of fish that were age or size k among fish in stratum *i*;
- $\hat{N}_i$  = the estimated abundance in stratum *i*; and,
- $\hat{N}_{\Sigma}$  = sum of the  $\hat{N}_i$  across strata.

Appendix A2.-Tests of consistency for the Petersen estimator (from Seber 1982, page 438).

Tests of consistency for Petersen estimator

Of the following conditions, at least one must be fulfilled to meet assumptions of a Petersen estimator:

- 1. Marked fish mix completely with unmarked fish between events;
- 2. Every fish has an equal probability of being captured and marked during event 1; or,
- 3. Every fish has an equal probability of being captured and examined during event 2.

To evaluate these three assumptions, the chi-square statistic will be used to examine the following contingency tables as recommended by Seber (1982). At least one null hypothesis needs to be accepted for assumptions of the Petersen model (Bailey 1951, 1952; Chapman 1951) to be valid. If all three tests are rejected, a temporally or geographically stratified estimator (Darroch 1961) should be used to estimate abundance.

I.-Mixing Test<sup>a</sup>

| Area/time <u>Time/area</u>                 | where recaptur   | ed                  |   | Not recaptured |
|--------------------------------------------|------------------|---------------------|---|----------------|
| where marked 1                             | 2                |                     | t | $(n_1 - m_2)$  |
| 1                                          |                  |                     |   |                |
| 2                                          |                  |                     |   |                |
|                                            |                  |                     |   |                |
| <u>S</u>                                   |                  |                     |   |                |
| IIEqual Proportions Te                     | st (SPAS termine | ology) <sup>b</sup> |   |                |
|                                            | Area/time w      | here examine        | d |                |
|                                            | 1                | 2                   |   | t              |
| Marked (m <sub>2</sub> )                   |                  |                     |   |                |
| Unmarked (n <sub>2</sub> -m <sub>2</sub> ) |                  |                     |   |                |
| IIIComplete Mixing Te                      | est (SPAS termin | ology) <sup>c</sup> |   |                |
|                                            | Area/time w      | here marked         |   |                |
|                                            | 1                | 2                   |   | S              |
| Recaptured (m <sub>2</sub> )               |                  |                     |   |                |
| Not recontured (n. m.)                     |                  |                     |   |                |

<sup>&</sup>lt;sup>a</sup> This tests the hypothesis that movement probabilities ( $\theta$ ) from time or area *i* (*i* = 1, 2, s) to section *j* (*j* = 1, 2, t) are the same among sections: H<sub>0</sub>:  $\theta_{ii} = \theta_i$ .

This tests the hypothesis of homogeneity on the columns of the 2-by-t contingency table with respect to the marked to unmarked ratio among time or area designations:  $H_0$ :  $\sum_i a_i \theta_{ij} = k U_j$ , where k = total marks released/total unmarked in the population,  $U_j =$  total unmarked fish in stratum *j* at the time of sampling, and  $a_i =$  number of marked fish released in stratum *i*. Note that failure to reject  $H_0$  means the Pooled Petersen estimator can be considered consistent only if the degree of closure among tagging strata is constant ( $\sum_j \theta_{ij} = \lambda_{,j}$ ) (Schwarz and Taylor 1998). One way this may be achieved is to sample all or the large majority of spawning areas.

<sup>&</sup>lt;sup>c</sup> This tests the hypothesis of homogeneity on the columns of this 2-by-s contingency table with respect to recapture probabilities among time or area designations:  $H_0$ :  $\Sigma_j \theta_{ij} p_j = d$ , where  $p_j$  is the probability of capturing a fish in section *j* during the second event, and d is a constant.

Appendix A3.–Predicting escapement from index counts using an expansion factor.

The expansion factor provides a means of predicting escapement in years where only an index count of the escapement is available, i.e. no weir counts or mark-recapture experiments were conducted. The expansion factor is the average over several years of the ratio of the escapement estimate (or weir count) to the index count.

#### Systems where escapement is known

On systems where escapement can be completely enumerated with weirs or other complete counting methods, the expansion factor is an estimate of the expected value of the "population" of annual expansion factors ( $\pi$ 's) for that system:

$$\overline{\pi} = \frac{\sum_{y=1}^{k} \pi_{y}}{k} \tag{1}$$

where  $\pi_y = N_y / C_y$  is the observed expansion factor in year y,  $N_y$  is the known escapement in year y,  $C_y$  is the index count in year y, and k is the number of years for which these data are available to calculate an annual expansion factor.

The estimated variance for expansion of index counts needs to reflect two sources of uncertainty for any predicted value of  $\pi$ ,  $(\pi_p)$ . First is an estimate of the process error  $(var(\pi))$ -the variation across years in the  $\pi$ 's, reflecting, for example, weather or observer-induced effects on how many fish are counted in a survey for a given escapement) ), and second is the sampling variance of  $\overline{\pi}$   $(var(\overline{\pi}))$ , which will decline as we collect more data pairs.

The variance for prediction will be estimated (Neter and Wasserman 1990):

$$v\hat{a}r(\pi_{p}) = v\hat{a}r(\pi) + v\hat{a}r(\pi)$$
<sup>(2)</sup>

where

$$v\hat{a}r(\pi) = \frac{\sum_{y=1}^{k} (\pi_y - \overline{\pi})^2}{k - 1}$$
(3)

and

$$v\hat{a}r(\bar{\pi}) = \frac{\sum_{y=1}^{k} (\pi_y - \bar{\pi})^2}{k(k-1)}$$
(4)

such that

$$v\hat{a}r(\pi_{p}) = \frac{\sum_{y=1}^{k} (\pi_{y} - \overline{\pi})^{2}}{k-1} + \frac{\sum_{y=1}^{k} (\pi_{y} - \overline{\pi})^{2}}{k(k-1)}$$
(5)

### Systems where escapement is estimated

On systems where escapement is estimated, the expansion factor is an estimate of the expected value of the "population" of annual expansion factors ( $\pi$ 's) for that system:

Appendix A3.–Page 2 of 3.

$$\overline{\pi} = \frac{\sum_{y=1}^{k} \hat{\pi}_{y}}{k} \tag{6}$$

where  $\hat{\pi}_y = \hat{N}_y / C_y$  is the estimate of the expansion factor in year y,  $\hat{N}_y$  is the estimated escapement in year y, and other terms are as described above.

The variance for prediction will again be estimated:

$$v\hat{a}r(\pi_{p}) = v\hat{a}r(\pi) + v\hat{a}r(\overline{\pi})$$
<sup>(7)</sup>

The estimate of  $var(\pi)$  should again reflect only process error. Variation in  $\hat{\pi}$  across years, however, represents process error **plus** measurement error within years (e.g. the mark-recapture induced error in escapement estimation) and is described by the relationship (Mood et al. 1974):

$$V(\hat{\pi}) = V[E(\hat{\pi})] + E[V(\hat{\pi})] \tag{8}$$

This relationship can be rearranged to isolate process error, that is:

$$V[E(\hat{\pi})] = V[\hat{\pi}] - E[V(\hat{\pi})] \tag{9}$$

An estimate of  $var(\pi)$  representing only process error therefore is:

$$v\hat{a}r(\pi) = v\hat{a}r(\hat{\pi}) - \frac{\sum_{y=1}^{k} v\hat{a}r(\hat{\pi}_y)}{k}$$
(10)

where  $v\hat{a}r(\hat{\pi}_y) = v\hat{a}r(\hat{N}_y)/C_y^2$  and  $v\hat{a}r(\hat{N}_y)$  is obtained during the experiment when  $N_y$  is estimated.

We can calculate:

$$v\hat{a}r(\hat{\pi}) = \frac{\sum_{y=1}^{k} (\hat{\pi}_{y} - \bar{\pi})^{2}}{k-1}$$
(11)

and we can estimate  $var(\bar{\pi})$  similarly to as we did above:

$$v\hat{a}r(\bar{\pi}) = \frac{\sum_{y=1}^{k} (\hat{\pi}_{y} - \bar{\pi})^{2}}{k(k-1)}$$
(12)

where both process and measurement errors need to be included.

For large k (k > 30), equations (11) and (12) provide reasonable parameter estimates, however for small k the estimates are imprecise and may result in negative estimates of variance when the results are applied as in equation (7).

Because k is typically < 10, we will estimate  $var(\hat{\pi})$  and  $var(\bar{\pi})$  using parametric bootstrap techniques (Efron and Tibshirani 1993). The sampling distributions for each of the  $\hat{\pi}_y$  are modeled using Normal distributions with means  $\hat{\pi}_y$  and variances  $var(\hat{\pi}_y)$ . At each bootstrap iteration, a bootstrap value  $\hat{\pi}_{y(b)}$  is drawn from each of these Normal distributions and the

bootstrap value  $\hat{\pi}_{(b)}$  is randomly chosen from the *k* values of  $\hat{\pi}_{y(b)}$ . Then, a bootstrap sample of size *k* is drawn from the *k* values of  $\hat{\pi}_{y(b)}$  by sampling with replacement, and the mean of this bootstrap is the bootstrap value  $\overline{\pi}_{(b)}$ . This procedure is repeated B = 1,000,000 times. We can then estimate  $var(\hat{\pi})$  using:

$$v\hat{a}r_{B}(\hat{\pi}) = \frac{\sum_{b=1}^{B} (\hat{\pi}_{(b)} - \overline{\hat{\pi}_{(b)}})^{2}}{B - 1}$$
(13)

where

$$\overline{\hat{\pi}_{(b)}} = \frac{\sum_{b=1}^{B} \hat{\pi}_{(b)}}{B}$$
(14)

and we can calculate  $var_B(\bar{\pi})$  using equations (13) and (14) with appropriate substitutions. The variance for prediction is then estimated:

$$v\hat{a}r(\pi_p) = v\hat{a}r_B(\hat{\pi}) - \frac{\sum_{y=1}^k v\hat{a}r(\hat{\pi}_y)}{k} + v\hat{a}r_B(\bar{\pi})$$
(15)

As the true sampling distributions for the  $\hat{\pi}_y$  are typically skewed right, using a N ormal distribution to approximate these distributions in the bootstrap process will result in estimates of  $var(\hat{\pi})$  and  $var(\bar{\pi})$  that are biased slightly high, but simulation studies using values similar to those realized for this application indicated that the bias in equation (15) is < 1%.

### Predicting Escapement

In years when an index count  $(C_p)$  is available but escapement  $(N_p)$  is not known, it can be predicted:

$$\hat{N}_p = \overline{\pi} \ C_p \tag{16}$$

and

$$v\hat{a}r(\hat{N}_p) = C_p^2 v\hat{a}r(\pi_p) \tag{17}$$

Appendix A4.–Peak survey counts, and abundance estimates with associated estimates of standard error, of the spawning population of large ( $\geq 660 \text{ mm MEF}$ ) Chinook salmon in the Unuk River using the 1997–2004a, b mean expansion factor (EF), the 1997–2007 mean EF, and the results from mark-recapture studies, 1977–2008. The 1997–2004 mean EF is 4.83 (SE = 0.59) and the 1997–2007 mean EF is 5.52 and the SE (prediction) for 1997–2007 is 1.32. Preferred abundance estimates are in bold font.

|      | Deals   | Abundanc  | e estimated   | d Abundance estimated |               | Abundance estimated |               | Preferred |               |
|------|---------|-----------|---------------|-----------------------|---------------|---------------------|---------------|-----------|---------------|
|      | Count   | using the | 1997–2004     | using the 1997–2007   |               | using marl          | k-recapture   | abundance |               |
|      | from    | mea       | n EF          | mean EF               |               | exper               | iments        | estimates |               |
| Year | surveys | $\hat{N}$ | $SE(\hat{N})$ | $\hat{N}$             | $SE(\hat{N})$ | $\hat{N}$           | $SE(\hat{N})$ | $\hat{N}$ | $SE(\hat{N})$ |
| 1977 | 974     | 4,704     | 575           | 5,376                 | 1,286         | -                   |               | 4,704     | 575           |
| 1978 | 1,106   | 5,342     | 653           | 6,105                 | 1,460         |                     |               | 5,342     | 653           |
| 1979 | 576     | 2,782     | 340           | 3,180                 | 760           |                     |               | 2,782     | 340           |
| 1980 | 1,016   | 4,907     | 599           | 5,608                 | 1,341         |                     |               | 4,907     | 599           |
| 1981 | 731     | 3,531     | 431           | 4,035                 | 965           |                     |               | 3,531     | 431           |
| 1982 | 1,351   | 6,525     | 797           | 7,458                 | 1,783         |                     |               | 6,525     | 797           |
| 1983 | 1,125   | 5,434     | 664           | 6,210                 | 1,485         |                     |               | 5,434     | 664           |
| 1984 | 1,837   | 8,873     | 1,084         | 10,140                | 2,425         |                     |               | 8,873     | 1,084         |
| 1985 | 1,184   | 5,719     | 699           | 6,536                 | 1,563         |                     |               | 5,719     | 699           |
| 1986 | 2,126   | 10,269    | 1,254         | 11,736                | 2,806         |                     |               | 10,269    | 1,254         |
| 1987 | 1,973   | 9,530     | 1,164         | 10,891                | 2,604         |                     |               | 9,530     | 1,164         |
| 1988 | 1,746   | 8,433     | 1,030         | 9,638                 | 2,305         |                     |               | 8,433     | 1,030         |
| 1989 | 1,149   | 5,550     | 678           | 6,342                 | 1,517         |                     |               | 5,550     | 678           |
| 1990 | 591     | 2,855     | 349           | 3,262                 | 780           |                     |               | 2,855     | 349           |
| 1991 | 655     | 3,164     | 386           | 3,616                 | 865           |                     |               | 3,164     | 386           |
| 1992 | 874     | 4,221     | 516           | 4,824                 | 1,154         |                     |               | 4,221     | 516           |
| 1993 | 1,068   | 5,158     | 630           | 5,895                 | 1,410         |                     |               | 5,158     | 630           |
| 1994 | 711     | 3,434     | 419           | 3,925                 | 939           | 4,623               | 1,266         | 3,434     | 419           |
| 1995 | 772     | 3,729     | 455           | 4,261                 | 1,019         |                     |               | 3,729     | 455           |
| 1996 | 1,167   | 5,637     | 689           | 6,442                 | 1,540         |                     |               | 5,637     | 689           |
| 1997 | 636     | 3,072     | 375           | 3,511                 | 840           | 2,970               | 277           | 2,970     | 277           |
| 1998 | 840     | 4,057     | 496           | 4,637                 | 1,109         | 4,132               | 413           | 4,132     | 413           |
| 1999 | 680     | 3,284     | 401           | 3,754                 | 898           | 3,914               | <b>490</b>    | 3,914     | 490           |
| 2000 | 1,341   | 6,477     | 791           | 7,402                 | 1,770         | 5,872               | 644           | 5,872     | 644           |
| 2001 | 2,019   | 9,752     | 1,191         | 11,145                | 2,665         | 10,541              | 1,181         | 10,541    | 1,181         |
| 2002 | 897     | 4,333     | 529           | 4,951                 | 1,184         | 6,988               | 805           | 6,988     | 805           |
| 2003 | 1,121   | 5,527     | 661           | 6,188                 | 1,480         | 5,546               | 433           | 5,546     | 433           |
| 2004 | 1,008   | 4,869     | 595           | 5,564                 | 1,331         | 3,963               | 325           | 3,963     | 325           |
| 2005 | 929     | 4,487     | 548           | 5,128                 | 1,226         | 4,742               | 396           | 4,742     | 396           |
| 2006 | 940     | 4,540     | 555           | 5,189                 | 1,241         | 5,645               | 476           | 5,645     | 476           |
| 2007 | 709     | 3,424     | 418           | 3,914                 | 936           | 5,668               | 446           | 5,668     | 446           |
| 2008 | 242     | 1,169     | 143           | 1,336                 | 319           | 3,104               | 390           | 3,104     | 390           |

<sup>a</sup> Excludes 2002 due to relatively poor survey counts in that year (Weller and McPherson 2006a). <sup>b</sup> This EF is currently the ADF&G and PSC approved predictive EF.

|                   |                   |                     | Sulk | ting period |         |
|-------------------|-------------------|---------------------|------|-------------|---------|
| Spaghetti tag no. | Release date/time | Recapture date/time | Days | Hours       | Minutes |
| 2013              | 06/26/07 10:30    | 06/29/07 14:32      | 3    | 4           | 2       |
| 2033              | 07/03/07 17:26    | 07/09/07 07:01      | 5    | 13          | 35      |
| 2080              | 07/18/07 14:30    | 07/20/07 13:50      | 1    | 23          | 20      |
| 2091              | 07/18/07 15:30    | 07/21/07 17:15      | 3    | 1           | 45      |
| 2094              | 07/18/07 16:07    | 07/21/07 13:18      | 2    | 21          | 11      |
| 2095              | 07/18/07 16:20    | 07/23/07 13:46      | 4    | 21          | 26      |
| 2109              | 07/19/07 05:40    | 07/22/07 08:42      | 3    | 3           | 2       |
| 2116              | 07/19/07 06:30    | 07/23/07 16:19      | 4    | 9           | 49      |
| 2118              | 07/19/07 06:33    | 07/23/07 08:21      | 4    | 1           | 48      |
| 2122              | 07/19/07 06:47    | 07/22/07 12:32      | 3    | 5           | 45      |
| 2122              | 07/22/07 12:32    | 08/01/07 14:10      | 10   | 1           | 38      |
| 2128              | 07/19/07 07:20    | 07/21/07 17:56      | 2    | 10          | 36      |
| 2130              | 07/19/07 08:20    | 07/24/07 08:45      | 5    | 0           | 25      |
| 2132              | 07/19/07 08:26    | 07/26/07 17:01      | 7    | 8           | 35      |
| 2136              | 07/19/07 10:00    | 07/22/07 06:50      | 2    | 20          | 50      |
| 2137              | 07/19/07 10:20    | 07/21/07 06:10      | 1    | 19          | 50      |
| 2138              | 07/19/07 10:50    | 07/20/07 14:40      | 1    | 3           | 50      |
| 2142              | 07/19/07 12:10    | 07/19/07 17:56      |      | 5           | 46      |
| 2156              | 07/19/07 15:52    | 07/22/07 09:12      | 2    | 17          | 20      |
| 2165              | 07/19/07 18:27    | 07/23/07 16:45      | 3    | 22          | 18      |
| 2178              | 07/20/07 09:11    | 07/23/07 08:22      | 2    | 23          | 11      |
| 2178              | 07/23/07 08:22    | 07/26/07 16:04      | 3    | 7           | 42      |
| 2181              | 07/20/07 10:00    | 07/20/07 10:40      |      |             | 40      |
| 2196              | 07/20/07 12:49    | 07/22/07 07:24      | 1    | 18          | 35      |
| 2201              | 07/20/07 13:04    | 07/21/07 17:05      | 1    | 4           | 1       |
| 2211              | 07/20/07 14:41    | 07/22/07 18:45      | 2    | 4           | 4       |
| 2218              | 07/20/07 15:40    | 07/30/07 16:32      | 10   | 0           | 52      |
| 2218              | 07/30/07 16:32    | 08/01/07 13:42      | 1    | 21          | 10      |
| 2244              | 07/21/07 08:40    | 08/01/07 10:11      | 11   | 1           | 31      |
| 2251              | 07/21/07 10:38    | 07/24/07 15:16      | 3    | 4           | 38      |
| 2257              | 07/21/07 12:00    | 07/22/07 10:51      |      | 22          | 51      |
| 2264              | 07/21/07 12:34    | 07/21/07 15:23      |      | 2           | 49      |
| 2270              | 07/21/07 13:36    | 07/22/07 16:37      | 1    | 3           | 1       |
| 2271              | 07/21/07 13:38    | 07/21/07 18:12      |      | 4           | 34      |
| 2275              | 07/21/07 14:00    | 08/01/07 12:35      | 10   | 22          | 35      |
| 2276              | 07/21/07 14:04    | 07/28/07 11:09      | 6    | 21          | 5       |
| 2280              | 07/21/07 14:42    | 07/22/07 18:45      | 1    | 4           | 3       |

Appendix A5.–Elapsed time between release and recapture (sulking period) of Chinook salmon in the lower Unuk River in 2007.

| Append | lix A5 | Page | 2 | of 2. |
|--------|--------|------|---|-------|
|        |        |      |   |       |

|                   |                   |                     | Sull | king period |         |
|-------------------|-------------------|---------------------|------|-------------|---------|
| Spaghetti tag no. | Release date/time | Recapture date/time | Days | Hours       | Minutes |
| 2282              | 07/21/07 15:08    | 07/21/07 15:15      |      |             | 7       |
| 2282              | 07/21/07 15:15    | 07/21/07 15:35      |      |             | 20      |
| 2282              | 07/21/07 15:35    | 07/29/07 06:41      | 7    | 15          | 6       |
| 2283              | 07/21/07 15:10    | 07/26/07 14:21      | 4    | 23          | 11      |
| 2284              | 07/21/07 15:17    | 07/22/07 08:40      |      | 17          | 23      |
| 2289              | 07/21/07 15:50    | 07/22/07 11:04      |      | 19          | 14      |
| 2292              | 07/21/07 16:03    | 07/30/07 15:41      | 8    | 23          | 38      |
| 2332              | 07/22/07 13:23    | 07/25/07 18:12      | 3    | 4           | 49      |
| 2353              | 07/22/07 17:17    | 07/30/07 09:31      | 7    | 16          | 14      |
| 2363              | 07/22/07 18:34    | 07/26/07 08:45      | 3    | 14          | 11      |
| 2365              | 07/23/07 06:02    | 07/25/07 15:03      | 2    | 9           | 1       |
| 2378              | 07/23/07 09:04    | 07/30/07 16:16      | 7    | 7           | 12      |
| 2394              | 07/23/07 14:30    | 07/30/07 16:17      | 7    | 1           | 47      |
| 2406              | 07/23/07 16:06    | 07/27/07 11:48      | 3    | 19          | 42      |
| 2413              | 07/23/07 16:34    | 07/25/07 17:52      | 2    | 1           | 18      |
| 2420              | 07/24/07 06:48    | 08/01/07 12:58      | 8    | 6           | 10      |
| 2425              | 07/24/07 09:34    | 07/26/07 14:42      | 2    | 5           | 8       |
| 2431              | 07/24/07 10:48    | 07/26/07 07:19      | 1    | 20          | 31      |
| 2436              | 07/24/07 13:32    | 07/26/07 17:02      | 2    | 3           | 30      |
| 2442              | 07/24/07 16:04    | 07/24/07 16:21      |      |             | 17      |
| 2445              | 07/24/07 16:12    | 07/28/07 14:26      | 3    | 22          | 14      |
| 2449              | 07/24/07 16:53    | 07/30/07 16:31      | 5    | 23          | 38      |
| 2450              | 07/24/07 17:28    | 07/31/07 16:28      | 6    | 23          | 0       |
| 2450              | 07/31/07 16:28    | 08/02/07 11:08      | 1    | 18          | 40      |
| 2455              | 07/25/07 06:40    | 07/25/07 10:24      |      | 3           | 44      |
| 2467              | 07/25/07 13:04    | 07/31/07 16:52      | 6    | 3           | 48      |
| 2476              | 07/25/07 14:44    | 07/31/07 13:00      | 5    | 22          | 16      |
| 2477              | 07/25/07 15:12    | 07/30/07 17:33      | 5    | 2           | 21      |
| 2484              | 07/25/07 16:32    | 07/28/07 12:07      | 2    | 19          | 35      |
| 2487              | 07/25/07 16:47    | 07/31/07 12:10      | 5    | 19          | 23      |
| 2495              | 07/26/07 06:31    | 08/01/07 13:00      | 6    | 6           | 29      |
| 2506              | 07/26/07 11:15    | 08/01/07 15:27      | 6    | 4           | 12      |
| 2514              | 07/26/07 13:48    | 07/31/07 14:24      | 5    | 0           | 36      |
| 2550              | 07/28/07 11:10    | 07/29/07 06:54      |      | 19          | 44      |
| 2620              | 08/02/07 11:00    | 08/02/07 14:55      |      | 3           | 55      |

Average = 3 days, 18 hours, and 16 minutes; maximum = 11 days, 1 hours, and 31 minutes; minimum = 7 minutes.

|            |        |     |         |     |       | Α   | ge cla | SS    |     |       |     |     |     |        |
|------------|--------|-----|---------|-----|-------|-----|--------|-------|-----|-------|-----|-----|-----|--------|
| Year       |        | 1.0 | 0.2 1.1 | 0.3 | 1.2   | 2.1 | 0.4    | 1.3   | 2.2 | 1.4   | 2.3 | 1.5 | 2.4 | Total  |
|            | Male   |     | 46      |     | 881   |     |        | 724   | 5   | 323   |     | 14  |     | 1,992  |
| 1997       | %      |     | 1.3     |     | 24.0  |     |        | 19.7  | 0.1 | 8.8   |     | 0.4 |     | 54.3   |
| estimated  | Female |     |         |     | 5     |     |        | 526   |     | 1,102 |     | 46  |     | 1,679  |
| escapement | %      |     |         |     | 0.1   |     |        | 14.3  |     | 30.0  |     | 1.3 |     | 45.7   |
|            | Total  |     | 46      |     | 885   |     |        | 1,250 | 5   | 1,425 |     | 60  |     | 3,671  |
|            | %      |     | 1.3     |     | 24.1  |     |        | 34.0  | 0.1 | 38.8  |     | 1.6 |     | 100.0  |
|            | Male   |     | 232     |     | 1,299 |     |        | 1,392 | 6   | 325   |     | 6   |     | 3,259  |
| 1998       | %      |     | 4.4     |     | 24.4  |     |        | 26.1  | 0.1 | 6.1   |     | 0.1 |     | 61.2   |
| estimated  | Female |     |         |     |       |     |        | 1,172 |     | 870   |     | 29  |     | 2,071  |
| escapement | %      |     |         |     |       |     |        | 22.0  |     | 16.3  |     | 0.5 |     | 38.8   |
|            | Total  |     | 232     |     | 1,299 |     |        | 2,564 | 6   | 1,195 |     | 35  |     | 5,330  |
|            | %      |     | 4.4     |     | 24.4  |     |        | 48.1  | 0.1 | 22.4  |     | 0.7 |     | 100.0  |
|            | Male   |     | 211     |     | 2,189 |     |        | 1,134 |     | 492   |     | 9   |     | 4,036  |
| 1999       | %      |     | 3.4     |     | 35.4  |     |        | 18.3  |     | 8.0   |     | 0.1 |     | 65.3   |
| estimated  | Female |     |         |     | 26    |     |        | 914   |     | 1,196 |     | 9   |     | 2,145  |
| escapement | %      |     |         |     | 0.4   |     |        | 14.8  |     | 19.3  |     | 0.1 |     | 34.7   |
|            | Total  |     | 211     |     | 2,216 |     |        | 2,049 |     | 1,688 |     | 18  |     | 6,181  |
|            | %      |     | 3.4     |     | 35.8  |     |        | 33.1  |     | 27.3  |     | 0.3 |     | 100.0  |
|            | Male   |     | 9       |     | 2,444 |     |        | 2,312 |     | 517   |     | 19  |     | 5,302  |
| 2000       | %      |     | 0.1     |     | 30.0  |     |        | 28.4  |     | 6.3   |     | 0.2 |     | 65.1   |
| estimated  | Female |     |         |     | 47    |     |        | 1,636 |     | 1,128 |     | 38  |     | 2,848  |
| escapement | %      |     |         |     | 0.6   |     |        | 20.1  |     | 13.8  |     | 0.5 |     | 34.9   |
|            | Total  |     | 9       |     | 2,491 |     |        | 3,948 |     | 1,645 |     | 56  |     | 8,150  |
|            | %      |     | 0.1     |     | 30.6  |     |        | 48.4  |     | 20.2  |     | 0.7 |     | 100.0  |
|            | Male   |     | 83      |     | 936   |     |        | 3,680 |     | 894   |     | 21  |     | 5,613  |
| 2001       | %      |     | 0.7     |     | 8.3   |     |        | 32.5  |     | 7.9   |     | 0.2 |     | 49.6   |
| estimated  | Female |     |         |     | 10    |     |        | 3,243 |     | 2,443 |     |     |     | 5,697  |
| escapement | %      |     |         |     | 0.1   |     |        | 28.7  |     | 21.6  |     |     |     | 50.4   |
|            | Total  |     | 83      |     | 946   |     |        | 6,923 |     | 3,337 |     | 21  |     | 11,310 |
|            | %      |     | 0.7     |     | 8.4   |     |        | 61.2  |     | 29.5  |     | 0.2 |     | 100.0  |
|            | Male   |     |         |     | 2,437 |     |        | 1,675 |     | 1,146 |     | 22  |     | 5,280  |
| 2002       | %      |     |         |     | 28.3  |     |        | 19.4  |     | 13.3  |     | 0.3 |     | 61.2   |
| estimated  | Female |     |         |     | 48    |     |        | 1,212 |     | 2,042 |     | 33  | 11  | 3,346  |
| escapement | %      |     |         |     | 0.6   |     |        | 14.1  |     | 23.7  |     | 0.4 | 0.1 | 38.8   |
|            | Total  |     |         |     | 2,485 |     |        | 2,887 |     | 3,188 |     | 55  | 11  | 8,626  |
|            | %      |     |         |     | 28.8  |     |        | 33.5  |     | 37.0  |     | 0.6 | 0.1 | 100.0  |
|            | Male   |     | 192     |     | 580   |     | 6      | 2,135 |     | 447   |     | 11  |     | 3,371  |
| 2003       | %      |     | 3.1     |     | 9.3   |     | 0.1    | 34.2  |     | 7.2   |     | 0.2 |     | 54.0   |
| estimated  | Female |     |         |     | 11    |     |        | 1,795 | 6   | 1,027 |     | 34  |     | 2,874  |
| escapement | %      |     |         |     | 0.2   |     |        | 28.7  | 0.1 | 16.4  |     | 0.5 |     | 46.0   |
|            | Total  |     | 192     |     | 592   |     | 6      | 3,930 | 6   | 1,474 |     | 46  |     | 6,244  |
|            | %      |     | 3.1     |     | 9.5   |     | 0.1    | 62.9  | 0.1 | 23.6  |     | 0.7 |     | 100.0  |

Appendix A6.–Estimated annual escapement of Chinook salmon in the Unuk River by age class and gender, 1997–2008.

|            |        |       |       |     |       |       | Α    | Age cla | SS    |       |       |       |     |       |       |
|------------|--------|-------|-------|-----|-------|-------|------|---------|-------|-------|-------|-------|-----|-------|-------|
| Year       |        | 1.0   | 0.2   | 1.1 | 0.3   | 1.2   | 2.1  | 0.4     | 1.3   | 2.2   | 1.4   | 2.3   | 1.5 | 2.4   | Total |
|            | Male   |       |       | 75  |       | 2,909 |      |         | 912   |       | 523   |       |     |       | 4,419 |
| 2004       | %      |       |       | 1.2 |       | 47.9  |      |         | 15.0  |       | 8.6   |       |     |       | 72.7  |
| estimated  | Female |       |       |     |       | 27    |      |         | 377   |       | 1,234 |       | 19  |       | 1,658 |
| escapement | %      |       |       |     |       | 0.4   |      |         | 6.2   |       | 20.3  |       | 0.3 |       | 27.3  |
|            | Total  |       |       | 75  |       | 2,936 |      |         | 1,289 |       | 1,756 |       | 19  |       | 6,077 |
|            | %      |       |       | 1.2 |       | 48.3  |      |         | 21.2  |       | 28.9  |       | 0.3 |       | 100.0 |
|            | Male   |       |       | 368 |       | 507   |      |         | 2,454 | 5     | 247   |       | 6   |       | 3,587 |
| 2005       | %      |       |       | 6.6 |       | 9.1   |      |         | 44.3  | 0.1   | 4.5   |       | 0.1 |       | 64.7  |
| estimated  | Female |       |       |     |       | 6     |      |         | 1,348 |       | 589   | 6     | 6   |       | 1,956 |
| escapement | %      |       |       |     |       | 0.1   |      |         | 24.3  |       | 10.6  | 0.1   | 0.1 |       | 35.3  |
|            | Total  |       |       | 368 |       | 513   |      |         | 3,802 | 5     | 836   | 6     | 12  |       | 5,543 |
|            | %      |       |       | 6.6 |       | 9.3   |      |         | 68.6  | 0.1   | 15.1  | 0.1   | 0.2 |       | 100.0 |
|            | Male   |       |       | 221 |       | 3,197 |      |         | 1,209 |       | 631   |       |     |       | 5,258 |
| 2006       | %      |       |       | 2.9 |       | 41.4  |      |         | 15.7  |       | 8.2   |       |     |       | 68.1  |
| estimated  | Female |       |       |     |       | 58    |      |         | 938   |       | 1,469 |       |     |       | 2,465 |
| escapement | %      |       |       |     |       | 0.8   |      |         | 12.1  |       | 19.0  |       |     |       | 31.9  |
|            | Total  |       |       | 221 |       | 3,255 |      |         | 2,147 |       | 2,100 |       |     |       | 7,723 |
|            | %      |       |       | 2.9 |       | 42.1  |      |         | 27.8  |       | 27.2  |       |     |       | 100.0 |
|            | Male   | 5     | 5     | 179 |       | 837   | 5    |         | 2,619 |       | 325   | 5     |     |       | 3,980 |
| 2007       | %      | 0.1   | 0.1   | 2.7 |       | 12.6  | 0.1  |         | 39.5  |       | 4.9   | 0.1   |     |       | 60.0  |
| estimated  | Female |       |       |     |       |       |      |         | 1,903 |       | 710   | 5     | 30  |       | 2,649 |
| escapement | %      |       |       |     |       |       |      |         | 28.7  |       | 10.7  | 0.1   | 0.5 |       | 40.0  |
|            | Total  | 5     | 5     | 179 |       | 837   | 5    |         | 4,522 |       | 1,035 | 10    | 30  |       | 6,629 |
|            | %      | 0.1   | 0.1   | 2.7 |       | 12.6  | 0.1  |         | 68.2  |       | 15.6  | 0.2   | 0.5 |       | 100.0 |
|            | Male   |       |       | 163 | 6     | 937   |      |         | 692   |       | 459   |       | 6   |       | 2,262 |
| 2008       | %      |       |       | 4.1 | 0.1   | 23.5  |      |         | 17.4  |       | 11.5  |       | 0.1 |       | 56.8  |
| estimated  | Female |       |       |     |       |       |      |         | 537   |       | 1,174 |       | 6   |       | 1,717 |
| escapement | %      |       |       |     |       |       |      |         | 13.5  |       | 29.5  |       | 0.1 |       | 43.2  |
|            | Total  |       |       | 163 | 6     | 937   |      |         | 1,229 |       | 1,633 |       | 11  |       | 3,979 |
|            | %      |       |       | 4.1 | 0.1   | 23.5  |      |         | 30.9  |       | 41.0  |       | 0.3 |       | 100.0 |
|            | Male   |       |       | 144 |       | 1,738 |      | 1       | 1,763 | 2     | 555   |       | 11  |       | 4,212 |
| 1997–2006  | %      |       |       | 2.1 |       | 25.2  |      | < 0.1   | 25.6  | <0.1  | 8.1%  |       | 0.% |       | 61.2  |
| mean       | Female |       |       |     |       | 24    |      |         | 1,316 | 1     | 1,310 | 1     | 21  | 1     | 2,674 |
| annual     | %      |       |       |     |       | 0.3   |      |         | 19.1  | <0.1  | 19.0  | <0.1  | 0.3 | <0.1  | 38.8  |
| estimated  | Total  |       |       | 144 |       | 1,762 |      | 1       | 3,079 | 2     | 1,864 | 1     | 32  | 1     | 6,886 |
| escapement | %      |       |       | 2.1 |       | 25.6  |      | < 0.1   | 44.7  | < 0.1 | 27.1  | <0.1  | 0.5 | < 0.1 | 100.0 |
|            | Male   | <1    | <1    | 147 | <1    | 1,656 | <1   | 1       | 1,841 | 1     | 534   | <1    | 10  |       | 4,191 |
| 1997–2007  | %      | < 0.1 | < 0.1 | 2.1 | < 0.1 | 24.1  | <0.1 | < 0.1   | 26.8  | <0.1  | 7.8   | < 0.1 | 0.1 |       | 61.1  |
| mean       | Female |       |       |     |       | 22    |      |         | 1,369 | 1     | 1,255 | 1     | 22  | 1     | 2,672 |
| annual     | %      |       |       |     |       | 0.3   |      |         | 20.0  | <0.1  | 18.3  | <0.1  | 0.3 | <0.1  | 38.9  |
| estimated  | Total  | <1    | <1    | 147 | <1    | 1,678 | <1   | 1       | 3,210 | 2     | 1,789 | 1     | 32  | 1     | 6,862 |
| escapement | %      | <0.1  | < 0.1 | 2.1 | < 0.1 | 24.4  | <0.1 | < 0.1   | 46.8  | < 0.1 | 26.1  | < 0.1 | 0.5 | < 0.1 | 100.0 |

Appendix A6.–Page 2 of 2.

|                   |                   |                     | Sull | king period |         |
|-------------------|-------------------|---------------------|------|-------------|---------|
| Spaghetti tag no. | Release date/time | Recapture date/time | Days | Hours       | Minutes |
| 9009              | 06/20/08 06:06    | 06/20/08 06:40      |      |             | 34      |
| 9038              | 07/02/08 16:48    | 07/12/08 13:24      | 9    | 20          | 36      |
| 9116              | 07/13/08 17:52    | 07/16/08 13:28      | 2    | 19          | 36      |
| 9134              | 07/15/08 10:21    | 07/26/08 16:02      | 11   | 5           | 41      |
| 9140              | 07/15/08 13:30    | 07/19/08 06:14      | 3    | 16          | 44      |
| 9165              | 07/16/08 15:48    | 07/25/08 12:51      | 8    | 21          | 3       |
| 9165              | 07/25/08 12:51    | 07/25/08 13:12      |      |             | 21      |
| 9173              | 07/17/08 13:00    | 07/17/08 14:09      |      | 1           | 9       |
| 9176              | 07/17/08 13:21    | 07/31/08 05:55      | 13   | 16          | 34      |
| 9194              | 07/17/08 16:01    | 07/17/08 16:23      |      |             | 22      |
| 9203              | 07/18/08 05:52    | 07/18/08 17:35      |      | 11          | 43      |
| 9207              | 07/18/08 06:18    | 08/04/08 12:54      | 17   | 6           | 36      |
| 9240              | 07/18/08 14:37    | 07/25/08 07:46      | 6    | 17          | 9       |
| 9262              | 07/18/08 17:40    | 07/27/08 12:41      | 8    | 19          | 1       |
| 9308              | 07/22/08 06:15    | 07/30/08 10:30      | 8    | 4           | 15      |
| 9319              | 07/22/08 13:55    | 07/31/08 11:53      | 8    | 22          | 58      |
| 9334              | 07/23/08 06:48    | 08/04/08 05:59      | 11   | 23          | 11      |
| 9337              | 07/23/08 07:08    | 07'24'08 14:20      | 1    | 7           | 12      |
| 9355              | 07/23/08 10:41    | 08/02/08 13:03      | 10   | 2           | 22      |
| 9360              | 07/23/08 12:31    | 08/01/08 08:30      | 8    | 19          | 59      |
| 9366              | 07/23/08 14:20    | 07/30/08 12:41      | 6    | 22          | 21      |
| 9366              | 07/30/08 12:41    | 08/30/08 13:04      |      |             | 23      |
| 9372              | 07/23/08 15:54    | 07/26/08 17:23      | 3    | 1           | 29      |
| 9377              | 07/23/08 17:02    | 07/28/08 15:46      | 4    | 22          | 44      |
| 9400              | 07/24/08 12:40    | 08/03/08 14:01      | 10   | 1           | 21      |
| 9421              | 07/24/08 15:00    | 07/27/08 14:13      | 2    | 23          | 13      |
| 9434              | 07/25/08 06:30    | 08/04/08 12:41      | 10   | 6           | 11      |
| 9444              | 07/25/08 08:25    | 07/28/08 17:28      | 3    | 9           | 3       |
| 9447              | 07/25/08 09:30    | 07/25/08 11:41      |      | 2           | 11      |
| 9447              | 07/25/08 11:41    | 07/31/08 13:33      | 6    | 1           | 52      |
| 9461              | 07/25/08 13:13    | 07/31/08 17:14      | 6    | 4           | 1       |
| 9463              | 07/25/08 13:41    | 07/26/08 12:45      |      | 23          | 4       |
| 9464              | 07/25/08 13:43    | 08/04/08 17:41      | 10   | 3           | 58      |
| 9483              | 07/26/08 05:48    | 07/29/08 15:01      | 3    | 9           | 13      |
| 9484              | 07/26/08 06:09    | 08/03/08 07:15      | 8    | 1           | 6       |
| 9490              | 07/26/08 10:50    | 08/04/08 13:41      | 9    | 2           | 51      |
| 9509              | 07/26/08 16:03    | 07/30/08 17:23      | 4    | 1           | 20      |
| 9511              | 07/26/08 16:27    | 08/03/08 07:16      | 6    | 14          | 49      |
| 9524              | 07/27/08 14:41    | 07/27/08 14:51      | -    |             | 10      |
| 9527              | 07/28/08 11:41    | 08/03/08 11:00      | 5    | 23          | 19      |
| 9528              | 07/28/08 12.14    | 08/03/08 12:22      | 6    | 0           | 8       |
| 9553              | 07/29/08 14:11    | 08/01/08 10:00      | 2    | 19          | 49      |
| 9569              | 07/30/08 15:02    | 07/30/08 16:49      | -    | 1           | 47      |
| 9573              | 07/31/08 07:15    | 07/31/08 08:30      |      | 1           | 15      |

Appendix A7.–Elapsed time between release and recapture (sulking period) of Chinook salmon in the lower Unuk River in 2008.

Average = 5 days, 13 hours, and 9 minutes; maximum = 17 days, 6 hours, and 36 minutes; minimum = 10 minutes.

**APPENDIX B** 

Appendix B1.–Numbers of Unuk River Chinook salmon fall fingerlings and spring smolt captured and released after excision of the adipose fin (adipose fin clips) and the number of adipose-clipped fish implanted with coded wire tags and estimated to have retained their tags for 24 hours (valid coded wire tags), 1993- spring 2009.

| Brood   | Year        | Fall/  |          |                | Number released with | Estimated number         |
|---------|-------------|--------|----------|----------------|----------------------|--------------------------|
| year    | tagged      | spring | Tag code | Dates tagged   | adipose clipsa       | released with valid CWTs |
| 1992    | 1993        | Fall   | 04-38-03 | 10/13-10/22/93 | 10,304               | 10,263                   |
| 1992    | 1993        | Fall   | 04-38-04 | 10/25/1993     | 439                  | 433                      |
| 1992    | 1993        | Fall   | 04-38-05 | 10/16-10/21/93 | 3,192                | 3,093                    |
| 1992    | 1994        | Spring | 04-42-06 | 5/05-5/23/94   | 2,642                | 2,642                    |
| 1992 Bi | rood year t | otal   |          |                | 16,577               | 16,431                   |
| 1993    | 1994        | Fall   | 04-33-49 | 10/07-10/24/94 | 1,706                | 1,700                    |
| 1993    | 1994        | Fall   | 04-33-50 | 10/07-10/22/94 | 11,152               | 11,139                   |
| 1993    | 1994        | Fall   | 04-35-57 | 10/22-11/01/94 | 7,688                | 7,687                    |
| 1993    | 1995        | Spring | 04-42-13 | 4/10-5/05/95   | 3,227                | 3,227                    |
| 1993 Bi | rood year t | otal   |          |                | 23,773               | 23,753                   |
| 1994    | 1995        | Fall   | 04-35-56 | 10/07-10/10/95 | 11,537               | 11,476                   |
| 1994    | 1995        | Fall   | 04-35-58 | 10/11-10/16/65 | 11,645               | 11,645                   |
| 1994    | 1995        | Fall   | 04-35-59 | 10/17-10/24/95 | 11,100               | 10,825                   |
| 1994    | 1995        | Fall   | 04-42-31 | 10/25-10/26/95 | 6,324                | 6,260                    |
| 1994    | 1996        | Spring | 04-42-07 | 4/13-4/23/96   | 6,099                | 6,099                    |
| 1994    | 1996        | Spring | 04-42-08 | 4/23-4/27/96   | 1,357                | 1,357                    |
| 1994 Bi | rood year t | otal   |          |                | 48,062               | 47,662                   |
| 1995    | 1996        | Fall   | 04-47-12 | 9/30-9/15/96   | 24,224               | 24,224                   |
| 1995    | 1996        | Fall   | 04-42-36 | 10/16-10/19/96 | 11,200               | 11,200                   |
| 1995    | 1996        | Fall   | 04-42-18 | 10/20-10/21/96 | 3,753                | 3,753                    |
| 1995    | 1997        | Spring | 04-38-29 | 3/31-4/18/97   | 12,517               | 12,517                   |
| 1995 Bi | rood year t | otal   |          |                | 51,694               | 51,694                   |
| 1996    | 1997        | Fall   | 04-47-13 | 10/04-10/11/97 | 24,303               | 24,176                   |
| 1996    | 1997        | Fall   | 04-47-14 | 10/06-10/11/97 | 22,975               | 22,583                   |
| 1996    | 1997        | Fall   | 04-47-15 | 10/11-10/20/97 | 15,396               | 15,146                   |
| 1996    | 1998        | Spring | 04-46-46 | 3/29-4/05/98   | 11,188               | 11,134                   |
| 1996    | 1998        | Spring | 04-43-39 | 4/08-4/13/98   | 5,987                | 5,987                    |
| 1996 Bi | rood year t | otal   |          |                | 79,849               | 79,026                   |
| 1997    | 1998        | Fall   | 04-01-39 | 10/04-10/13/98 | 22,374               | 22,366                   |
| 1997    | 1998        | Fall   | 04-01-40 | 10/13-10/23/98 | 11,640               | 11,522                   |
| 1997    | 1999        | Spring | 04-01-44 | 4/08-5/01/99   | 7,948                | 7,948                    |
| 1997 Bi | rood year t | otal   |          |                | 41,962               | 41,836                   |
| 1998    | 1999        | Fall   | 04-01-42 | 10/04-10/17/99 | 16,661               | 16,661                   |
| 1998    | 2000        | Spring | 04-02-56 | 4/01-4/27/00   | 11,124               | 11,124                   |
| 1998    | 2000        | Spring | 04-02-57 | 4/29-5/4/00    | 2,209                | 2,209                    |
| 1998 B  | Brood year  |        |          |                | 29,994               | 29,994                   |
| 1999    | 2000        | Fall   | 04-03-74 | 10/06-10/20/00 | 21,853               | 21,853                   |
| 1999    | 2000        | Fall   | 04-02-88 | 10/20-10/29/00 | 10,072               | 10,072                   |
| 1999    | 2001        | Spring | 04-01-45 | 4/2-4/23/01    | 16,561               | 16,561                   |
| 1999 Bi | rood year t | otal   |          |                | 48,486               | 48,486                   |

|  | A | ppend | lix B | 1P | age | 2 | of | 2. |
|--|---|-------|-------|----|-----|---|----|----|
|--|---|-------|-------|----|-----|---|----|----|

| Brood          | Year        | Fall/  |          |                | Number released with       | Estimated number         |
|----------------|-------------|--------|----------|----------------|----------------------------|--------------------------|
| year           | tagged      | spring | Tag code | Dates tagged   | adipose clips <sup>a</sup> | released with valid CWTs |
| 2000           | 2001        | Fall   | 04-02-92 | 9/29-10/05/01  | 10,950                     | 10,950                   |
| 2000           | 2001        | Fall   | 04-04-57 | 10/05-10/09/01 | 11,231                     | 11,231                   |
| 2000           | 2001        | Fall   | 04-04-58 | 10/09-10/14/01 | 11,223                     | 11,200                   |
| 2000           | 2001        | Fall   | 04-04-60 | 10/14-10/23/01 | 10,990                     | 10,990                   |
| 2000           | 2002        | Spring | 04-05-38 | 4/4-4/24/02    | 10,904                     | 10,904                   |
| 2000           | 2002        | Spring | 04-05-39 | 4/25-4/26/02   | 1,067                      | 1,067                    |
| 2000 Bi        | rood year t | otal   |          |                | 56,365                     | 56,342                   |
| 2001           | 2002        | Fall   | 04-05-23 | 9/28-10/05/02  | 11,402                     | 11,402                   |
| 2001           | 2002        | Fall   | 04-05-24 | 10/05-10/13/02 | 11,538                     | 11,538                   |
| 2001           | 2002        | Fall   | 04-05-25 | 10/13-10/17/02 | 11,778                     | 11,778                   |
| 2001           | 2002        | Fall   | 04-05-26 | 10/17-10/20/02 | 11,425                     | 11,425                   |
| 2001           | 2002        | Fall   | 04-46-52 | 10/20-10/25/02 | 8,403                      | 8,403                    |
| 2001           | 2003        | Spring | 04-08-07 | 4/8-5/10/03    | 11,354                     | 11,354                   |
| 2001           | 2003        | Spring | 04-08-03 | 5/10/2003      | 483                        | 483                      |
| 2001 Bi        | rood year t | otal   |          |                | 66,383                     | 66,383                   |
| 2002           | 2003        | Fall   | 04-08-42 | 9/29-10/10/03  | 23,255                     | 23,255                   |
| 2002           | 2003        | Fall   | 04-08-10 | 10/10-10/14/03 | 11,464                     | 11,464                   |
| 2002           | 2003        | Fall   | 04-04-61 | 10/14-10/18/03 | 9,779                      | 9,779                    |
| 2002           | 2004        | Spring | 04-09-75 | 03/29-04/10/04 | 11,666                     | 11,666                   |
| 2002           | 2004        | Spring | 04-09-76 | 04/10-04/17/04 | 2,730                      | 2,730                    |
| 2002 B         | rood year t | otal   |          |                | 58,894                     | 58,894                   |
| 2003           | 2004        | Fall   | 04-09-77 | 9/19-10/03/04  | 11,789                     | 11,789                   |
| 2003           | 2004        | Fall   | 04-09-78 | 10/03-10/19/04 | 11,417                     | 11,417                   |
| 2003           | 2004        | Fall   | 04-09-81 | 10/19-10/21/04 | 3,923                      | 3,923                    |
| 2003           | 2005        | Spring | 04-09-80 | 4/10-4/28/05   | 8,618                      | 8,585                    |
| 2003 Bi        | rood year t | otal   |          |                | 35,747                     | 35,714                   |
| 2004           | 2005        | Fall   | 04-11-55 | 9/24-10/18/05  | 23,330                     | 23,330                   |
| 2004           | 2005        | Fall   | 04-11-56 | 10/18/05       | 941                        | 941                      |
| 2004           | 2006        | Spring | 04-11-52 | 4/2-4/23/06    | 16,371                     | 16,269                   |
| 2004 Bi        | rood year t | otal   |          |                | 40,642                     | 40,540                   |
| 2005           | 2006        | Fall   | 04-13-05 | 10/3-10/12/06  | 23,406                     | 23,406                   |
| 2005           | 2006        | Fall   | 04-11-51 | 10/12-10/19/06 | 9,393                      | 9,393                    |
| 2005           | 2007        | Spring | 04-12-81 | 4/9-4/27/07    | 4,731                      | 4,721                    |
| 2005 Bi        | rood year t | otal   |          |                | 37,530                     | 37,520                   |
| 2006           | 2007        | Fall   | 04-12-82 | 9/30-10/03/07  | 11,777                     | 11,777                   |
| 2006           | 2007        | Fall   | 04-12-83 | 10/03-10/07/07 | 11,716                     | 11,716                   |
| 2006           | 2007        | Fall   | 04-12-84 | 10/07-10/13/07 | 11,756                     | 11,756                   |
| 2006           | 2007        | Fall   | 04-12-85 | 10/13-10/21/07 | 9,840                      | 9,840                    |
| 2006           | 2008        | Spring | 04-14-62 | 4/19-4/27/08   | 10,489                     | 10,489                   |
| 2006 B         | rood year t | otal   |          |                | 55,578                     | 55,578                   |
| 2007           | 2008        | Fall   | 04-14-65 | 10/03-10/21/08 | 16,595                     | 16,595                   |
| 2007           | 2009        | Spring | 04-14-63 | 4/17-5/02/09   | 5,578                      | 5,573                    |
| <u>2007</u> Bi | rood year t | otal   |          |                | 22,173                     | 22,168                   |

<sup>a</sup>Refer to Table 9 for estimates of the number of adipose-finelipped fish, by brood year, that survived to smolt.

| Date   | Traps<br>checked <sup>a</sup> | Catch <sup>b</sup> | CPUE ° | Recaptures with tags | Recaptures<br>without<br>tags | Total<br>tagged | Overnight mortalities | Tag<br>retention<br>(%) | Total<br>valid<br>tagged <sup>d</sup> | Mean<br>length<br>(mm) | Mean<br>weight (g) | Water<br>temperature<br>(°C) | Water<br>depth <sup>e</sup><br>(cm) |
|--------|-------------------------------|--------------------|--------|----------------------|-------------------------------|-----------------|-----------------------|-------------------------|---------------------------------------|------------------------|--------------------|------------------------------|-------------------------------------|
|        |                               |                    |        |                      |                               | PANI            | EL A: 2005            |                         |                                       |                        |                    |                              |                                     |
| 9-Apr  | 73                            | 511                | 7      |                      |                               |                 |                       |                         |                                       |                        |                    |                              | 1.3                                 |
| 10-Apr | 153                           | 1,052              | 7      | 116                  | 5                             | 1,563           | 7                     | 100.0                   | 1,556                                 | 68.5                   | 2.5                | 3.0                          | 5.1                                 |
| 11-Apr | 178                           | 1,033              | 6      | 65                   | 4                             | 1,033           | 1                     | 100.0                   | 1,032                                 | 68.8                   | 2.5                | 4.0                          | 5.1                                 |
| 12-Apr | 181                           | 855                | 5      | 50                   | 2                             | 855             | 1                     | 100.0                   | 854                                   | 71.2                   | 2.9                | 5.0                          | 3.8                                 |
| 13-Apr | 170                           | 582                | 3      |                      |                               |                 |                       |                         |                                       |                        |                    | 3.0                          | 5.1                                 |
| 14-Apr | 155                           | 431                | 3      | 65                   | 3                             | 1,013           |                       | 98.2                    | 995                                   | 64.8                   | 3.3                | 4.0                          | 1.3                                 |
| 15-Apr | 158                           | 618                | 4      | 55                   | 1                             | 618             | 2                     | 100.0                   | 616                                   | 68.0                   | 2.6                | 3.0                          | 1.3                                 |
| 16-Apr | 163                           | 709                | 4      |                      |                               |                 |                       |                         |                                       |                        |                    | 3.5                          | 0.0                                 |
| 17-Apr | 144                           | 511                | 4      | 111                  | 3                             | 1,220           | 6                     | 100.0                   | 1,214                                 | 69.2                   | 2.5                |                              |                                     |
| 18-Apr | 141                           | 544                | 4      |                      |                               |                 |                       |                         |                                       |                        |                    | 5.0                          | 2.5                                 |
| 19-Apr | 113                           | 395                | 3      | 84                   | 2                             | 939             | 1                     | 100.0                   | 938                                   | 70.0                   | 2.7                | 5.0                          | 8.9                                 |
| 20-Apr | 135                           | 365                | 3      |                      |                               |                 |                       |                         |                                       |                        |                    | 4.0                          | 26.7                                |
| 21-Apr | 118                           | 476                | 4      | 75                   | 1                             | 841             | 2                     | 100.0                   | 839                                   | 67.5                   | 2.4                | 4.0                          | 31.8                                |
| 22-Apr | 91                            | 248                | 3      |                      |                               |                 |                       |                         |                                       |                        |                    | 3.0                          | 49.5                                |
| 23-Apr | 121                           | 179                | 1      | 32                   |                               | 427             | 9                     | 96.4                    | 403                                   | 65.6                   | 2.1                | 4.0                          | 54.6                                |
| 24-Apr | 130                           | 98                 | <1     |                      |                               |                 |                       |                         |                                       |                        |                    | 4.0                          | 77.5                                |
| 25-Apr | 122                           | 29                 | <1     | 6                    | 1                             | 127             |                       | 100.0                   | 127                                   | 66.1                   | 2.3                | 3.5                          | 96.5                                |
| 26-Apr | 92                            | 10                 | <1     |                      |                               |                 |                       |                         |                                       |                        |                    | 4.0                          | 102.9                               |
| 27-Apr | 34                            | 1                  | <1     |                      |                               |                 |                       |                         |                                       |                        |                    | 4.0                          | 110.5                               |
| 28-Apr |                               |                    |        |                      |                               | 11              |                       | 100.0                   | 11                                    | 68.0                   | 2.5                | 4.0                          | 113.0                               |
| Total  | 2,472                         | 8,647              |        | 659                  | 22                            | 8,647           | 29                    |                         | 8,585                                 |                        |                    |                              |                                     |
| Max.   | 181                           | 1,052              | 7      | 116                  | 5                             | 1,563           | 7                     | 100.0                   | 1,556                                 | 71.2                   | 3.3                | 5.0                          | 113.0                               |
| Min.   | 34                            | 1                  | <1     | 0                    | 0                             | 11              | 0                     | 96.4                    | 11                                    | 64.8                   | 2.1                | 3.0                          | 0.0                                 |
| Mean   | 130                           | 455                | 3      | 60                   | 2                             | 786             | 3                     | 99.5                    | 780                                   | 68.1 <sup>f</sup>      | 2.7 <sup>f</sup>   | 3.9                          | 36.6                                |

Appendix B2.–Number of Unuk River Chinook salmon smolt caught in the spring and subsequently released with valid coded wire tags, mean smolt length and weight, and water temperature and depth, 2005–2009.

|        |                      |                    |                   |            | Recaptures |        |             | Tag       | Total               | Mean              |                  | Water       | Water              |
|--------|----------------------|--------------------|-------------------|------------|------------|--------|-------------|-----------|---------------------|-------------------|------------------|-------------|--------------------|
|        | Traps                | ,                  |                   | Recaptures | without    | Total  | Overnight   | retention | valid               | length            | Mean             | temperature | depth <sup>e</sup> |
| Date   | checked <sup>a</sup> | Catch <sup>b</sup> | CPUE <sup>c</sup> | with tags  | tags       | tagged | mortalities | (%)       | tagged <sup>d</sup> | (mm)              | weight (g)       | (°C)        | (cm)               |
|        |                      |                    |                   |            |            | PAN    | EL B: 2006  |           |                     |                   |                  |             |                    |
| 2-Apr  | 119                  | 939                | 8                 | 118        |            | 939    | 1           | 100.0     | 938                 | 71.0              | 3.4              | 2.5         | 0.0                |
| 3-Apr  | 141                  | 977                | 7                 | 83         | 2          | 977    | 27          | 100.0     | 950                 | 68.5              | 3.1              | 3.0         | 3.8                |
| 4-Apr  | 147                  | 830                | 6                 | 68         | 1          | 830    | 1           | 100.0     | 829                 | 69.3              | 3.4              | 2.5         | 7.6                |
| 5-Apr  | 149                  | 648                | 4                 |            |            |        |             |           |                     |                   |                  | 3.0         | 10.2               |
| 6-Apr  | 147                  | 507                | 3                 | 92         | 3          | 1,155  |             | 99.0      | 1,144               | 65.2              | 2.9              | 3.0         | 12.7               |
| 7-Apr  | 149                  | 611                | 4                 | 54         | 1          | 611    |             | 100.0     | 611                 | 71.8              | 3.7              | 3.5         | 14.0               |
| 8-Apr  | 117                  | 626                | 5                 | 36         |            | 626    |             | 99.1      | 621                 | 68.5              | 3.3              | 3.0         | 27.9               |
| 9-Apr  | 141                  | 525                | 4                 | 29         | 1          | 525    |             | 100.0     | 525                 | 68.6              | 3.2              | 3.0         | 31.8               |
| 10-Apr | 142                  | 724                | 5                 | 12         |            | 724    | 2           | 99.2      | 716                 | 70.2              | 3.4              | 3.0         | 27.9               |
| 11-Apr | 156                  | 916                | 6                 | 24         | 1          | 916    |             | 100.0     | 916                 | 67.6              | 3.0              | 3.5         | 24.1               |
| 12-Apr | 154                  | 1,104              | 7                 |            |            |        |             |           |                     |                   |                  | 3.0         | 24.1               |
| 13-Apr | 141                  | 971                | 7                 | 49         | 2          | 2,075  |             | 100.0     | 2,075               | 67.5              | 3.2              | 2.0         | 22.9               |
| 14-Apr | 134                  | 409                | 3                 |            |            |        |             |           |                     |                   |                  | 2.0         | 24.1               |
| 15-Apr | 136                  | 701                | 5                 | 58         |            | 1,110  |             | 100.0     | 1,110               | 71.3              | 3.7              | 3.0         | 19.1               |
| 16-Apr | 153                  | 953                | 6                 | 102        | 4          | 953    | 4           | 98.4      | 933                 | 66.8              | 3.1              | 3.0         | 15.2               |
| 17-Apr | 154                  | 931                | 6                 | 53         | 3          | 931    |             | 100.0     | 931                 | 71.2              | 3.8              | 3.5         | 14.0               |
| 18-Apr |                      |                    |                   |            |            |        |             |           |                     |                   |                  | 3.5         | 14.0               |
| 19-Apr | 149                  | 763                | 5                 |            |            |        |             |           |                     |                   |                  | 3.0         | 16.5               |
| 20-Apr | 152                  | 525                | 3                 | 65         | 2          | 1,288  |             | 100.0     | 1,288               | 70.9              | 3.6              | 3.0         | 19.1               |
| 21-Apr | 147                  | 664                | 5                 | 31         |            | 664    |             | 99.0      | 658                 | 70.1              | 3.7              | 3.5         | 16.5               |
| 22-Apr | 166                  | 1,120              | 7                 | 109        | 3          | 1,120  |             | 100.0     | 1,120               | 68.8              | 3.4              | 4.0         | 15.2               |
| 23-Apr | 173                  | 962                | 6                 | 89         |            | 962    |             | 94.0      | 904                 | 69.1              | 3.4              | 4.0         | 14.0               |
| Total  | 3,067                | 16,406             |                   | 1,072      | 23         | 16,406 | 35          |           | 16,269              |                   |                  |             |                    |
| Max.   | 173                  | 1,120              | 8                 | 118        | 3          | 2,075  | 27          | 100.0     | 2,075               | 71.8              | 3.8              | 4.0         | 31.8               |
| Min.   | 117                  | 409                | 3                 | 12         | 0          | 525    | 0           | 94.0      | 525                 | 65.2              | 2.9              | 2.0         | 0.0                |
| Mean   | 146                  | 781                | 5                 | 63         | 1          | 965    | 2           | 99.3      | 957                 | 69.2 <sup>f</sup> | 3.4 <sup>f</sup> | 3.1         | 17.0               |

Appendix B2.–Page 2 of 5.

|        |                      |                    |        | -          | Recaptures |        |             | Tag       | Total               | Mean              |                  | Water       | Water              |
|--------|----------------------|--------------------|--------|------------|------------|--------|-------------|-----------|---------------------|-------------------|------------------|-------------|--------------------|
|        | Traps                |                    |        | Recaptures | without    | Total  | Overnight   | retention | valid               | length            | Mean             | temperature | depth <sup>e</sup> |
| Date   | checked <sup>a</sup> | Catch <sup>b</sup> | CPUE ° | with tags  | tags       | tagged | mortalities | (%)       | tagged <sup>d</sup> | (mm)              | weight (g)       | (°C)        | (cm)               |
|        |                      |                    |        |            |            | PANE   | L C: 2007   |           |                     |                   |                  |             |                    |
| 7-Apr  | 38                   | 213                | 6      |            |            |        |             |           |                     |                   |                  |             | 0.0                |
| 8-Apr  | 73                   | 124                | 2      |            |            |        |             |           |                     |                   |                  | 1.5         | 12.7               |
| 9-Apr  | 30                   | 31                 | 1      | 30         |            | 269    |             | 100.0     | 269                 | 69.0              | 3.9              | 1.5         | 26.7               |
| 10-Apr |                      |                    |        |            |            |        |             |           |                     |                   |                  | 2.0         | 30.5               |
| 11-Apr | 98                   | 200                | 2      |            |            |        |             |           |                     |                   |                  | 2.0         | 24.1               |
| 12-Apr | 132                  | 466                | 4      | 51         | 2          | 444    |             |           | 444                 | 65.3              | 3.0              | 2.0         | 17.8               |
| 13-Apr | 145                  | 459                | 3      |            |            |        |             |           |                     |                   |                  | 2.5         | 16.5               |
| 14-Apr | 154                  | 376                | 2      | 69         | 1          | 642    |             | 100.0     | 642                 | 65.9              | 3.1              | 2.5         | 17.8               |
| 15-Apr | 106                  | 394                | 4      |            |            |        |             |           |                     |                   |                  | 2.0         | 15.2               |
| 16-Apr | 141                  | 379                | 3      | 66         | 2          | 570    |             | 100.0     | 570                 | 65.8              | 2.9              | 1.5         | 19.1               |
| 17-Apr | 160                  | 509                | 3      |            |            |        |             |           |                     |                   |                  | 2.5         | 19.1               |
| 18-Apr | 152                  | 592                | 4      | 88         | 3          | 846    |             | 100.0     | 846                 | 64.3              | 2.8              | 2.5         | 17.8               |
| 19-Apr | 147                  | 614                | 4      |            |            |        |             |           |                     |                   |                  | 2.0         | 15.2               |
| 20-Apr | 170                  | 627                | 4      | 92         | 4          | 1,022  |             | 99.0      | 1,012               | 64.4              | 2.9              | 2.0         | 20.2               |
| 21-Apr | 172                  | 447                | 3      |            |            |        |             |           |                     |                   |                  | 3.0         | 22.9               |
| 22-Apr | 141                  | 275                | 2      | 53         |            | 519    |             | 100.0     | 519                 | 65.4              | 2.9              | 2.5         | 30.5               |
| 23-Apr | 122                  | 244                | 2      |            |            |        |             |           |                     |                   |                  | 2.5         | 33.0               |
| 24-Apr | 85                   | 118                | 1      |            |            |        |             |           |                     |                   |                  | 2.0         | 45.7               |
| 25-Apr | 67                   | 69                 | 1      | 31         | 2          | 287    |             | 100.0     | 287                 | 69.0              | 3.5              | 2.0         | 47.0               |
| 26-Apr | 86                   | 115                | 1      |            |            |        |             |           |                     |                   |                  | 2.5         | 41.9               |
| 27-Apr | 55                   | 77                 | 1      | 11         |            | 132    |             | 100.0     | 132                 | 67.8              | 3.4              | 2.0         | 38.1               |
| 28-Apr |                      |                    |        |            |            |        |             |           |                     |                   |                  | 2.0         | 35.6               |
| 29-Apr |                      |                    |        |            |            |        |             |           |                     |                   |                  |             | 33.0               |
| Total  | 2,274                | 6,329              | 53     | 491        | 14         | 4,731  | 0           |           | 4,721               |                   |                  |             |                    |
| Max.   | 172                  | 627                | 6      | 92         | 4          | 1,022  |             | 100.0     | 1,012               | 69.0              | 3.9              | 3.0         | 47.0               |
| Min.   | 30                   | 31                 | 1      | 0          | 0          | 132    |             | 99.0      | 132                 | 64.3              | 2.8              | 1.5         | 0.0                |
| Mean   | 114                  | 316                | 3      | 55         | 2          | 526    |             | 99.9      | 525                 | 66.4 <sup>f</sup> | 3.1 <sup>f</sup> | 2.1         | 25.1               |

Appendix B2.–Page 3 of 5.

Appendix B2.–Page 4 of 5.

|        |                      |                    |        | -          | Recaptures |        |             | Tag       | Total               | Mean              |                  | Water       | Water              |
|--------|----------------------|--------------------|--------|------------|------------|--------|-------------|-----------|---------------------|-------------------|------------------|-------------|--------------------|
|        | Traps                |                    |        | Recaptures | without    | Total  | Overnight   | retention | valid               | length            | Mean             | temperature | depth <sup>e</sup> |
| Date   | checked <sup>a</sup> | Catch <sup>b</sup> | CPUE ° | with tags  | tags       | tagged | mortalities | (%)       | tagged <sup>d</sup> | (mm)              | weight (g)       | (°C)        | (cm)               |
|        |                      |                    |        |            |            | PANEI  | D: 2008     |           |                     |                   |                  |             |                    |
| 16-Apr | 39                   | 621                | 16     |            |            |        |             |           |                     |                   |                  |             | 16.5               |
| 17-Apr | 22                   | 224                | 10     |            |            |        |             |           |                     |                   |                  | 2.0         | 24.1               |
| 18-Apr | 43                   | 324                | 8      |            |            |        |             |           |                     |                   |                  | 1.5         | 14.0               |
| 19-Apr | 69                   | 658                | 10     | 230        | 3          | 1,551  | 9           | 100.0     | 1,542               | 64.0              | 2.7              | 1.0         | 8.9                |
| 20-Apr | 76                   | 714                | 9      |            |            |        |             |           |                     |                   |                  | 1.0         | 6.4                |
| 21-Apr | 84                   | 1,054              | 13     | 213        |            | 1,622  | 6           | 100.0     | 1,616               | 65.2              | 3.0              | 1.5         | 2.5                |
| 22-Apr | 103                  | 1,603              | 16     |            |            |        |             |           |                     |                   |                  | 2.0         | 0.0                |
| 23-Apr | 111                  | 1,534              | 14     | 225        | 1          | 2,821  | 3           | 100.0     | 2,818               | 68.9              | 3.4              | 2.0         | 2.5                |
| 24-Apr | 115                  | 1,357              | 12     |            |            |        |             |           |                     |                   |                  | 2.0         | 6.4                |
| 25-Apr | 109                  | 1,345              | 12     | 153        | 1          | 2,400  | 10          | 100.0     | 2,390               | 68.2              | 3.1              | 2.0         | 6.4                |
| 26-Apr | 132                  | 1,519              | 12     | 121        | 1          | 1,386  | 2           | 100.0     | 1,384               | 68.2              | 3.3              | 2.0         | 5.1                |
| 27-Apr | 87                   | 775                | 9      | 30         |            | 739    |             | 100.0     | 739                 | 69.6              | 3.5              | 2.5         | 8.9                |
| Total  | 990                  | 11,728             | 139    | 972        | 6          | 10,519 | 30          |           | 10,489              |                   |                  |             |                    |
| Max.   | 132                  | 1,603              | 16     | 230        | 3          | 2,821  | 10          | 100.0     | 2,818               | 69.6              | 3.5              | 2.5         | 24.1               |
| Min.   | 22                   | 224                | 8      | 30         | 0          | 739    | 0           | 100.0     | 739                 | 64.0              | 2.7              | 1.0         | 0.0                |
| Mean   | 83                   | 977                | 12     | 162        | 1          | 1,753  | 5           | 100.0     | 1,748               | 67.6 <sup>f</sup> | 3.2 <sup>f</sup> | 1.8         | 8.4                |

|                                                                                                                                                                  |                                                                                                    |                                                                                              |                                                                       | -                                                                                  | Recaptures                                                                        |                                                                 |                                                           | Tag                          | Total               | Mean                |                    | Water       | Water              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|------------------------------|---------------------|---------------------|--------------------|-------------|--------------------|
|                                                                                                                                                                  | Traps                                                                                              |                                                                                              |                                                                       | Recaptures                                                                         | without                                                                           | Total                                                           | Overnight                                                 | retention                    | valid               | length              | Mean               | temperature | depth <sup>e</sup> |
| Date                                                                                                                                                             | checked <sup>a</sup>                                                                               | Catch <sup>b</sup>                                                                           | CPUE °                                                                | with tags                                                                          | tags                                                                              | tagged                                                          | mortalities                                               | (%)                          | tagged <sup>d</sup> | (mm)                | weight (g)         | (°C)        | (cm)               |
|                                                                                                                                                                  |                                                                                                    |                                                                                              |                                                                       |                                                                                    |                                                                                   | PANEI                                                           | L E: 2009                                                 |                              |                     |                     |                    |             |                    |
| 15-Apr                                                                                                                                                           | 10                                                                                                 | 26                                                                                           | 3                                                                     |                                                                                    |                                                                                   |                                                                 |                                                           |                              |                     |                     |                    |             | 0.3                |
| 16-Apr                                                                                                                                                           | 37                                                                                                 | 184                                                                                          | 5                                                                     |                                                                                    |                                                                                   |                                                                 |                                                           |                              |                     |                     |                    | 3.0         | 0.0                |
| 17-Apr                                                                                                                                                           | 81                                                                                                 | 255                                                                                          | 3                                                                     | 28                                                                                 | 1                                                                                 | 465                                                             |                                                           | 100.0                        | 465                 | 64.3                | 2.7                | 3.5         | 4.1                |
| 18-Apr                                                                                                                                                           | 88                                                                                                 | 211                                                                                          | 2                                                                     |                                                                                    |                                                                                   |                                                                 |                                                           |                              |                     |                     |                    | 3.5         | 13.2               |
| 19-Apr                                                                                                                                                           | 91                                                                                                 | 227                                                                                          | 2                                                                     | 30                                                                                 |                                                                                   | 438                                                             |                                                           | 100.0                        | 438                 | 65.5                | 3.0                | 3.5         | 12.4               |
| 20-Apr                                                                                                                                                           | 44                                                                                                 | 165                                                                                          | 4                                                                     |                                                                                    |                                                                                   |                                                                 |                                                           |                              |                     |                     |                    | 3.5         | 13.2               |
| 21-Apr                                                                                                                                                           | 98                                                                                                 | 352                                                                                          | 4                                                                     |                                                                                    |                                                                                   |                                                                 |                                                           |                              |                     |                     |                    | 3.5         | 28.2               |
| 22-Apr                                                                                                                                                           | 96                                                                                                 | 293                                                                                          | 3                                                                     |                                                                                    |                                                                                   |                                                                 |                                                           |                              |                     |                     |                    | 3.0         | 21.8               |
| 23-Apr                                                                                                                                                           | 84                                                                                                 | 426                                                                                          | 5                                                                     | 60                                                                                 |                                                                                   | 1,236                                                           |                                                           | 100.0                        | 1,236               | 61.9                | 2.4                | 3.0         | 18.0               |
| 24-Apr                                                                                                                                                           | 103                                                                                                | 530                                                                                          | 5                                                                     |                                                                                    |                                                                                   |                                                                 |                                                           |                              |                     |                     |                    | 3.5         | 15.7               |
| 25-Apr                                                                                                                                                           | 131                                                                                                | 597                                                                                          | 5                                                                     | 74                                                                                 | 2                                                                                 | 1,127                                                           | 2                                                         | 100.0                        | 1,125               | 66.7                | 3.1                | 3.5         | 14.2               |
| 26-Apr                                                                                                                                                           | 116                                                                                                | 508                                                                                          | 4                                                                     |                                                                                    |                                                                                   |                                                                 |                                                           |                              |                     |                     |                    | 4.0         | 15.5               |
| 27-Apr                                                                                                                                                           | 107                                                                                                | 435                                                                                          | 4                                                                     | 54                                                                                 | 2                                                                                 | 943                                                             | 1                                                         | 100.0                        | 942                 | 62.3                | 2.6                | 3.5         | 20.6               |
| 28-Apr                                                                                                                                                           | 106                                                                                                | 372                                                                                          | 4                                                                     |                                                                                    |                                                                                   |                                                                 |                                                           |                              |                     |                     |                    | 3.5         | 33.3               |
| 29-Apr                                                                                                                                                           | 102                                                                                                | 271                                                                                          | 3                                                                     |                                                                                    |                                                                                   |                                                                 |                                                           |                              |                     |                     |                    | 3.5         | 39.6               |
| 30-Apr                                                                                                                                                           | 90                                                                                                 | 246                                                                                          | 3                                                                     | 23                                                                                 |                                                                                   | 890                                                             |                                                           | 100.0                        | 890                 | 65.6                | 3.0                | 4.0         | 45.5               |
| 1-May                                                                                                                                                            | 59                                                                                                 | 152                                                                                          | 3                                                                     |                                                                                    |                                                                                   |                                                                 |                                                           |                              |                     |                     |                    | 4.0         | 52.3               |
| 2-May                                                                                                                                                            | 95                                                                                                 | 330                                                                                          | 3                                                                     | 20                                                                                 |                                                                                   | 482                                                             |                                                           | 99.0                         | 477                 | 65.6                | 2.9                | 3.5         | 70.1               |
| 3-May                                                                                                                                                            |                                                                                                    |                                                                                              |                                                                       |                                                                                    |                                                                                   |                                                                 |                                                           |                              |                     |                     |                    | 2.5         | 98.8               |
| 4-May                                                                                                                                                            |                                                                                                    |                                                                                              |                                                                       |                                                                                    |                                                                                   |                                                                 |                                                           |                              |                     |                     |                    | 3.0         | 79.8               |
| Total                                                                                                                                                            | 1,538                                                                                              | 5,581                                                                                        |                                                                       | 289                                                                                | 5                                                                                 | 5,581                                                           | 3                                                         |                              | 5,573               |                     |                    |             |                    |
| Max.                                                                                                                                                             | 131                                                                                                | 597                                                                                          | 5                                                                     | 74                                                                                 | 2                                                                                 | 1,236                                                           | 2                                                         | 100.0                        | 1,236               | 66.7                | 3.1                | 4.0         | 98.8               |
| Min.                                                                                                                                                             | 10                                                                                                 | 26                                                                                           | 2                                                                     | 20                                                                                 | 0                                                                                 | 438                                                             | 1                                                         | 99.0                         | 438                 | 61.9                | 2.4                | 2.5         | 0.0                |
| Mean                                                                                                                                                             | 85                                                                                                 | 310                                                                                          | 4                                                                     | 41                                                                                 | 1                                                                                 | 797                                                             | 2                                                         | 99.9                         | 796                 | $64.8^{\mathrm{f}}$ | $2.8^{\mathrm{f}}$ | 3.4         | 29.7               |
| <sup>a</sup> Equals the<br><sup>b</sup> Equals the<br><sup>c</sup> Equals the<br><sup>d</sup> Total valid<br><sup>e</sup> Depth star<br><sup>f</sup> Of all leng | e total numbe<br>e number of p<br>e average nur<br>d tagged equa<br>ndardized suc<br>gths or weigh | or of trap ch<br>previously<br>mber of pro-<br>als total tag<br>ch that 0 in<br>ts collected | hecks that<br>untagged<br>eviously un<br>gged minu<br>represent<br>d. | day, i.e. indiv<br>Chinook salm<br>ntagged Chino<br>s overnight m<br>s minimal dep | vidual traps c<br>ion smolt cap<br>ook salmon s<br>ortalities tin<br>oth recorded | checked tw<br>ptured.<br>smolt capt<br>hes percen<br>each seaso | vice daily wou<br>ured per trap<br>t tag retention<br>on. | ıld count as<br>check.<br>ı. | two traps o         | checked.            |                    |             |                    |

Appendix B2.–Page 5 of 5.

|        |                      |                    |        |            | Recaptures |        |             | Tag       | Total               | Mean                |                  | Water       | Water              |
|--------|----------------------|--------------------|--------|------------|------------|--------|-------------|-----------|---------------------|---------------------|------------------|-------------|--------------------|
|        | Traps                |                    |        | Recaptures | without    | Total  | Overnight   | retention | valid               | length              | Mean             | temperature | depth <sup>e</sup> |
| Date   | checked <sup>a</sup> | Catch <sup>b</sup> | CPUE ° | with tags  | tags       | tagged | mortalities | (%)       | tagged <sup>a</sup> | (mm)                | weight (g)       | (°C)        | (cm)               |
|        |                      |                    |        |            |            | PANE   | EL A: 2005  |           |                     |                     |                  |             |                    |
| 24-Sep | 101                  | 2,060              | 20     |            |            | 2,060  | 3           | 100.0     | 2,057               | 75.5                | 5.1              | 9.0         | 20.3               |
| 25-Sep | 123                  | 1,860              | 15     |            |            | 1,860  | 6           | 100.0     | 1,854               | 70.7                | 4.0              | 8.0         | 22.9               |
| 26-Sep | 83                   | 574                | 7      |            |            | 574    |             | 100.0     | 574                 | 71.8                | 3.8              | 8.0         | 30.5               |
| 27-Sep | 147                  | 1,716              | 12     | 33         |            | 1,716  | 3           | 100.0     | 1,713               | 68.8                | 3.5              | 6.0         | 15.2               |
| 28-Sep | 69                   | 180                | 3      |            |            |        |             |           |                     |                     |                  | 7.0         | 50.8               |
| 29-Sep |                      |                    |        |            |            |        |             |           |                     |                     |                  | 6.0         | 94.0               |
| 30-Sep |                      |                    |        |            |            |        |             |           |                     |                     |                  | 7.0         | 61.0               |
| 1-Oct  | 76                   | 177                | 2      |            |            |        |             |           |                     |                     |                  | 7.0         | 40.6               |
| 2-Oct  | 156                  | 1,540              | 10     | 58         | 2          | 1,897  | 12          | 100.0     | 1,885               | 69.4                | 4.1              | 5.0         | 20.3               |
| 3-Oct  | 171                  | 2,074              | 12     | 45         | 1          | 2,074  |             | 100.0     | 2,074               | 69.1                | 3.7              | 5.0         | 11.4               |
| 4-Oct  | 160                  | 1,967              | 12     | 29         |            | 1,967  |             | 100.0     | 1,967               | 66.5                | 3.7              | 6.0         | 3.8                |
| 5-Oct  | 169                  | 2,725              | 16     | 30         | 1          | 2,725  | 4           | 100.0     | 2,721               | 66.9                | 3.4              | 6.0         | 0.0                |
| 6-Oct  | 153                  | 1,365              | 9      | 31         | 1          | 1,365  | 5           | 100.0     | 1,360               | 66.3                | 3.5              | 6.0         | 43.2               |
| 7-Oct  | 119                  | 612                | 5      |            |            |        |             |           |                     |                     |                  | 7.0         | 35.6               |
| 8-Oct  | 101                  | 672                | 7      | 61         | 1          | 1,284  | 3           | 100.0     | 1,281               | 68.9                | 3.9              | 6.0         | 31.8               |
| 9-Oct  | 149                  | 1,244              | 8      | 76         |            | 1,244  | 3           | 100.0     | 1,241               | 68.2                | 3.7              | 6.0         | 20.3               |
| 10-Oct |                      |                    |        |            |            |        |             |           |                     |                     |                  | 6.0         | 71.1               |
| 11-Oct | 148                  | 690                | 5      |            |            |        |             |           |                     |                     |                  | 5.0         | 47.0               |
| 12-Oct | 138                  | 835                | 6      | 66         |            | 1,525  | 5           | 100.0     | 1,520               |                     |                  | 5.0         | 54.6               |
| 13-Oct | 141                  | 870                | 6      | 41         |            | 870    |             | 100.0     | 870                 | 66.4                | 3.7              | 5.0         | 47.0               |
| 14-Oct | 84                   | 333                | 4      |            |            |        |             |           |                     |                     |                  | 5.0         | 20.3               |
| 15-Oct | 113                  | 658                | 6      |            |            |        |             |           |                     |                     |                  | 5.0         | 7.6                |
| 16-Oct | 26                   | 132                | 5      | 90         |            | 1,123  | 2           | 100.0     | 1,121               | 70.3                | 4.4              | 5.0         | 2.5                |
| 17-Oct | 128                  | 996                | 8      |            |            |        |             |           |                     |                     |                  | 4.0         | 22.9               |
| 18-Oct | 163                  | 1,037              | 6      | 163        |            | 2,033  |             | 100.0     | 2,033               | 66.0                | 3.7              | 5.0         | 12.7               |
| Total  | 2,718                | 24,317             |        | 723        | 6          | 24,317 | 46          |           | 24,271              |                     |                  |             |                    |
| Max.   | 171                  | 2,725              | 20     | 163        | 2          | 2,725  | 12          | 100.0     | 2,721               | 75.5                | 5.1              | 9.0         | 94.0               |
| Min.   | 26                   | 132                | 2      | 0          | 0          | 574    | 0           | 100.0     | 574                 | 66.0                | 3.4              | 4.0         | 0.0                |
| Mean   | 124                  | 1,105              | 9      | 48         | 0          | 1,621  | 3           | 100.0     | 1,618               | $68.2^{\mathrm{f}}$ | 3.8 <sup>f</sup> | 6.0         | 32.0               |

Appendix B3.–Number of Unuk River Chinook salmon fingerlings caught in the fall and subsequently released with valid coded wire tags, mean smolt length and weight, and water temperature and depth, 2005–2008.

93

|        |                      |                    |        |            | Recaptures |        |             | Tag       | Total               | Mean                |                  | Water       | Water              |
|--------|----------------------|--------------------|--------|------------|------------|--------|-------------|-----------|---------------------|---------------------|------------------|-------------|--------------------|
| _      | Traps                | h                  | ~~~~ 0 | Recaptures | without    | Total  | Overnight   | retention | valid               | length              | Mean             | temperature | depth <sup>e</sup> |
| Date   | checked <sup>a</sup> | Catch <sup>6</sup> | CPUE ° | with tags  | tags       | tagged | mortalities | (%)       | tagged <sup>u</sup> | (mm)                | weight (g)       | (°C)        | (cm)               |
|        |                      |                    |        |            |            | PANI   | EL B: 2006  |           |                     |                     |                  |             |                    |
| 3-Oct  | 155                  | 1,415              | 9      |            |            | 1,415  | 1           | 100.0     | 1,414               | 65.6                | 3.3              | 4.0         | 29.2               |
| 4-Oct  | 164                  | 2,108              | 13     |            |            | 2,108  |             | 100.0     | 2,108               | 59.8                | 2.4              | 5.0         | 21.6               |
| 5-Oct  | 172                  | 2,207              | 13     | 14         |            | 2,207  | 4           | 100.0     | 2,203               | 63.5                | 2.9              | 6.0         | 40.6               |
| 6-Oct  | 169                  | 1,447              | 9      | 20         |            | 1,447  |             | 100.0     | 1,447               | 62.0                | 2.6              | 6.0         | 22.9               |
| 7-Oct  | 164                  | 2,556              | 16     |            |            |        |             |           |                     |                     |                  | 6.5         | 12.7               |
| 8-Oct  | 156                  | 2,890              | 19     | 186        | 2          | 5,446  | 3           | 100.0     | 5,443               | 61.7                | 2.7              | 5.0         | 5.1                |
| 9-Oct  | 164                  | 2,881              | 18     | 106        | 2          | 2,881  | 2           | 100.0     | 2,879               | 62.1                | 2.7              | 5.5         | 0.0                |
| 10-Oct | 184                  | 3,358              | 18     | 271        | 2          | 3,358  | 2           | 100.0     | 3,356               | 62.6                | 2.8              | 6.0         | 2.5                |
| 11-Oct | 183                  | 3,003              | 16     | 291        | 3          | 3,003  | 3           | 100.0     | 3,000               | 62.5                | 2.8              | 6.5         | 6.4                |
| 12-Oct | 176                  | 1,767              | 10     | 179        | 1          | 1,767  |             | 100.0     | 1,767               | 64.9                | 3.2              | 7.0         | 20.3               |
| 13-Oct | 167                  | 871                | 5      |            |            |        |             |           |                     |                     |                  | 7.0         | 19.1               |
| 14-Oct | 193                  | 920                | 5      | 231        |            | 1,791  | 2           | 100.0     | 1,789               | 63.6                | 2.9              | 7.0         | 34.3               |
| 15-Oct | 78                   | 217                | 3      |            |            |        |             |           |                     |                     |                  | 6.0         | 34.3               |
| 16-Oct | 194                  | 1,241              | 6      | 188        | 3          | 1,458  | 3           | 100.0     | 1,455               | 62.1                | 2.8              | 5.0         | 15.2               |
| 17-Oct | 213                  | 1,411              | 7      | 226        | 3          | 1,411  | 31          | 100.0     | 1,380               | 62.0                | 2.8              | 5.0         | 2.5                |
| 18-Oct | 192                  | 2,612              | 14     | 402        | 4          | 2,612  | 2           | 100.0     | 2,610               | 63.7                | 3.0              | 5.0         | 1.35               |
| 19-Oct | 205                  | 1,282              | 6      |            |            |        |             |           |                     |                     |                  | 6.0         | 34.3               |
| 20-Oct | 56                   | 306                | 5      |            |            |        |             |           |                     |                     |                  | 6.0         | 36.8               |
| 21-Oct | 56                   | 360                | 6      | 367        | 2          | 1,948  |             | 100.0     | 1,948               | 64.7                | 3.1              | 6.0         | 14.0               |
| Total  | 3,041                | 32,852             |        | 2,481      | 22         | 32,852 | 53          |           | 32,799              |                     |                  |             |                    |
| Max.   | 213                  | 3,358              | 19     | 402        | 4          | 5,446  | 31          | 100.0     | 5,443               | 64.9                | 3.1              | 7.0         | 40.6               |
| Min.   | 78                   | 217                | 3      | 0          | 0          | 1,411  | 0           | 100.0     | 1,380               | 59.8                | 2.4              | 4.0         | 0.0                |
| Mean   | 160                  | 1,729              | 10     | 177        | 2          | 2,347  | 4           | 100.0     | 2,343               | $62.8^{\mathrm{f}}$ | 2.8 <sup>f</sup> | 5.8         | 18.5               |

Appendix 3.–Page 2 of 4.

|        |                      |                    |        | -          | Recaptures |        |             | Tag       | Total               | Mean       |                  | Water       | Water              |
|--------|----------------------|--------------------|--------|------------|------------|--------|-------------|-----------|---------------------|------------|------------------|-------------|--------------------|
|        | Traps                |                    |        | Recaptures | without    | Total  | Overnight   | retention | valid               | length     | Mean             | temperature | depth <sup>e</sup> |
| Date   | checked <sup>a</sup> | Catch <sup>b</sup> | CPUE ° | with tags  | tags       | tagged | mortalities | (%)       | tagged <sup>d</sup> | (mm)       | weight (g)       | (°C)        | (cm)               |
|        |                      |                    |        |            |            | PANE   | EL C: 2007  |           |                     |            |                  |             |                    |
| 29-Sep |                      |                    |        |            |            |        |             |           |                     |            |                  | 6.0         | 22.9               |
| 30-Sep | 89                   | 2,999              | 34     |            |            | 3,097  | 2           | 100.0     | 3,095               | 62.6       | 3.3              | 6.0         | 20.3               |
| 1-Oct  | 143                  | 4,769              | 33     | 4          |            | 4,850  | 35          | 100.0     | 4,815               | 58.6       | 2.3              | 6.0         | 17.8               |
| 2-Oct  | 155                  | 3,889              | 25     |            |            |        |             |           |                     |            |                  | 6.0         | 50.8               |
| 3-Oct  | 12                   | 487                | 41     | 47         |            | 4,378  | 4           | 100.0     | 4,374               | 61.9       | 2.7              | 6.0         | 31.8               |
| 4-Oct  | 141                  | 4,794              | 34     | 84         |            | 3,633  | 2           | 100.0     | 3,631               | 59.3       | 2.4              | 6.0         | 17.8               |
| 5-Oct  | 139                  | 3,796              | 27     | 93         |            | 4,074  | 2           | 100.0     | 4,072               | 59.3       | 2.5              | 5.0         | 8.9                |
| 6-Oct  | 129                  | 3,222              | 25     | 116        |            | 3,106  |             | 100.0     | 3,106               | 57.4       | 2.3              | 5.0         | 21.1               |
| 7-Oct  | 141                  | 3,154              | 22     | 175        |            | 2,942  | 10          | 100.0     | 2,932               | 61.2       | 2.9              | 5.0         | 17.3               |
| 8-Oct  | 151                  | 3,694              | 24     | 258        |            | 3,386  |             | 100.0     | 3,386               | 62.0       | 2.9              | 5.0         | 15.2               |
| 9-Oct  | 150                  | 2,982              | 20     | 180        |            | 2,751  | 2           | 100.0     | 2,749               | 61.4       | 2.8              | 5.0         | 8.9                |
| 10-Oct | 160                  | 3,077              | 19     |            |            |        |             |           |                     |            |                  | 6.0         | 12.7               |
| 11-Oct | 156                  | 2,064              | 13     |            |            |        |             |           |                     |            |                  | 5.0         | 45.7               |
| 12-Oct |                      |                    |        |            |            |        |             |           |                     |            |                  | 5.0         | 22.9               |
| 13-Oct |                      |                    |        | 336        |            | 4,476  | 2           | 100.0     | 4,474               | 61.6       | 2.8              | 5.0         | 33.0               |
| 14-Oct |                      |                    |        |            |            |        |             |           |                     |            |                  | 5.0         | 111.8              |
| 15-Oct |                      |                    |        |            |            |        |             |           |                     |            |                  | 5.0         | 83.8               |
| 16-Oct | 18                   | 0                  | 0      |            |            |        |             |           |                     |            |                  | 5.0         | 48.3               |
| 17-Oct | 104                  | 1,927              | 19     |            |            |        |             |           |                     |            |                  | 5.0         | 33.0               |
| 18-Oct | 115                  | 2,402              | 21     | 390        |            | 3,854  |             | 100.0     | 3,854               | 62.7       | 2.8              | 4.0         | 22.9               |
| 19-Oct | 113                  | 2,143              | 19     |            |            |        |             |           |                     |            |                  | 4.0         | 12.7               |
| 20-Oct | 98                   | 1,389              | 14     | 326        |            | 3,244  |             | 100.0     | 3,244               | 60.0       | 2.6              | 3.0         | 5.1                |
| 21-Oct | 80                   | 1,368              | 17     | 105        |            | 1,357  |             | 100.0     | 1,357               | 60.7       | 2.7              | 3.0         | 0.0                |
| 22-Oct |                      |                    |        |            |            |        |             |           |                     |            |                  | 4.0         | 10.2               |
| Total  | 2,094                | 48,156             |        | 2,114      | 0          | 45,148 | 59          |           | 45,089              |            |                  |             |                    |
| Max.   | 160                  | 4,794              | 41     | 390        |            | 4,850  | 35          | 100.0     | 4,815               | 62.7       | 3.3              | 6.0         | 111.8              |
| Min.   | 12                   | 0                  | 0      | 0          |            | 1,357  | 0           | 100.0     | 1,357               | 57.4       | 2.3              | 3.0         | 0.0                |
| Mean   | 116                  | 2,675              | 23     | 163        |            | 3,473  | 5           | 100.0     | 3,468               | $60.7^{f}$ | 2.7 <sup>f</sup> | 5.0         | 28.2               |

Appendix B3.–Page 3 of 4.

|                  |                      |                    |        |            | Recaptures |        |             | Tag       | Total               | Mean       |                    | Water       | Water              |
|------------------|----------------------|--------------------|--------|------------|------------|--------|-------------|-----------|---------------------|------------|--------------------|-------------|--------------------|
|                  | Traps                |                    |        | Recaptures | without    | Total  | Overnight   | retention | valid               | length     | Mean               | temperature | depth <sup>e</sup> |
| Date             | checked <sup>a</sup> | Catch <sup>b</sup> | CPUE ° | with tags  | tags       | tagged | mortalities | (%)       | tagged <sup>d</sup> | (mm)       | weight (g)         | (°C)        | (cm)               |
|                  |                      |                    |        |            |            | PANI   | EL D: 2008  |           |                     |            |                    |             |                    |
| 28-Sep<br>29-Sep |                      |                    |        |            |            |        |             |           |                     |            |                    |             | 0.0<br>129.5       |
| 30-Sep           | 38                   | 0                  | 0      |            |            |        |             |           |                     |            |                    |             | 94.0               |
| 1-Oct            | 29                   | 51                 | 2      |            |            |        |             |           |                     |            |                    |             | 69.9               |
| 2-Oct            | 49                   | 106                | 2      |            |            |        |             |           |                     |            |                    |             | 61.0               |
| 3-Oct            | 55                   | 107                | 2      |            |            | 223    | 1           | 100.0     | 222                 | 62.4       | 2.8                |             | 80.0               |
| 4-Oct            |                      |                    |        |            |            |        |             |           |                     |            |                    |             |                    |
| 5-Oct            |                      |                    |        |            |            |        |             |           |                     |            |                    |             | 40.6               |
| 6-Oct            | 61                   | 355                | 6      |            |            |        |             |           |                     |            |                    |             | 26.7               |
| 7-Oct            | 78                   | 1,123              | 14     |            |            | 1,333  |             | 100.0     | 1,333               | 62.1       | 2.7                |             | 17.8               |
| 8-Oct            | 92                   | 1,674              | 18     | 1          |            | 1,678  | 1           | 100.0     | 1,677               | 59.4       | 2.4                |             | 12.7               |
| 9-Oct            | 97                   | 2,431              | 25     | 72         |            | 2,320  |             | 100.0     | 2,320               | 58.9       | 2.3                |             | 7.6                |
| 10-Oct           | 100                  | 2,467              | 25     |            |            | ,      |             |           | ,                   |            |                    |             | 0.0                |
| 11-Oct           | 58                   | 1,021              | 18     | 95         |            | 2,128  | 4           | 100.0     | 2,124               | 57.1       | 2.0                | 5.0         | 7.6                |
| 12-Oct           | 45                   | 894                | 20     | 67         |            | 1,817  | 3           | 100.0     | 1,814               | 57.4       | 2.1                | 4.5         | 25.4               |
| 13-Oct           | 45                   | 504                | 11     |            |            | ,      |             |           | ,                   |            |                    | 4.5         | 38.1               |
| 14-Oct           | 67                   | 387                | 6      | 110        |            | 739    | 3           | 100.0     | 736                 | 60.1       | 2.5                | 4.0         | 17.8               |
| 15-Oct           | 83                   | 1,176              | 14     |            |            |        |             |           |                     |            |                    | 4.5         | 15.2               |
| 16-Oct           | 94                   | 1,573              | 17     | 349        |            | 2,354  |             | 100.0     | 2,354               | 56.7       | 2.0                | 4.5         | 7.6                |
| 17-Oct           | 96                   | 1,388              | 14     |            |            |        |             |           |                     |            |                    | 4.5         | 12.7               |
| 18-Oct           | 95                   | 973                | 10     | 319        | 1          | 2,045  | 1           | 100.0     | 2,044               | 57.9       | 2.1                | 4.0         | 7.6                |
| 19-Oct           | 95                   | 892                | 9      |            |            |        |             |           | ·                   |            |                    | 4.5         | 3.8                |
| 20-Oct           | 82                   | 769                | 9      | 344        | 1          | 1,426  |             | 100.0     | 1,426               | 59.5       | 2.4                | 4.5         | 22.9               |
| 21-Oct           | 80                   | 702                | 9      | 190        |            | 545    |             | 100.0     | 545                 | 55.8       | 1.9                | 4.5         | 10.2               |
| 22-Oct           |                      |                    |        |            |            |        |             |           |                     |            |                    | 4.5         | 66.0               |
| Total            | 1,439                | 18,593             |        | 1,547      | 2          | 16,608 | 13          |           | 16,595              |            |                    |             |                    |
| Max.             | 100                  | 2,467              | 25     | 349        | 1          | 2,354  | 4           | 100.0     | 2,354               | 62.4       | 2.8                | 5.0         | 129.5              |
| Min.             | 29                   | 0                  | 0      | 1          | 1          | 223    | 1           | 100.0     | 222                 | 55.8       | 1.9                | 4.0         | 0.0                |
| Mean             | 72                   | 930                | 12     | 141        | 0          | 1.510  | 1           | 100.0     | 1.509               | $58.6^{f}$ | $2.3^{\mathrm{f}}$ | 4.5         | 32.5               |

Appendix B3.–Page 4 of 4.

Mean729301214101,5101100.01,50958.6\*aEquals the total number of trap checks that day, i.e. individual traps checked twice daily would count as two traps checked.bEquals the number of previously untagged juvenile Chinook salmon captured, either as smolt or as fingerlings.cEquals the average number of previously untagged Chinook salmon fingerlings captured per trap check.dTotal valid tagged equals total tagged minus overnight mortalities times percent tag retention.eDepth standardized such that 0 in represents minimal depth recorded each season.

|        |       |         |        |        | Leng   | ţth      |     |      |        |        | Weig   | ht       |     |      |
|--------|-------|---------|--------|--------|--------|----------|-----|------|--------|--------|--------|----------|-----|------|
|        |       |         | Mean   |        |        |          |     |      | Mean   |        |        |          |     |      |
| Sample | Brood | Spring/ | sample | Sample | Mean   |          |     |      | sample | Sample | Mean   |          |     |      |
| year   | year  | fall    | date   | size   | length | Variance | SD  | SE   | date   | size   | weight | Variance | SD  | SE   |
| 1978   | 1977  | Fall    | 1-Dec  | 50     | 64.7   |          |     |      |        |        |        |          |     |      |
| 1982   | 1980  | Spring  | 15-Apr | 650    | 67.4   |          |     |      |        |        |        |          |     |      |
| 1982   | 1981  | Fall    | 13-Dec | 246    | 68.2   |          |     |      |        |        |        |          |     |      |
| 1983   | 1981  | Spring  | 10-Apr | 703    | 69.0   |          |     |      |        |        |        |          |     |      |
| 1983   | 1982  | Fall    | 30-Oct | 500    | 63.8   |          |     |      |        |        |        |          |     |      |
| 1984   | 1982  | Spring  | 7-Apr  | 650    | 67.4   |          |     |      |        |        |        |          |     |      |
| 1985   | 1983  | Spring  | 11-Apr | 703    | 69.0   | 44.0     | 6.6 | 0.25 |        |        |        |          |     |      |
| 1986   | 1984  | Spring  | 2-Apr  | 400    | 66.0   | 49.4     | 7.0 | 0.35 |        |        |        |          |     |      |
| 1988   | 1986  | Spring  | 13-Apr | 423    | 69.6   | 41.4     | 6.4 | 0.31 |        |        |        |          |     |      |
| 1994   | 1992  | Spring  | 14-May | 327    | 75.3   | 52.3     | 7.2 | 0.40 | 14-    | 327    | 4.6    | 1.9      | 1.4 | 0.08 |
| 1994   | 1993  | Fall    | 16-Oct | 393    | 69.2   | 40.3     | 6.4 | 0.32 | 16-Oct | 393    | 3.6    | 1.5      | 1.2 | 0.06 |
| 1995   | 1993  | Spring  | 24-Apr | 260    | 73.2   | 60.6     | 7.8 | 0.48 |        |        |        |          |     |      |
| 1995   | 1994  | Fall    | 20-Oct | 823    | 65.3   | 38.9     | 6.2 | 0.22 |        |        |        |          |     |      |
| 1996   | 1994  | Spring  | 19-Apr | 291    | 70.2   | 41.2     | 6.4 | 0.38 | 19-Apr | 291    | 3.5    | 1.2      | 1.1 | 0.06 |
| 1996   | 1995  | Fall    | 11-Oct | 804    | 67.3   | 33.9     | 5.8 | 0.21 | 11-Oct | 804    | 3.4    | 0.8      | 0.9 | 0.03 |
| 1997   | 1995  | Spring  | 7-Apr  | 327    | 71.2   | 36.2     | 6.0 | 0.33 | 7-Apr  | 327    | 3.6    | 0.9      | 1.0 | 0.05 |
| 1997   | 1996  | Fall    | 10-Oct | 624    | 61.6   | 44.8     | 6.7 | 0.27 | 11-Oct | 133    | 2.7    | 1.0      | 1.0 | 0.09 |
| 1998   | 1996  | Spring  | 2-Apr  | 421    | 65.8   | 61.8     | 7.9 | 0.38 | 2-Apr  | 421    | 2.8    | 1.3      | 1.1 | 0.06 |
| 1998   | 1997  | Fall    | 14-Oct | 398    | 67.4   | 46.3     | 6.8 | 0.34 | 17-Oct | 243    | 3.3    | 1.2      | 1.1 | 0.07 |
| 1999   | 1997  | Spring  | 18-Apr | 266    | 70.6   | 67.4     | 8.2 | 0.50 | 18-Apr | 266    | 3.7    | 1.7      | 1.3 | 0.08 |
| 1999   | 1998  | Fall    | 13-Oct | 93     | 63.4   | 52.5     | 7.2 | 0.75 | 15-Oct | 93     | 2.9    | 1.2      | 1.1 | 0.12 |
| 2000   | 1998  | Spring  | 17-Apr | 271    | 71.5   | 56.9     | 7.5 | 0.46 | 17-Apr | 270    | 3.8    | 1.7      | 1.3 | 0.08 |
| 2000   | 1999  | Fall    | 17-Oct | 257    | 65.9   | 43.5     | 6.6 | 0.41 | 17-Oct | 257    | 3.5    | 1.2      | 1.1 | 0.07 |
| 2001   | 1999  | Spring  | 12-Apr | 173    | 67.4   | 30.3     | 5.5 | 0.42 | 12-Apr | 173    | 3.3    | 0.7      | 0.8 | 0.06 |
| 2001   | 2000  | Fall    | 13-Oct | 485    | 62.7   | 45.8     | 6.8 | 0.31 | 13-Oct | 485    | 2.9    | 0.9      | 0.9 | 0.04 |
| 2002   | 2000  | Spring  | 20-Apr | 367    | 68.6   | 43.4     | 6.6 | 0.34 | 20-Apr | 367    | 3.5    | 1.2      | 1.1 | 0.06 |
| 2002   | 2001  | Fall    | 14-Oct | 540    | 60.8   | 37.5     | 6.1 | 0.26 | 14-Oct | 540    | 2.6    | 0.7      | 0.8 | 0.03 |
| 2003   | 2001  | Spring  | 23-Apr | 333    | 66.1   | 57.7     | 7.6 | 0.42 | 23-Apr | 333    | 3.2    | 1.2      | 1.1 | 0.06 |
| 2003   | 2002  | Fall    | 9-Oct  | 443    | 64.0   | 54.3     | 7.4 | 0.35 | 9-Oct  | 443    | 3.0    | 1.5      | 1.2 | 0.06 |
| 2004   | 2002  | Spring  | 7-Apr  | 383    | 66.6   | 44.2     | 6.7 | 0.35 | 7-Apr  | 383    | 3.1    | 1.0      | 1.0 | 0.05 |
| 2004   | 2003  | Fall    | 7-Oct  | 597    | 60.9   | 50.7     | 7.1 | 0.29 | 7-Oct  | 597    | 2.9    | 0.8      | 0.9 | 0.04 |
| 2005   | 2003  | Spring  | 15-Apr | 284    | 68.1   | 40.6     | 6.4 | 0.38 | 15-Apr | 383    | 2.7    | 0.6      | 0.7 | 0.04 |
| 2005   | 2004  | Fall    | 6-Oct  | 448    | 68.2   | 50.2     | 7.1 | 0.33 | 6-Oct  | 448    | 3.8    | 1.6      | 1.3 | 0.06 |
| 2006   | 2004  | Spring  | 13-Apr | 343    | 69.2   | 34.8     | 5.9 | 0.32 | 13-Apr | 343    | 3.4    | 0.8      | 0.9 | 0.05 |
| 2006   | 2005  | Fall    | 10-Oct | 596    | 62.8   | 40.2     | 6.3 | 0.26 | 10-Oct | 596    | 2.8    | 0.8      | 0.9 | 0.04 |
| 2007   | 2005  | Spring  | 18-Apr | 299    | 66.4   | 34.3     | 5.9 | 0.32 | 18-Apr | 299    | 3.1    | 0.7      | 0.9 | 0.05 |
| 2007   | 2006  | Fall    | 7-Oct  | 522    | 60.7   | 40.5     | 6.4 | 0.28 | 7-Oct  | 522    | 2.7    | 0.8      | 0.9 | 0.04 |
| 2008   | 2006  | Spring  | 24-Apr | 392    | 67.6   | 38.1     | 6.2 | 0.31 | 24-Apr | 392    | 3.2    | 0.9      | 1.0 | 0.05 |
| 2008   | 2007  | Fall    | 12-Oct | 390    | 58.6   | 39.1     | 6.3 | 0.32 | 12-Oct | 390    | 2.3    | 0.6      | 0.8 | 0.04 |
| 2009   | 2007  | Spring  | 25-Apr | 336    | 64.8   | 55.1     | 7.4 | 0.40 | 25-Apr | 336    | 2.8    | 1.2      | 1.1 | 0.06 |

Appendix B4.–Mean length, weight, and associated statistics of Unuk River Chinook salmon spring smolt and fall fingerlings, 1978 through spring of 2009.

Appendix B5.–Numbers of Unuk River Chinook salmon examined for adipose fin clips, sacrificed for coded wire tag sampling purposes, valid coded wire tags decoded, percentage of sacrificed fish with valid coded wire tags, percentage of fish examined with adipose fin clips, the estimated fraction of examined fish with valid tags (marked fraction or page class and mark-recapture sampling event, 1998 brood through 2008 returns.

|        |                       |      |        |         |        | Numb  | er of vali | d tags | _       |         |          |                    |
|--------|-----------------------|------|--------|---------|--------|-------|------------|--------|---------|---------|----------|--------------------|
|        |                       |      |        |         |        |       |            |        | Percent | Percent | Marked   |                    |
| Brood  |                       | Year | Number | Adipose | Number | Fall  | Spring     | Total  | valid   | adipose | fraction | Event <sup>a</sup> |
| 1998   | 1 1                   | 2001 | 9      | 1       | 1      | 1 all | 1          | 10121  | 100.0   | 11 1    | 111      | 1                  |
| 1998   | $R R \rightarrow 11$  | 2001 | 3      | 1       | 1      |       | 1          | 1      | 100.0   | 11.1    |          | 1                  |
| 1998   | 1.1                   | 2001 | 17     | 2       | 2      |       | 2          | 2      | 100.0   | 11.8    | .118     | 2                  |
| 1998   | $R \rightarrow 1 1$   | 2001 | 1      | _       | _      |       | _          | _      |         |         |          | 2                  |
| 1998   | $R R \rightarrow 1.1$ | 2001 | 1      |         |        |       |            |        |         |         |          | 2                  |
| 1998   | 1.2                   | 2002 | 218    | 15      | 14     | 8     | 6          | 14     | 100.0   | 6.9     | .069     | 1                  |
| 1998   | $R.2 \rightarrow 1.2$ | 2002 | 32     | 3       | 2      | 2     |            | 2      | 100.0   | 9.4     | .094     | 1                  |
| 1998   | $R R \rightarrow 1.2$ | 2002 | 5      |         |        |       |            |        |         |         |          | 1                  |
| 1998   | 1.2                   | 2002 | 146    | 7       | 4      | 2     | 2          | 4      | 100.0   | 4.8     | .048     | 2                  |
| 1998   | $R.2 \rightarrow 1.2$ | 2002 | 17     | 1       | 1      |       | 1          | 1      | 100.0   | 5.9     | .059     | 2                  |
| 1998   | $R.R \rightarrow 1.2$ | 2002 | 1      |         |        |       |            |        |         |         |          | 2                  |
| 1998   | 0.4                   | 2003 | 1      |         |        |       |            |        |         |         |          | 1                  |
| 1998   | 2.2                   | 2003 | 1      | 1       | 1      | 1     |            | 1      | 100.0   | 100.0   | 1.000    | 1                  |
| 1998   | 1.3                   | 2003 | 411    | 47      | 2      |       | 2          | 2      | 100.0   | 11.4    | .114     | 1                  |
| 1998   | $R.3 \rightarrow 1.3$ | 2003 | 80     | 7       | 2      | 1     | 1          | 2      | 100.0   | 8.8     | .088     | 1                  |
| 1998   | $R.R \rightarrow 1.3$ | 2003 | 8      | 1       |        |       |            |        |         | 12.5    |          | 1                  |
| 1998   | 1.3                   | 2003 | 511    | 49      | 19     | 8     | 11         | 19     | 100.0   | 9.6     | .096     | 2                  |
| 1998   | $R.3 \rightarrow 1.3$ | 2003 | 93     | 11      | 5      | 2     | 3          | 5      | 100.0   | 11.8    | .118     | 2                  |
| 1998   | $R.R \rightarrow 1.3$ | 2003 | 9      | 2       |        |       |            |        |         | 22.2    |          | 2                  |
| 1998   | 1.4                   | 2004 | 170    | 13      |        |       |            |        |         | 7.6     |          | 1                  |
| 1998   | $R.4 \rightarrow 1.4$ | 2004 | 39     | 6       |        |       |            |        |         | 15.4    |          | 1                  |
| 1998   | $R.R \rightarrow 1.4$ | 2004 | 11     | 1       |        |       |            |        |         | 9.1     |          | 1                  |
| 1998   | 1.4                   | 2004 | 263    | 28      | 1      | 1     |            | 1      | 100.0   | 10.6    | .106     | 2                  |
| 1998   | $R.4 \rightarrow 1.4$ | 2004 | 55     | 3       |        |       |            |        |         | 5.5     |          | 2                  |
| 1998   | $R.R \rightarrow 1.4$ | 2004 | 4      |         |        |       |            |        |         |         |          | 2                  |
| 1998   | 1.5                   | 2005 | 4      | 1       |        |       |            |        |         | 25.0    |          | 1                  |
| 1998   | 1.5                   | 2005 | 2      |         |        |       |            |        |         |         |          | 2                  |
| 1998 t | brood year tot        | tal  | 2,112  | 199     | 54     | 25    | 29         | 54     | 100.0   | 9.4     | .094     | 1&2                |
| 1999   | 1.1                   | 2002 | 2      |         |        |       |            |        |         |         |          | 2                  |
| 1999   | $R.R \rightarrow 1.1$ | 2002 | 1      |         |        |       |            |        |         |         |          | 2                  |
| 1999   | 0.2                   | 2002 | 1      |         |        |       |            |        |         |         |          | 1                  |
| 1999   | 1.2                   | 2003 | 39     | 7       | 5      | 2     | 3          | 5      | 100.0   | 17.9    | .179     | 1                  |
| 1999   | $R.2 \rightarrow 1.2$ | 2003 | 12     | 2       | 2      |       | 1          | 1      | 50.0    | 16.7    | .083     | 1                  |
| 1999   | $R.R \rightarrow 1.2$ | 2003 | 1      |         |        |       |            |        |         |         |          | 1                  |
| 1999   | 1.2                   | 2003 | 83     | 5       | 5      | 4     | 1          | 5      | 100.0   | 6.0     | .060     | 2                  |
| 1999   | $R.2 \rightarrow 1.2$ | 2003 | 11     | 1       | 1      | 1     |            | 1      | 100.0   | 9.1     | .091     | 2                  |
| 1999   | $R.R \rightarrow 1.2$ | 2003 | 1      |         |        |       |            |        |         |         |          | 2                  |
| 1999   | 1.3                   | 2004 | 110    | 8       | 1      | 1     |            | 1      | 100.0   | 7.3     | .073     | 1                  |
| 1999   | $R.3 \rightarrow 1.3$ | 2004 | 29     | 7       | 1      |       | 1          | 1      | 100.0   | 24.1    | .241     | 1                  |

|               |                       |                   |        |                      |            | Numb | er of vali | d tags | _             |           |                 |                    |
|---------------|-----------------------|-------------------|--------|----------------------|------------|------|------------|--------|---------------|-----------|-----------------|--------------------|
| D             |                       | V                 | NUM    | A 1                  | NT         |      |            |        | Percent       | Percent   | Marked          |                    |
| Brood<br>vear | Age class             | Y ear<br>examined | Number | Adipose<br>fin clips | Number     | Fall | Spring     | Total  | valid<br>tags | fin clips | fraction<br>(θ) | Event <sup>a</sup> |
| 1999          | $R R \rightarrow 1.3$ | 2004              | 4      | ini enps             | sucrificeu | Tun  | opring     | Totui  | ugo           | ini enpo  | (0)             | 1                  |
| 1999          | 1.3                   | 2004              | 193    | 29                   | 1          | 1    |            | 1      | 100.0         | 15.0      | .150            | 2                  |
| 1999          | $R \rightarrow 1 3$   | 2004              | 49     | 3                    |            |      |            |        |               | 6.1       |                 | 2                  |
| 1999          | $R R \rightarrow 1.3$ | 2004              | 11     | 2                    |            |      |            |        |               | 18.2      |                 | 2                  |
| 1999          | 2.3                   | 2005              | 3      | _                    |            |      |            |        |               |           |                 | 1                  |
| 1999          | 2.3                   | 2005              | 1      |                      |            |      |            |        |               |           |                 | 2                  |
| 1999          | 1.4                   | 2005              | 52     | 4                    | 2          |      | 1          | 1      | 50.0          | 7.7       | .038            | 1                  |
| 1999          | $R.4 \rightarrow 1.4$ | 2005              | 14     | 1                    | 1          |      |            |        |               | 7.1       |                 | 1                  |
| 1999          | $R.R \rightarrow 1.4$ | 2005              | 2      |                      |            |      |            |        |               |           |                 | 1                  |
| 1999          | 1.4                   | 2005              | 104    | 9                    | 2          | 1    | 1          | 2      | 100.0         | 8.7       | .087            | 2                  |
| 1999          | $R.4 \rightarrow 1.4$ | 2005              | 26     | 1                    | 1          |      | 1          | 1      | 100.0         | 3.8       | .038            | 2                  |
| 1999          | $R.R \rightarrow 1.4$ | 2005              | 2      |                      |            |      |            |        |               |           |                 | 2                  |
| 1999          | $R.5 \rightarrow 1.5$ | 2006              | 1      |                      |            |      |            |        |               |           |                 | 1                  |
| 1999 ł        | brood year tota       | al                | 752    | 79                   | 22         | 10   | 9          | 19     | 86.4          | 10.5      | .091            | 1&2                |
| 2000          | 1.1                   | 2003              | 7      | 1                    | 1          |      | 1          | 1      | 100.0         | 14.3      | .143            | 1                  |
| 2000          | $R.1 \rightarrow 1.1$ | 2003              | 2      |                      |            |      |            |        |               |           |                 | 1                  |
| 2000          | $R_R \rightarrow 1.1$ | 2003              | 5      |                      |            |      |            |        |               |           |                 | 1                  |
| 2000          | 1.1                   | 2003              | 39     | 2                    | 2          | 1    | 1          | 2      | 100.0         | 5.1       | .051            | 2                  |
| 2000          | $R_1 \rightarrow 1.1$ | 2003              | 4      |                      |            |      |            |        |               |           |                 | 2                  |
| 2000          | $R_R \rightarrow 1.1$ | 2003              | 15     | 1                    | 1          | 1    |            | 1      | 100.0         | 6.7       | .067            | 2                  |
| 2000          | 1.2                   | 2004              | 255    | 17                   | 13         | 8    | 4          | 12     | 92.3          | 6.7       | .062            | 1                  |
| 2000          | $R.2 \rightarrow 1.2$ | 2004              | 83     | 4                    | 3          | 2    | 1          | 3      | 100.0         | 4.8       | .048            | 1                  |
| 2000          | $R.R \rightarrow 1.2$ | 2004              | 10     | 1                    | 1          |      | 1          | 1      | 100.0         | 10.0      | .100            | 1                  |
| 2000          | 1.2                   | 2004              | 373    | 28                   | 26         | 14   | 12         | 26     | 100.0         | 7.5       | .075            | 2                  |
| 2000          | $R_2 \rightarrow 1.2$ | 2004              | 76     | 12                   | 9          | 5    | 4          | 9      | 100.0         | 15.8      | .158            | 2                  |
| 2000          | $R.R \rightarrow 1.2$ | 2004              | 7      |                      |            |      |            |        |               |           |                 | 2                  |
| 2000          | 2.2                   | 2005              | 1      | 1                    | 1          | 1    |            | 1      | 100.0         | 100.0     | 1.000           | 2                  |
| 2000          | 1.3                   | 2005              | 412    | 46                   | 3          | 2    | 1          | 3      | 100.0         | 11.2      | .112            | 1                  |
| 2000          | $R.3 \rightarrow 1.3$ | 2005              | 137    | 8                    |            |      |            |        |               |           |                 | 1                  |
| 2000          | $R.R \rightarrow 1.3$ | 2005              | 6      | 2                    |            |      |            |        |               |           |                 | 1                  |
| 2000          | 1.3                   | 2005              | 468    | 40                   | 11         | 7    | 2          | 9      | 81.8          | 8.5       | .070            | 2                  |
| 2000          | $R.3 \rightarrow 1.3$ | 2005              | 125    | 9                    |            |      |            |        |               |           |                 | 2                  |
| 2000          | $R R \rightarrow 1.3$ | 2005              | 10     | 2                    | 1          | 1    |            | 1      | 100.0         | 20.0      | 200             | 2                  |
| 2000          | 14                    | 2005              | 184    | 19                   | 1          | 1    |            | 1      | 100.0         | 10.3      | .200            | 1                  |
| 2000          | $R 4 \rightarrow 1 4$ | 2000              | 87     | 7                    | 1          | 1    |            | 1      | 100.0         | 8.0       | 080             | 1                  |
| 2000          | $R \to 1.4$           | 2006              | 4      | ,                    | 1          | 1    |            | 1      | 100.0         | 0.0       | .000            | 1                  |
| 2000          | 1 <i>A</i>            | 2000              | 174    | 13                   | 1          | 1    |            | 1      | 100.0         | 75        | 075             | 2                  |
| 2000          | $R 4 \rightarrow 1 4$ | 2000              | 77     | 7                    | 1          | 1    |            | 1      | 100.0         | 9.1       | .075            | 2                  |
| 2000          | $R \rightarrow 1.4$   | 2000              | 3      | ,                    |            |      |            |        |               | 2.1       |                 | 2                  |
| 2000          | X.K / 1.4<br>2 3      | 2000              | 1      |                      |            |      |            |        |               |           |                 | -<br>1             |
| 2000          | $R 5 \rightarrow 15$  | 2000              | 2      |                      |            |      |            |        |               |           |                 | 1                  |
| 2000          | 15                    | 2007              | 2<br>4 |                      |            |      |            |        |               |           |                 | 2                  |
| 2000          | $R \rightarrow 15$    | 2007              | 2      |                      |            |      |            |        |               |           |                 | 2                  |
| 2000          | K.J / 1.J             | 2007              | 4      |                      |            |      |            |        |               |           |                 | 4                  |

## Appendix B5.–Page 2 of 4.

|        |                       |          |          |           |            | Number of valid tags |        |       |                  |                    |                 |                    |
|--------|-----------------------|----------|----------|-----------|------------|----------------------|--------|-------|------------------|--------------------|-----------------|--------------------|
| Brood  |                       | Year     | Number   | Adipose   | Number     |                      |        |       | Percent<br>valid | Percent<br>adipose | Marked fraction |                    |
| year   | Age class             | examined | examined | fin clips | sacrificed | Fall                 | Spring | Total | tags             | fin clips          | (θ)             | Event <sup>a</sup> |
| 2000 b | rood year total       |          | 2,573    | 220       | 74         | 44                   | 27     | 71    | 95.9             | 8.6                | .082            | 1&2                |
| 2001   | 1.1                   | 2004     | 1        |           |            |                      |        |       |                  |                    |                 | 1                  |
| 2001   | $R.1 \rightarrow 1.1$ | 2004     | 1        |           |            |                      |        |       |                  |                    |                 | 1                  |
| 2001   | 1.1                   | 2004     | 31       | 7         | 7          | 5                    | 2      | 7     | 100.0            | 22.6               | .226            | 2                  |
| 2001   | $R.1 \rightarrow 1.1$ | 2004     | 1        |           |            |                      |        |       |                  |                    |                 | 2                  |
| 2001   | $R.R \rightarrow 1.1$ | 2004     | 2        |           |            |                      |        |       |                  |                    |                 | 2                  |
| 2001   | 1.2                   | 2005     | 73       | 5         | 3          | 3                    |        | 3     | 100.0            | 6.8                | .068            | 1                  |
| 2001   | $R.2 \rightarrow 1.2$ | 2005     | 15       |           |            |                      |        |       |                  |                    |                 | 1                  |
| 2001   | $R.R \rightarrow 1.2$ | 2005     | 3        | 1         | 1          |                      | 1      | 1     | 100.0            | 33.3               | .333            | 1                  |
| 2001   | 1.2                   | 2005     | 80       | 12        | 11         | 6                    | 4      | 10    | 90.9             | 15.0               | .136            | 2                  |
| 2001   | $R.2 \rightarrow 1.2$ | 2005     | 13       | 1         | 1          | 1                    |        | 1     | 100.0            | 7.7                | .077            | 2                  |
| 2001   | $R.R \rightarrow 1.2$ | 2005     | 2        | 1         | 1          | 1                    |        | 1     | 100.0            | 50.0               | .500            | 2                  |
| 2001   | 1.3                   | 2006     | 279      | 27        | 1          | 1                    |        | 1     | 100.0            | 9.7                | .097            | 1                  |
| 2001   | $R.3 \rightarrow 1.3$ | 2006     | 75       | 6         | 1          | 1                    |        | 1     | 100.0            | 8.0                | .080            | 1                  |
| 2001   | $R.R \rightarrow 1.3$ | 2006     | 5        | 1         |            |                      |        |       |                  | 20.0               |                 | 1                  |
| 2001   | 1.3                   | 2006     | 208      | 16        | 4          | 2                    | 1      | 3     | 75.0             | 7.7                | .058            | 2                  |
| 2001   | $R.3 \rightarrow 1.3$ | 2006     | 49       | 7         | 1          | 1                    |        | 1     | 100.0            | 14.3               | .143            | 2                  |
| 2001   | $R.R \rightarrow 1.3$ | 2006     | 2        |           |            |                      |        |       |                  |                    |                 | 2                  |
| 2001   | 2.2                   | 2006     | 1        |           |            |                      |        |       |                  |                    |                 | 1                  |
| 2001   | 1.4                   | 2007     | 68       | 7         |            |                      |        |       |                  | 10.3               |                 | 1                  |
| 2001   | $R.4 \rightarrow 1.4$ | 2007     | 15       | 1         |            |                      |        |       |                  | 6.7                |                 | 1                  |
| 2001   | 2.3                   | 2007     | 2        |           |            |                      |        |       |                  |                    |                 | 2                  |
| 2001   | 1.4                   | 2007     | 148      | 18        | 4          | 2                    | 2      | 4     | 100.0            | 12.2               | .122            | 2                  |
| 2001   | $R.4 \rightarrow 1.4$ | 2007     | 41       | 3         |            |                      |        |       |                  | 7.3                |                 | 2                  |
| 2001   | 1.5                   | 2008     | 2        | 1         | 1          |                      |        |       |                  | 50.0               |                 | 1                  |
| 2001   | $R.5 \rightarrow 1.5$ | 2008     | 1        |           |            |                      |        |       |                  |                    |                 | 1                  |
| 2001   | $R.5 \rightarrow 1.5$ | 2008     | 1        |           |            |                      |        |       |                  |                    |                 | 2                  |
| 2001 b | rood year total       |          | 1,119    | 114       | 36         | 23                   | 10     | 33    | 91.7             | 10.2               | .093            | 1&2                |
| 2002   | 1.1                   | 2005     | 1        |           |            |                      |        |       |                  |                    |                 | 1                  |
| 2002   | $R.1 \rightarrow 1.1$ | 2005     | 1        |           |            |                      |        |       |                  |                    |                 | 1                  |
| 2002   | 1.1                   | 2005     | 62       | 4         | 4          |                      | 1      | 1     | 25.0             | 6.5                | .016            | 2                  |
| 2002   | $R.1 \rightarrow 1.1$ | 2005     | 1        | 1         | 1          | 1                    |        | 1     | 100.0            | 100.0              | 1.000           | 2                  |
| 2002   | $R.R \rightarrow 1.1$ | 2005     | 5        |           |            |                      |        |       |                  |                    |                 | 2                  |
| 2002   | 1.2                   | 2006     | 311      | 14        | 11         | 6                    | 2      | 8     | 72.7             | 4.5                | .033            | 1                  |
| 2002   | $R.2 \rightarrow 12$  | 2006     | 75       | 3         | 3          | 2                    | 1      | 3     | 100.0            | 4.0                | .040            | 1                  |
| 2002   | $R.R \rightarrow 1.2$ | 2006     | 4        | 1         | 1          |                      | 1      | 1     | 100.0            | 25.0               | .250            | 1                  |
| 2002   | 1.2                   | 2006     | 333      | 37        | 28         | 11                   | 10     | 21    | 75.0             | 11.1               | .083            | 2                  |
| 2002   | $R.2 \rightarrow 1.2$ | 2006     | 55       | 2         | 2          | 2                    |        | 2     | 100.0            | 3.6                | .036            | 2                  |
| 2002   | $R.R \rightarrow 1.2$ | 2006     | 16       | 1         | 1          |                      |        |       |                  | 6.3                |                 | 2                  |
| 2002   | 1.3                   | 2007     | 383      | 32        | 3          | 2                    | 1      | 3     | 100.0            | 8.4                | .084            | 1                  |
| 2002   | $R.3 \rightarrow 1.3$ | 2007     | 89       | 7         | 1          |                      |        |       |                  | 7.9                |                 | 1                  |
| 2002   | 1.3                   | 2007     | 663      | 65        | 14         | 8                    | 3      | 11    | 78.6             | 9.8                | .077            | 2                  |
| 2002   | $R.3 \rightarrow 1.3$ | 2007     | 131      | 16        | 1          |                      |        |       |                  | 12.2               |                 | 2                  |
| 2002   | 1.4                   | 2008     | 244      | 24        | 1          |                      |        |       |                  | 9.8                |                 | 1                  |
| 2002   | $R.4 \rightarrow 1.4$ | 2008     | 53       | 4         |            |                      |        |       |                  | 7.5                |                 | 1                  |

## Appendix B5.–Page 3 of 4.
|        |                                                                                                                                                |             |         |         |        | Numb             | er of vali | d tags |                  |                         |                    |          |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|---------|--------|------------------|------------|--------|------------------|-------------------------|--------------------|----------|
| Brood  |                                                                                                                                                | Year        | Number  | Adipose | Number | Fall             | Suring     | Total  | Percent<br>valid | Percent<br>adipose      | Marked<br>fraction | Eventa   |
| 2002   |                                                                                                                                                | 2008        | oo      | 17      | 3      | <u>rali</u><br>3 | Spring     | 3      | 100 0            | 17.2                    | 172                | 2        |
| 2002   | $P \rightarrow 1 \rightarrow $ | 2008        | 26      | 3       | 5      | 5                |            | 5      | 100.0            | 11.5                    | .172               | 2        |
| 2002   | $R.4 \rightarrow 1.4$                                                                                                                          | 2008        | 20      | 5       |        |                  |            |        |                  | 11.5                    |                    | 2        |
| 2002   | K.K / 1.4                                                                                                                                      | 2008<br>Hal | 2 553   | 231     | 74     | 35               | 10         | 54     | 73.0             | 9.0                     | 066                | 2<br>1&2 |
| 2002 1 | $D D \rightarrow 1 1$                                                                                                                          | 2006        | 2,335   | 231     | /+     | 55               | 17         | 54     | 75.0             | 7.0                     | .000               | 1        |
| 2003   | K.K / I.I                                                                                                                                      | 2000        | 22      | 1       | 1      | 1                |            | 1      | 100.0            | 4.5                     | 045                | 1        |
| 2003   | 1.1<br>$D 1 \rightarrow 1 1$                                                                                                                   | 2000        | 22      | 1       | 1      | 1                | 1          | 1      | 100.0            | 50.0                    | 500                | 2        |
| 2003   | $K_{1} \rightarrow 1.1$                                                                                                                        | 2000        | 2       | 1       | 1      |                  | 1          | 1      | 100.0            | 50.0                    | .500               | 2        |
| 2003   | K.K 7 1.1                                                                                                                                      | 2000        | 5       |         |        |                  |            |        |                  |                         |                    | 2        |
| 2003   | 2.1                                                                                                                                            | 2007        | 1<br>54 | 4       | 4      | 2                | r          | 4      | 100.0            | 74                      | 074                | 2<br>1   |
| 2003   | 1.2                                                                                                                                            | 2007        | 10      | 4       | 4      | 2                | 2<br>1     | 4      | 100.0            | /. <del>4</del><br>10.0 | .074               | 1        |
| 2003   | K.2 7 1.2                                                                                                                                      | 2007        | 10      | 1       | 1      | 6                | 1          | 1      | 100.0<br>96.7    | 10.0                    | .100               | 1        |
| 2003   | 1.2                                                                                                                                            | 2007        | 155     | 10      | 15     | 0                | /          | 15     | 80.7             | 5.2                     | .105               | 2        |
| 2003   | K.2 7 1.2                                                                                                                                      | 2007        | 19      | 1       | I      |                  |            |        |                  | 5.5<br>0 5              |                    | ے<br>1   |
| 2003   | 1.3                                                                                                                                            | 2008        | 1/0     | 15      |        |                  |            |        |                  | 0.J                     |                    | 1        |
| 2003   | $R.3 \rightarrow 1.3$                                                                                                                          | 2008        | 40      | 3       |        |                  |            |        |                  | 0.5                     |                    | 1        |
| 2003   | $K.K \rightarrow 1.3$                                                                                                                          | 2008        | 1<br>01 | 0       | 1      | 1                |            | 1      | 100.0            | 11.1                    | 11.1               | 1        |
| 2003   | 1.3                                                                                                                                            | 2008        | 81      | 9       | 1      | 1                | 1          | 1      | 100.0            | 11.1                    | 11.1               | 2        |
| 2003   | $R.3 \rightarrow 1.3$                                                                                                                          | 2008        | 20      | 3       | 1      | 10               | 1          | 1      | 100.0            | 15.0                    | .015               | 2        |
| 2003 t | brood year tot                                                                                                                                 |             | 5/1     | 54      | 25     | 10               | 12         | 22     | 88.0             | 9.5                     | .083               | 1&2      |
| 2004   |                                                                                                                                                | 2007        | 2       |         |        |                  |            |        |                  |                         |                    | 1        |
| 2004   | $R.1 \rightarrow 1.1$                                                                                                                          | 2007        | 1       | -       | -      |                  |            | _      | 100.0            | 1 = 0                   | 1 = 0              | 1        |
| 2004   | 1.1                                                                                                                                            | 2007        | 29      | 5       | 5      | 2                | 3          | 5      | 100.0            | 17.2                    | .172               | 2        |
| 2004   | $R.1 \rightarrow 1.1$                                                                                                                          | 2007        | 6       |         |        |                  |            |        |                  |                         |                    | 2        |
| 2004   | 0.2                                                                                                                                            | 2007        | 110     | ,       |        | 2                |            | 2      |                  |                         | 0.41               | 2        |
| 2004   | 1.2                                                                                                                                            | 2008        | 110     | 6       | 4      | 2                | 1          | 3      | 75.0             | 5.5                     | .041               | 1        |
| 2004   | $R.2 \rightarrow 1.2$                                                                                                                          | 2008        | 19      | 1       |        |                  |            |        |                  | 5.3                     |                    | I        |
| 2004   | $R.R \rightarrow 1.2$                                                                                                                          | 2008        | 2       |         |        |                  | -          | _      |                  |                         |                    | 1        |
| 2004   | 1.2                                                                                                                                            | 2008        | 72      | 10      | 9      | 2                | 3          | 5      | 55.6             | 13.9                    | .077               | 2        |
| 2004   | $R.2 \rightarrow 1.2$                                                                                                                          | 2008        | 12      | 1       | 1      |                  |            |        |                  | 8.3                     |                    | 2        |
| 2004   | $R.R \rightarrow 1.2$                                                                                                                          | 2008        | 1       |         |        |                  |            |        |                  |                         |                    | 2        |
| 2004   | 0.3                                                                                                                                            | 2008        | 1       |         |        |                  | _          |        |                  |                         |                    | 1        |
| 2004 t | prood year tot                                                                                                                                 | al          | 256     | 23      | 19     | 6                | 7          | 13     | 68.4             | 9.0                     | .061               | 1&2      |
| 2005   | 0.1                                                                                                                                            | 2007        | 1       |         |        |                  |            |        |                  |                         |                    | 2        |
| 2005   | 1.1                                                                                                                                            | 2008        | 8       | 1       | 1      | 1                |            | 1      | 100.0            | 12.5                    | .125               | 1        |
| 2005   | 1.1                                                                                                                                            | 2008        | 16      | 1       | 1      | 1                |            | 1      | 100.0            | 6.3                     | .063               | 2        |
| 2005   | $R.R \rightarrow 1.1$                                                                                                                          | 2008        | 1       |         |        |                  |            |        |                  |                         |                    | 2        |
| 2005 t | prood year tot                                                                                                                                 | tal         | 26      | 2       | 2      | 2                |            | 2      | 100.0            | 7.7                     | .077               | 1&2      |

## Appendix B5.–Page 4 of 4.

<sup>a</sup> Fish captured in both events are only listed in event 1 to avoid double counting.

| Appendix B6.–Estimated marine harvest ( $r_{uj}$ ) of Chinook salmon from the 1992–2004 broods (Panels A-G), bound for the Unuk River, and |
|--------------------------------------------------------------------------------------------------------------------------------------------|
| associated statistics, by harvest strata, from 1995–2008.                                                                                  |

|                       |                  |      |        | Sampling | 5        |            |         |                 |         |       |       |       |       |     |           |                       |
|-----------------------|------------------|------|--------|----------|----------|------------|---------|-----------------|---------|-------|-------|-------|-------|-----|-----------|-----------------------|
|                       |                  | ••   | Sample | period   | Sampling | Estimation | Н       | var(H)          | п       | a     | a'    | t     | t'    | т   | $\hat{r}$ | $SE(\hat{r}_{\perp})$ |
| Fishery               | Fishery location | Year | type   | type     | period   | level      |         | · •••• (••• u ) | $n_{u}$ | u     | u     | °и    | ч     | тиj | ' uj      | ( uj )                |
|                       | D: + : + 110.00  | 1005 | - 1    |          | PANEL    | A: 1992 BR | OOD YEA | AR              | 200     | 1.4   | 1.4   | 1.4   | 1.4   | - 1 | 2.5       |                       |
| Terminal purse seine  | District 112-22  | 1995 | 1      | 7        | 26       | 4          | 208     | 0               | 208     | 14    | 14    | 14    | 14    | l   | 35        | 35                    |
| Drift gillnet         | District 106     | 1996 | 1      | 7        | 27       | 4          | 91      | 0               | 40      | 5     | 5     | 5     | 5     | 1   | 81        | 80                    |
| Traditional troll     | NW Quadrant      | 1997 | 1      | 7        | 3        | 3          | 99,338  | 0               | 36,047  | 1,247 | 1,222 | 1,130 | 1,130 | 1   | 100       | 99                    |
| Experimental troll    | District 101-45  | 1997 | 1      | 7        | 26       | 5          | 241     | 0               | 81      | 5     | 5     | 5     | 5     | 1   | 105       | 105                   |
| Drift gillnet         | District 106     | 1997 | 1      | 7        | 27       | 4          | 258     | 0               | 157     | 15    | 14    | 13    | 13    | 1   | 62        | 62                    |
| Recreational DE       | Sitka            | 1998 | 1      | 8        |          | 4          | 14,355  | 0               | 3,337   | 119   | 118   | 111   | 110   | 1   | 155       | 155                   |
| 1992 brood year total |                  |      |        |          |          |            | 114,491 | 0               | 39,870  | 1,405 | 1,378 | 1,278 | 1,277 | 6   | 538       | 237                   |
|                       |                  |      |        |          | PANEL    | B: 1993 BR | OOD YEA | AR              |         |       |       |       |       |     |           |                       |
| Traditional troll     | NW Quadrant      | 1997 | 1      | 7        | 3        | 3          | 99,338  | 0               | 36,047  | 1,247 | 1,222 | 1,130 | 1,130 | 1   | 32        | 31                    |
| Traditional troll     | NE Quadrant      | 1997 | 1      | 7        | 4        | 3          | 1,106   | 0               | 711     | 73    | 73    | 68    | 68    | 1   | 18        | 17                    |
| Traditional troll     | NW Quadrant      | 1997 | 1      | 7        | 5        | 3          | 21,448  | 0               | 7,245   | 348   | 343   | 311   | 311   | 1   | 34        | 34                    |
| Traditional troll     | NW Quadrant      | 1997 | 1      | 7        | 6        | 3          | 7,949   | 0               | 1,245   | 95    | 95    | 90    | 90    | 1   | 72        | 72                    |
| Drift gillnet         | District 106     | 1997 | 1      | 7        | 25       | 4          | 277     | 0               | 198     | 12    | 11    | 10    | 10    | 1   | 17        | 17                    |
| Drift gillnet         | District 106     | 1997 | 1      | 7        | 26       | 4          | 326     | 0               | 97      | 9     | 9     | 9     | 9     | 1   | 38        | 38                    |
| Drift gillnet         | District 101 MIC | 1997 | 1      | 7        | 27       | 4          | 77      | 0               | 40      | 8     | 8     | 8     | 8     | 1   | 22        | 21                    |
| NMFS trawl survey     | Gulf of Alaska   | 1998 | 1      | 1        | 1        | 2          | 16,941  | 0               | 4,432   | 100   | 100   | 100   | 100   | 1   | 43        | 43                    |
| Traditional troll     | NW Quadrant      | 1998 | 1      | 7        | 1        | 3          | 20,709  | 0               | 7,067   | 331   | 330   | 307   | 307   | 1   | 33        | 33                    |
| Traditional troll     | NE Quadrant      | 1998 | 1      | 7        | 3        | 3          | 19,323  | 0               | 10,238  | 377   | 375   | 347   | 347   | 2   | 43        | 30                    |
| Traditional troll     | NW Quadrant      | 1998 | 1      | 7        | 3        | 3          | 60,545  | 0               | 22,610  | 837   | 814   | 754   | 754   | 1   | 31        | 31                    |
| Traditional troll     | NE Quadrant      | 1998 | 1      | 7        | 4        | 3          | 619     | 0               | 112     | 9     | 9     | 9     | 9     | 1   | 63        | 62                    |
| Traditional troll     | NW Quadrant      | 1998 | 1      | 7        | 4        | 3          | 34,340  | 0               | 11,946  | 652   | 637   | 584   | 583   | 1   | 33        | 33                    |
| Traditional troll     | NE Quadrant      | 1998 | 1      | 7        | 5        | 3          | 930     | 0               | 516     | 68    | 65    | 62    | 62    | 1   | 21        | 21                    |
| Traditional troll     | NW Quadrant      | 1998 | 1      | 7        | 5        | 3          | 12,915  | 0               | 3,125   | 216   | 216   | 207   | 206   | 1   | 47        | 47                    |
| Terminal troll        | SE Quadrant      | 1998 | 1      | 7        | 24       | 4          | 54      | 0               | 46      | 5     | 5     | 5     | 5     | 1   | 13        | 13                    |
| Experimental troll    | District 101-45  | 1998 | 1      | 7        | 25       | 5          | 209     | 0               | 197     | 32    | 32    | 32    | 32    | 2   | 24        | 16                    |
| Experimental troll    | District 101-45  | 1998 | 1      | 7        | 26       | 5          | 105     | 0               | 105     | 16    | 16    | 16    | 16    | 1   | 11        | 11                    |
| Recreational MB       | Juneau           | 1998 | 1      | 8        |          | 4          | 1.297   | 0               | 310     | 54    | 49    | 46    | 46    | 1   | 52        | 52                    |
| Traditional troll     | NW Ouadrant      | 1999 | 1      | 7        | 1        | 3          | 12.321  | 0               | 3.096   | 188   | 187   | 174   | 174   | 1   | 45        | 45                    |
| Traditional troll     | NW Ouadrant      | 1999 | 1      | 7        | 3        | 3          | 67.195  | Ő               | 22,737  | 999   | 992   | 906   | 904   | 1   | 34        | 33                    |
| Experimental troll    | District 101-29  | 1999 | 1      | 7        | 23       | 5          | 131     | 0               | 131     | 16    | 16    | 13    | 13    | 3   | 34        | 19                    |
| Experimental troll    | District 113-95  | 1999 | 1      | 7        | 25       | 5          | 142     | 0               | 29      | 4     | 4     | 4     | 4     | 1   | 55        | 55                    |

Appendix B6.–Page 2 of 16.

|                         |                  |      | Sample | Sampling | g<br>Sampling | Estimation |          | ()                        |         |       | ,      |       | ,      |             | •              |              |
|-------------------------|------------------|------|--------|----------|---------------|------------|----------|---------------------------|---------|-------|--------|-------|--------|-------------|----------------|--------------|
| Fishery                 | Fishery location | Year | type   | type     | period        | level      | $H_{u}$  | $\operatorname{var}(H_u)$ | $n_{u}$ | $a_u$ | $a'_u$ | $t_u$ | $t'_u$ | $m_{_{uj}}$ | $\hat{r}_{uj}$ | $SE(r_{uj})$ |
| Mixed net and seine     | Area 000 CDFO    | 1999 | 1      | 7        | 27            | 3          | 2,426    | 0                         | 755     | 12    | 12     | 10    | 10     | 1           | 36             | 36           |
| Recreational MB         | Craig            | 1999 | 1      | 8        |               | 4          | 2,863    | 0                         | 524     | 27    | 26     | 22    | 22     | 1           | 64             | 64           |
| Recreational MB/DE      | Ketchikan        | 1999 | 1      | 8        |               | 4          | 3,051    | 0                         | 642     | 65    | 63     | 56    | 56     | 4           | 222            | 111          |
| Recreational DE         | Petersburg       | 1999 | 1      | 8        |               | 4          | 2,209    | 0                         | 579     | 29    | 29     | 25    | 24     | 1           | 45             | 45           |
| Recreational MB         | Ketchikan        | 1999 | 1      | 8        |               | 4          | 5,696    | 0                         | 639     | 63    | 62     | 52    | 52     | 1           | 103            | 102          |
| 1993 brood year total   |                  |      |        |          |               |            | 394,542  | 0                         | 135,419 | 5,892 | 5,800  | 5,357 | 5,352  | 35          | 1,288          | 249          |
|                         |                  |      |        |          | PANEL         | C: 1994 BR | ROOD YEA | AR                        |         |       |        |       |        |             |                |              |
| Traditional troll       | NW Quadrant      | 1998 | 1      | 7        | 3             | 3          | 60,545   | 0                         | 22,610  | 837   | 814    | 754   | 754    | 1           | 36             | 35           |
| Traditional troll       | NW Quadrant      | 1998 | 1      | 7        | 4             | 3          | 34,340   | 0                         | 11,946  | 652   | 637    | 584   | 583    | 2           | 77             | 54           |
| Recreational DE         | Juneau           | 1998 | 1      | 8        |               | 4          | 1,485    | 0                         | 583     | 89    | 86     | 79    | 79     | 1           | 34             | 34           |
| Recreational MB         | Cook Inlet       | 1999 | 4      | 2        | 11            | 4          | 4,907    | 384                       | 2,019   | 67    | 64     | 61    | 60     | 1           | 34             | 33           |
| Traditional troll       | NW Quadrant      | 1999 | 1      | 7        | 3             | 3          | 67,195   | 0                         | 22,737  | 999   | 992    | 906   | 904    | 3           | 117            | 67           |
| Experimental troll      | District 101-29  | 1999 | 1      | 7        | 24            | 5          | 218      | 0                         | 188     | 17    | 16     | 15    | 15     | 1           | 16             | 16           |
| Experimental troll      | District 101-45  | 1999 | 1      | 7        | 25            | 5          | 152      | 0                         | 104     | 14    | 14     | 14    | 14     | 1           | 19             | 19           |
| Drift gillnet           | District 101     | 1999 | 1      | 7        | 26            | 4          | 510      | 0                         | 315     | 5     | 5      | 5     | 5      | 1           | 21             | 21           |
| Experimental troll      | District 107-20  | 1999 | 1      | 7        | 26            | 5          | 90       | 0                         | 33      | 2     | 2      | 2     | 2      | 1           | 36             | 35           |
| Drift gillnet           | District 101     | 1999 | 1      | 7        | 27            | 4          | 417      | 0                         | 343     | 26    | 25     | 21    | 21     | 1           | 16             | 16           |
| Recreational DE/MB      | Ketchikan        | 1999 | 1      | 8        |               | 4          | 3,051    | 0                         | 642     | 65    | 63     | 56    | 56     | 2           | 128            | 90           |
| Recreational MB         | Ketchikan        | 1999 | 1      | 8        |               | 4          | 5,696    | 0                         | 639     | 63    | 62     | 52    | 52     | 1           | 118            | 117          |
| Recreational MB         | Sitka            | 1999 | 1      | 8        |               | 4          | 1,754    | 0                         | 354     | 16    | 15     | 15    | 15     | 1           | 69             | 68           |
| Traditional troll       | NE Quadrant      | 2000 | 1      | 7        | 1             | 3          | 1,671    | 0                         | 905     | 53    | 53     | 47    | 47     | 1           | 24             | 24           |
| Traditional troll       | NW Quadrant      | 2000 | 1      | 7        | 1             | 3          | 14,898   | 0                         | 4,534   | 331   | 331    | 313   | 313    | 2           | 86             | 60           |
| Experimental troll      | District 113-95  | 2000 | 1      | 7        | 23            | 5          | 67       | 0                         | 67      | 5     | 5      | 4     | 4      | 1           | 13             | 13           |
| Experimental troll      | District 101-45  | 2000 | 1      | 7        | 26            | 5          | 458      | 0                         | 273     | 32    | 31     | 27    | 27     | 1           | 23             | 22           |
| Experimental troll      | District 101-45  | 2000 | 1      | 7        | 27            | 5          | 641      | 0                         | 641     | 66    | 66     | 59    | 59     | 2           | 26             | 18           |
| Recreational DE         | Ketchikan        | 2000 | 1      | 8        |               | 4          | 2,740    | 0                         | 497     | 33    | 33     | 28    | 28     | 2           | 144            | 101          |
| Recreational MB         | Sitka            | 2000 | 1      | 8        |               | 4          | 8,063    | 0                         | 2,236   | 112   | 112    | 107   | 107    | 1           | 47             | 46           |
| 1994 brood year total   |                  |      |        |          |               |            | 208,898  | 384                       | 71,666  | 3,484 | 3,426  | 3,149 | 3,145  | 27          | 1,082          | 240          |
|                         |                  |      |        |          | PANEL         | D: 1995 BR | ROOD YE. | AR                        |         |       |        |       |        |             |                |              |
| Terminal purse seine    | District 112-22  | 1998 | 1      | 7        | 27            | 4          | 1,833    | 0                         | 812     | 76    | 76     | 74    | 74     | 1           | 21             | 21           |
| Traditional purse seine | District 110     | 1998 | 1      | 7        | 27            | 4          | 184      | 0                         | 25      | 7     | 7      | 7     | 7      | 1           | 70             | 69           |
| Traditional purse seine | District 110     | 1998 | 1      | 7        | 28            | 4          | 63       | 0                         | 63      | 8     | 8      | 8     | 8      | 1           | 10             | 9            |
|                         |                  |      |        |          |               | -continue  | ed-      |                           |         |       |        |       |        |             |                |              |

Appendix B6.–Page 3 of 16.

|                              |                  |      |             | Sampling | 5        |            |             |                                 |        |           |              |          |              |            |             | ( )                |
|------------------------------|------------------|------|-------------|----------|----------|------------|-------------|---------------------------------|--------|-----------|--------------|----------|--------------|------------|-------------|--------------------|
| P. L.                        | Fisher to disc   | V    | Sample      | period   | Sampling | Estimation | $H_{\perp}$ | $\operatorname{var}(H_{\perp})$ | n      | <i>a</i>  | $a'_{\cdot}$ | <i>t</i> | $t'_{\cdot}$ | <i>m</i> . | $\hat{r}$ . | $SE(\hat{r}_{ui})$ |
| Fishery<br>NMES trowl survey | Fishery location | 1000 | <u>type</u> | type     | period   | level 2    | 20.600      | ( 11)                           | 6 175  | 145       | 145          | 145      | 145          | 2 cm       | - uj<br>04  | ( uj )<br>66       |
| Traditional trall            | SE Quadrant      | 1999 | 1           | 1        | 1        | 2          | 2 015       | 0                               | 0,175  | 143       | 143          | 143      | 143          | 2<br>1     | 94<br>14    | 12                 |
|                              | SE Quadrant      | 1999 | 1           | 7        | 2        | 2          | 2,015       | 0                               | 1,410  | 80<br>150 | 00<br>150    | 142      | 142          | 1          | 14          | 13                 |
| I raditional troll           | Sw Quadrant      | 1999 | 1           | /        | 3        | 3          | /,861       | 0                               | 5,043  | 159       | 158          | 143      | 143          | 1          | 15          | 14                 |
| Traditional troll            | SE Quadrant      | 1999 | I           | 7        | 4        | 3          | 340         | 0                               | 295    | 33        | 33           | 30       | 30           | 3          | 33          | 18                 |
| Traditional troll            | NW Quadrant      | 1999 | 1           | 7        | 5        | 3          | 16,299      | 0                               | 7,072  | 616       | 612          | 575      | 574          | 4          | 88          | 43                 |
| Traditional set gillnet      | Kodiak           | 1999 | 1           | 7        | 24       | 4          | 48          | 0                               | 29     | 3         | 3            | 3        | 3            | 1          | 16          | 15                 |
| Mixed net and seine          | Area 000 CDFO    | 1999 | 1           | 7        | 27       | 3          | 2,426       | 0                               | 755    | 12        | 12           | 10       | 10           | 1          | 31          | 30                 |
| Private non-profit           | District 101-95  | 1999 | 1           | 7        | 27       | 3          | 187         | 0                               | 86     | 5         | 5            | 5        | 5            | 1          | 21          | 20                 |
| Traditional troll            | NE Quadrant      | 2000 | 1           | 7        | 1        | 3          | 1,671       | 0                               | 905    | 53        | 53           | 47       | 47           | 1          | 18          | 17                 |
| Traditional troll            | NW Quadrant      | 2000 | 1           | 7        | 1        | 3          | 14,898      | 0                               | 4,534  | 331       | 331          | 313      | 313          | 2          | 62          | 44                 |
| Traditional troll            | NW Quadrant      | 2000 | 1           | 7        | 3        | 3          | 45,953      | 0                               | 18,283 | 966       | 955          | 856      | 853          | 3          | 73          | 41                 |
| Traditional troll            | NW Quadrant      | 2000 | 1           | 7        | 4        | 3          | 11,618      | 0                               | 5,023  | 323       | 320          | 297      | 296          | 2          | 45          | 31                 |
| Traditional troll            | SE Quadrant      | 2000 | 1           | 7        | 4        | 3          | 344         | 0                               | 244    | 19        | 19           | 19       | 19           | 1          | 13          | 13                 |
| Traditional troll            | NW Quadrant      | 2000 | 1           | 7        | 5        | 3          | 23,605      | 0                               | 8,848  | 751       | 732          | 679      | 678          | 5          | 130         | 58                 |
| Traditional troll            | NW Quadrant      | 2000 | 1           | 7        | 6        | 3          | 5,497       | 0                               | 2,858  | 239       | 236          | 228      | 228          | 2          | 37          | 26                 |
| Traditional troll            | NW Quadrant      | 2000 | 1           | 7        | 7        | 3          | 10,157      | 0                               | 3,354  | 286       | 286          | 263      | 263          | 5          | 144         | 64                 |
| Experimental troll           | District 101-45  | 2000 | 1           | 7        | 23       | 5          | 81          | 0                               | 81     | 10        | 10           | 10       | 10           | 1          | 10          | 9                  |
| Experimental troll           | District 101-45  | 2000 | 1           | 7        | 24       | 5          | 136         | 0                               | 136    | 11        | 11           | 10       | 10           | 1          | 10          | 9                  |
| Experimental troll           | District 110-31  | 2000 | 1           | 7        | 24       | 5          | 199         | 0                               | 170    | 17        | 17           | 16       | 16           | 1          | 11          | 11                 |
| Experimental troll           | District 101-29  | 2000 | 1           | 7        | 25       | 5          | 148         | 0                               | 148    | 10        | 10           | 10       | 10           | 1          | 10          | 9                  |
| Experimental troll           | District 101-45  | 2000 | 1           | 7        | 25       | 5          | 472         | 0                               | 300    | 24        | 24           | 22       | 22           | 1          | 15          | 14                 |
| Experimental troll           | District 105-41  | 2000 | 1           | 7        | 25       | 5          | 89          | 0                               | 89     | 14        | 14           | 13       | 13           | 1          | 10          | 9                  |
| Experimental troll           | District 106-30  | 2000 | 1           | 7        | 25       | 5          | 29          | 0                               | 26     | 2         | 2            | 2        | 2            | 1          | 11          | 10                 |
| Mixed net and seine          | Area 003 CDFO    | 2000 | 1           | 7        | 26       | 3          | 3,994       | 0                               | 1,429  | 9         | 8            | 8        | 8            | 1          | 30          | 29                 |
| Drift gillnet                | District 106     | 2000 | 1           | 7        | 26       | 4          | 215         | 0                               | 71     | 9         | 9            | 5        | 5            | 3          | 86          | 49                 |
| Experimental troll           | District 101-29  | 2000 | 1           | 7        | 26       | 5          | 627         | 0                               | 613    | 44        | 44           | 42       | 42           | 1          | 10          | 9                  |
| Experimental troll           | District 101-45  | 2000 | 1           | 7        | 26       | 5          | 458         | 0                               | 273    | 32        | 31           | 27       | 27           | 2          | 33          | 23                 |
| Experimental troll           | District 105-41  | 2000 | 1           | 7        | 26       | 5          | 63          | 0                               | 63     | 4         | 4            | 4        | 4            | 1          | 10          | 9                  |

Appendix B6.–Page 4 of 16.

|                       |                  |      | :      | Sampling | 5        |            |             |                       |         |            |            |                |                |                 |             |                                 |
|-----------------------|------------------|------|--------|----------|----------|------------|-------------|-----------------------|---------|------------|------------|----------------|----------------|-----------------|-------------|---------------------------------|
|                       |                  |      | Sample | period   | Sampling | Estimation | H           | var(H)                | 10      | a          | <i>a</i> ′ | t              | ť              | m               | $\hat{r}$   | $SE(\hat{r}_{\perp})$           |
| Fishery               | Fishery location | Year | type   | type     | period   | level      | <b>11</b> u | var(11 <sub>u</sub> ) | $n_{u}$ | $\alpha_u$ | u u        | <sup>r</sup> u | <sup>i</sup> u | m <sub>uj</sub> | <b>'</b> uj | $\mathcal{SL}(\mathbf{u}_{ij})$ |
| Experimental troll    | District 113-35  | 2000 | 1      | 7        | 26       | 5          | 2,186       | 0                     | 672     | 48         | 48         | 45             | 45             | 1               | 31          | 30                              |
| Experimental troll    | District 113-37  | 2000 | 1      | 7        | 26       | 5          | 141         | 0                     | 18      | 4          | 4          | 4              | 4              | 1               | 74          | 74                              |
| Experimental troll    | District 101-45  | 2000 | 1      | 7        | 27       | 5          | 641         | 0                     | 641     | 66         | 66         | 59             | 59             | 1               | 10          | 9                               |
| Drift gillnet         | District 106     | 2000 | 1      | 7        | 28       | 4          | 237         | 0                     | 184     | 14         | 14         | 13             | 13             | 1               | 12          | 12                              |
| Mixed net and seine   | Area 003 CDFO    | 2000 | 1      | 7        | 29       | 3          | 3,689       | 0                     | 2,712   | 30         | 30         | 28             | 28             | 1               | 13          | 12                              |
| Experimental troll    | District 101-45  | 2000 | 1      | 7        | 29       | 5          | 83          | 0                     | 67      | 11         | 10         | 8              | 8              | 1               | 13          | 12                              |
| Recreational DE       | Ketchikan        | 2000 | 1      | 8        | 1        | 4          | 2,740       | 0                     | 497     | 33         | 33         | 28             | 28             | 3               | 157         | 90                              |
| Recreational MB       | Sitka            | 2000 | 1      | 8        | 2        | 4          | 8,063       | 0                     | 2,236   | 112        | 112        | 107            | 107            | 1               | 34          | 34                              |
| Recreational MB       | Ketchikan        | 2000 | 1      | 8        | 1        | 4          | 8,032       | 0                     | 624     | 55         | 54         | 47             | 47             | 1               | 125         | 124                             |
| Recreational MB       | Cook Inlet       | 2000 | 4      | 8        | 1        | 4          | 4,773       | 362                   | 1,839   | 79         | 78         | 68             | 66             | 1               | 26          | 25                              |
| Recreational MB       | Cook Inlet       | 2001 | 4      | 2        | 10       | 4          | 3,671       | 314                   | 1,552   | 93         | 89         | 78             | 78             | 2               | 47          | 45                              |
| Recreational DE       | Ketchikan        | 2001 | 1      | 2        | 11       | 4          | 439         | 0                     | 390     | 32         | 31         | 30             | 30             | 3               | 33          | 18                              |
| Recreational DE       | Sitka            | 2001 | 1      | 2        | 11       | 4          | 591         | 0                     | 591     | 31         | 31         | 31             | 31             | 1               | 10          | 9                               |
| Recreational MB       | Ketchikan        | 2001 | 1      | 2        | 12       | 4          | 829         | 95,632                | 143     | 22         | 21         | 18             | 18             | 1               | 58          | 57                              |
| Traditional troll     | NW Quadrant      | 2001 | 1      | 7        | 1        | 3          | 9,337       | 0                     | 3,522   | 328        | 327        | 309            | 309            | 2               | 51          | 35                              |
| Traditional troll     | SE Quadrant      | 2001 | 1      | 7        | 3        | 3          | 1,693       | 0                     | 902     | 66         | 58         | 53             | 53             | 1               | 20          | 20                              |
| Traditional troll     | Area 000 CDFO    | 2001 | 1      | 7        | 17       | 3          | 202         | 0                     | 202     | 16         | 16         | 16             | 16             | 1               | 10          | 9                               |
| Experimental troll    | District 113-95  | 2001 | 1      | 7        | 20       | 5          | 86          | 0                     | 86      | 8          | 8          | 6              | 6              | 1               | 10          | 9                               |
| Experimental troll    | District 113-62  | 2001 | 1      | 7        | 21       | 5          | 79          | 0                     | 75      | 7          | 7          | 7              | 7              | 1               | 10          | 10                              |
| Experimental troll    | District 101-29  | 2001 | 1      | 7        | 22       | 5          | 84          | 0                     | 69      | 3          | 3          | 3              | 3              | 1               | 12          | 11                              |
| Experimental troll    | District 109-51  | 2001 | 1      | 7        | 22       | 5          | 284         | 0                     | 149     | 19         | 19         | 18             | 18             | 1               | 18          | 18                              |
| Experimental troll    | District 113-95  | 2001 | 1      | 7        | 22       | 5          | 384         | 0                     | 320     | 23         | 23         | 17             | 17             | 1               | 11          | 11                              |
| Experimental troll    | District 101-29  | 2001 | 1      | 7        | 23       | 5          | 568         | 0                     | 369     | 23         | 23         | 21             | 21             | 2               | 29          | 20                              |
| Experimental troll    | District 108-30  | 2001 | 1      | 7        | 23       | 5          | 170         | 0                     | 84      | 3          | 3          | 2              | 2              | 1               | 19          | 19                              |
| Experimental troll    | District 108-30  | 2001 | 1      | 7        | 24       | 5          | 124         | 0                     | 119     | 9          | 9          | 9              | 9              | 1               | 10          | 9                               |
| Experimental troll    | District 101-29  | 2001 | 1      | 7        | 25       | 5          | 636         | 0                     | 476     | 18         | 18         | 15             | 15             | 1               | 13          | 12                              |
| Experimental troll    | District 101-45  | 2001 | 1      | 7        | 25       | 5          | 783         | 0                     | 399     | 26         | 26         | 22             | 22             | 2               | 37          | 26                              |
| Experimental troll    | District 113-62  | 2001 | 1      | 7        | 25       | 5          | 113         | 0                     | 82      | 7          | 7          | 6              | 6              | 1               | 13          | 13                              |
| Experimental troll    | District 101-29  | 2001 | 1      | 7        | 26       | 5          | 545         | 0                     | 222     | 16         | 16         | 13             | 13             | 1               | 23          | 23                              |
| Private non-profit    | District 101-95  | 2001 | 1      | 7        | 26       | 5          | 150         | 0                     | 140     | 14         | 14         | 12             | 12             | 3               | 31          | 17                              |
| 1995 brood year total |                  |      |        |          |          |            | 233,463     | 96,308                | 88,595  | 5,514      | 5,453      | 5,041          | 5,033          | 93              | 2,135       | 271                             |

Appendix B6.–Page 5 of 16.

|                      |                  |      |        | Sampling | 5        |            |                            |              |        |       |       |                |                |            |      |                    |
|----------------------|------------------|------|--------|----------|----------|------------|----------------------------|--------------|--------|-------|-------|----------------|----------------|------------|------|--------------------|
| P' 1                 | <b>D</b> . 1 1 . |      | Sample | period   | Sampling | Estimation | Η                          | var(H)       | п      | a     | a'    | t              | t'             | <i>m</i> . | ŕ.   | $SE(\hat{r}_{ii})$ |
| Fishery              | Fishery location | Year | type   | type     | period   | Level      | $\frac{u}{000 \text{ VE}}$ | · ···· ( u ) | $n_u$  | чu    | чu    | <sup>-</sup> u | <sup>-</sup> u | тиј        | • uj | ( uj )             |
| <u> </u>             | D: . : . 110.00  | 1000 |        |          | PANEL    | E: 1996 BK |                            | 4K           | 0.07   |       |       | (0)            | (0             |            | 10   |                    |
| Terminal purse seine | District 112-22  | 1999 | I      | 1        | 28       | 4          | 911                        | 0            | 906    | 78    | 76    | 69             | 69             | 2          | 19   | 13                 |
| NMFS trawl survey    | Gulf of Alaska   | 2000 | l      | 1        | l        | 2          | 26,676                     | 0            | 6,589  | 84    | 84    | 84             | 84             | 2          | 75   | 53                 |
| Traditional troll    | SE Quadrant      | 2000 | l      | 7        | 3        | 3          | 1,233                      | 0            | 884    | 46    | 45    | 43             | 43             | I          | 13   | 13                 |
| Traditional troll    | SW Quadrant      | 2000 | 1      | 7        | 3        | 3          | 2,411                      | 0            | 1,625  | 41    | 38    | 35             | 35             | 1          | 15   | 14                 |
| Traditional troll    | NW Quadrant      | 2000 | 1      | 7        | 7        | 3          | 10,157                     | 0            | 3,354  | 286   | 286   | 263            | 263            | 1          | 28   | 28                 |
| Experimental troll   | District 101-45  | 2000 | 1      | 7        | 23       | 5          | 81                         | 0            | 81     | 10    | 10    | 10             | 10             | 1          | 9    | 9                  |
| Experimental troll   | District 101-29  | 2000 | 1      | 7        | 24       | 5          | 95                         | 0            | 94     | 8     | 8     | 8              | 8              | 1          | 9    | 9                  |
| Experimental troll   | District 101-29  | 2000 | 1      | 7        | 26       | 5          | 627                        | 0            | 613    | 44    | 44    | 42             | 42             | 2          | 19   | 13                 |
| Experimental troll   | District 101-45  | 2000 | 1      | 7        | 26       | 5          | 458                        | 0            | 273    | 32    | 31    | 27             | 27             | 1          | 16   | 16                 |
| Experimental troll   | District 114-27  | 2000 | 1      | 7        | 26       | 5          | 88                         | 0            | 73     | 6     | 6     | 6              | 6              | 1          | 11   | 11                 |
| Mixed net and seine  | Area 004 CDFO    | 2000 | 1      | 7        | 27       | 3          | 5,700                      | 0            | 1,469  | 15    | 15    | 13             | 13             | 1          | 36   | 36                 |
| Drift gillnet        | District 101     | 2000 | 1      | 7        | 27       | 4          | 265                        | 0            | 99     | 8     | 8     | 5              | 5              | 1          | 25   | 24                 |
| Drift gillnet        | District 106     | 2000 | 1      | 7        | 27       | 4          | 298                        | 0            | 224    | 23    | 23    | 20             | 20             | 1          | 12   | 12                 |
| Drift gillnet        | District 106     | 2000 | 1      | 7        | 28       | 4          | 237                        | 0            | 184    | 14    | 14    | 13             | 13             | 1          | 12   | 11                 |
| Private non-profit   | District 101-95  | 2000 | 1      | 7        | 28       | 5          | 267                        | 0            | 214    | 24    | 24    | 22             | 22             | 1          | 12   | 11                 |
| Drift gillnet        | District 106     | 2000 | 1      | 7        | 29       | 4          | 277                        | 0            | 123    | 14    | 14    | 13             | 13             | 1          | 21   | 20                 |
| Recreational DE      | Sitka            | 2000 | 1      | 8        | 2        | 4          | 8,063                      | 0            | 2,236  | 112   | 112   | 107            | 107            | 1          | 34   | 33                 |
| Recreational MB      | Ketchikan        | 2000 | 1      | 8        | 1        | 4          | 8,032                      | 0            | 624    | 55    | 54    | 47             | 47             | 3          | 366  | 211                |
| Recreational DE      | Ketchikan        | 2001 | 1      | 2        | 11       | 4          | 439                        | 0            | 390    | 32    | 31    | 30             | 30             | 3          | 32   | 18                 |
| Recreational DE      | Sitka            | 2001 | 1      | 2        | 11       | 4          | 591                        | 0            | 591    | 31    | 31    | 31             | 31             | 1          | 9    | 9                  |
| Recreational DT      | Ketchikan        | 2001 | 1      | 2        | 12       | 4          | 56                         | 786          | 14     | 1     | 1     | 1              | 1              | 1          | 37   | 37                 |
| Recreational MB      | Ketchikan        | 2001 | 1      | 2        | 12       | 4          | 829                        | 95,632       | 143    | 22    | 21    | 18             | 18             | 3          | 170  | 110                |
| Recreational MB      | Ketchikan        | 2001 | 1      | 2        | 13       | 4          | 1,567                      | 56,236       | 413    | 48    | 46    | 42             | 42             | 3          | 111  | 65                 |
| Recreational MB      | Craig            | 2001 | 1      | 2        | 14       | 4          | 1,117                      | 0            | 268    | 7     | 7     | 7              | 7              | 1          | 39   | 38                 |
| Recreational MB      | Ketchikan        | 2001 | 1      | 2        | 14       | 4          | 1,438                      | 226,515      | 305    | 33    | 33    | 29             | 29             | 1          | 44   | 43                 |
| Recreational DE      | Juneau           | 2001 | 1      | 2        | 17       | 4          | 200                        | 0            | 200    | 13    | 13    | 12             | 12             | 1          | 9    | 9                  |
| Traditional troll    | NW Quadrant      | 2001 | 1      | 7        | 3        | 3          | 54,077                     | 0            | 24,142 | 1,387 | 1,378 | 1,252          | 1,247          | 3          | 63   | 36                 |
| Traditional troll    | SE Quadrant      | 2001 | 1      | 7        | 3        | 3          | 1,693                      | 0            | 902    | 66    | 58    | 53             | 53             | 1          | 20   | 19                 |
| Traditional troll    | SW Quadrant      | 2001 | 1      | 7        | 3        | 3          | 8,269                      | 0            | 5,980  | 231   | 212   | 191            | 191            | 2          | 28   | 19                 |
| Traditional troll    | SE Quadrant      | 2001 | 1      | 7        | 4        | 3          | 1,001                      | 0            | 792    | 84    | 83    | 72             | 72             | 1          | 12   | 11                 |
| Traditional troll    | Area 000 CDFO    | 2001 | 1      | 7        | 19       | 3          | 226                        | 0            | 226    | 13    | 13    | 13             | 12             | 1          | 10   | 10                 |

Appendix B6.–Page 6 of 16.

|                     |                  |      |        | Sampling | 5        |            |         |                    |                       |                 |       |       |       |     |           |                       |
|---------------------|------------------|------|--------|----------|----------|------------|---------|--------------------|-----------------------|-----------------|-------|-------|-------|-----|-----------|-----------------------|
|                     |                  |      | Sample | period   | Sampling | Estimation | Н       | var(H)             | n                     | a               | a'    | t     | t'    | т   | $\hat{r}$ | $SE(\hat{r}_{\perp})$ |
| Fishery             | Fishery location | Year | type   | type     | period   | level      | u       | (II <sub>u</sub> ) | <i>n</i> <sub>u</sub> | er <sub>u</sub> | er u  | ° u   | ° u   | тиj | ' uj      | ~ - (· uj )           |
| Experimental troll  | District 105-41  | 2001 | 1      | 7        | 20       | 5          | 78      | 0                  | 57                    | 2               | 2     | 1     | 1     | 1   | 13        | 12                    |
| Experimental troll  | District 113-41  | 2001 | 1      | 7        | 20       | 5          | 319     | 0                  | 177                   | 11              | 11    | 10    | 10    | 1   | 17        | 16                    |
| Experimental troll  | District 101-45  | 2001 | 1      | 7        | 22       | 5          | 85      | 0                  | 54                    | 7               | 7     | 7     | 7     | 1   | 15        | 14                    |
| Experimental troll  | District 101-29  | 2001 | 1      | 7        | 23       | 5          | 568     | 0                  | 369                   | 23              | 23    | 21    | 21    | 7   | 100       | 37                    |
| Experimental troll  | District 101-45  | 2001 | 1      | 7        | 23       | 5          | 52      | 0                  | 36                    | 3               | 3     | 3     | 3     | 1   | 13        | 13                    |
| Experimental troll  | District 101-45  | 2001 | 1      | 7        | 24       | 5          | 811     | 0                  | 286                   | 28              | 28    | 28    | 27    | 2   | 55        | 38                    |
| Experimental troll  | District 114-21  | 2001 | 1      | 7        | 24       | 5          | 200     | 0                  | 110                   | 6               | 6     | 5     | 5     | 1   | 17        | 16                    |
| Drift gillnet       | District 106     | 2001 | 1      | 7        | 25       | 4          | 336     | 0                  | 147                   | 10              | 10    | 7     | 7     | 1   | 21        | 21                    |
| Experimental troll  | District 101-29  | 2001 | 1      | 7        | 25       | 5          | 636     | 0                  | 476                   | 18              | 18    | 15    | 15    | 2   | 25        | 17                    |
| Experimental troll  | District 101-45  | 2001 | 1      | 7        | 25       | 5          | 783     | 0                  | 399                   | 26              | 26    | 22    | 22    | 2   | 37        | 25                    |
| Experimental troll  | District 113-95  | 2001 | 1      | 7        | 25       | 5          | 551     | 0                  | 402                   | 30              | 30    | 28    | 28    | 1   | 13        | 12                    |
| Mixed net and seine | Area 003 CDFO    | 2001 | 1      | 7        | 26       | 3          | 4,485   | 0                  | 1,486                 | 27              | 26    | 24    | 24    | 1   | 29        | 29                    |
| Drift gillnet       | District 101 MIC | 2001 | 1      | 7        | 26       | 4          | 1,037   | 0                  | 249                   | 14              | 14    | 13    | 13    | 1   | 39        | 38                    |
| Experimental troll  | District 101-21  | 2001 | 1      | 7        | 26       | 5          | 27      | 0                  | 27                    | 3               | 3     | 3     | 3     | 1   | 9         | 9                     |
| Experimental troll  | District 101-29  | 2001 | 1      | 7        | 26       | 5          | 545     | 0                  | 222                   | 16              | 16    | 13    | 13    | 1   | 23        | 22                    |
| Experimental troll  | District 101-45  | 2001 | 1      | 7        | 28       | 5          | 254     | 0                  | 257                   | 21              | 21    | 19    | 19    | 1   | 9         | 9                     |
| Recreational DE     | Ketchikan        | 2002 | 1      | 2        | 10       | 4          | 261     | 0                  | 231                   | 19              | 19    | 15    | 15    | 1   | 11        | 10                    |
| Recreational MB     | Craig            | 2002 | 1      | 2        | 11       | 4          | 789     | 0                  | 121                   | 8               | 8     | 7     | 7     | 2   | 121       | 85                    |
| Recreational DE     | Ketchikan        | 2002 | 1      | 2        | 11       | 4          | 793     | 0                  | 723                   | 72              | 71    | 64    | 63    | 7   | 74        | 27                    |
| Recreational DE     | Sitka            | 2002 | 1      | 2        | 11       | 4          | 467     | 0                  | 467                   | 36              | 36    | 34    | 33    | 1   | 10        | 9                     |
| Recreational MB     | Ketchikan        | 2002 | 1      | 2        | 12       | 4          | 1,846   | 155,036            | 325                   | 33              | 33    | 27    | 27    | 1   | 53        | 52                    |
| Traditional troll   | NW Quadrant      | 2002 | 1      | 7        | 1        | 3          | 8,378   | 0                  | 1,886                 | 310             | 310   | 256   | 256   | 2   | 83        | 58                    |
| Traditional troll   | NW Quadrant      | 2002 | 1      | 7        | 3        | 3          | 129,680 | 0                  | 43,374                | 2,801           | 2,771 | 2,052 | 2,049 | 2   | 56        | 39                    |
| Experimental troll  | District 114-27  | 2002 | 1      | 7        | 17       | 5          | 25      | 0                  | 25                    | 1               | 1     | 1     | 1     | 1   | 9         | 9                     |
| Experimental troll  | District 101-29  | 2002 | 1      | 7        | 21       | 5          | 299     | 0                  | 206                   | 14              | 14    | 11    | 11    | 1   | 14        | 13                    |
| Experimental troll  | District 106-30  | 2002 | 1      | 7        | 21       | 5          | 8       | 0                  | 8                     | 1               | 1     | 1     | 1     | 1   | 9         | 9                     |
| Experimental troll  | District 113-95  | 2002 | 1      | 7        | 21       | 5          | 671     | 0                  | 549                   | 21              | 21    | 18    | 18    | 1   | 11        | 11                    |
| Traditional troll   | Area 005 CDFO    | 2002 | 1      | 7        | 21       | 3          | 15.656  | 0                  | 3.609                 | 403             | 403   | 392   | 390   | 1   | 41        | 40                    |
| Experimental troll  | District 101-29  | 2002 | 1      | 7        | 22       | 5          | 471     | 0                  | 404                   | 28              | 28    | 27    | 27    | 1   | 11        | 10                    |
| Experimental troll  | District 109-62  | 2002 | 1      | 7        | 22       | 5          | 20      | 0                  | 19                    | 2               | 2     | 2     | 2     | 1   | 10        | 9                     |
| Experimental troll  | District 101-29  | 2002 | 1      | 7        | 23       | 5          | 1 307   | ů<br>0             | 857                   | 63              | 62    | 61    | 61    | 5   | 72        | 31                    |
| Experimental troll  | District 101-90  | 2002 | 1      | 7        | 23       | 5          | 72      | 0                  | 72                    | 8               | 8     | 8     | 8     | 2   | 19        | 12                    |

Appendix B6.–Page 7 of 16.

|                       |                  |      | Sample | Sampling<br>period | g<br>Sampling | Estimation | Ш                  | vor(H)       |         | a       | <i>a</i> ′ | 4           | <i>.</i> , |          | <u>^</u>        | $SE(\hat{r})$ |
|-----------------------|------------------|------|--------|--------------------|---------------|------------|--------------------|--------------|---------|---------|------------|-------------|------------|----------|-----------------|---------------|
| Fishery               | Fishery location | Year | type   | type               | period        | level      | $\mathbf{\Pi}_{u}$ | $val(\Pi_u)$ | $n_u$   | $a_{u}$ | $a_{u}$    | $\iota_{u}$ | lu         | $m_{uj}$ | r <sub>uj</sub> | $SL(r_{uj})$  |
| Experimental troll    | District 101-21  | 2002 | 1      | 7                  | 24            | 5          | 214                | 0            | 96      | 9       | 9          | 7           | 7          | 1        | 21              | 20            |
| Experimental troll    | District 113-41  | 2002 | 1      | 7                  | 24            | 5          | 707                | 0            | 297     | 17      | 17         | 13          | 13         | 1        | 22              | 22            |
| Experimental troll    | District 114-50  | 2002 | 1      | 7                  | 24            | 5          | 476                | 0            | 376     | 25      | 24         | 19          | 19         | 1        | 12              | 12            |
| Terminal troll        | SE Quadrant      | 2002 | 1      | 7                  | 24            | 4          | 27                 | 0            | 27      | 2       | 2          | 2           | 2          | 1        | 9               | 9             |
| Experimental troll    | District 101-21  | 2002 | 1      | 7                  | 25            | 5          | 680                | 0            | 432     | 45      | 45         | 33          | 33         | 1        | 15              | 14            |
| Experimental troll    | District 101-29  | 2002 | 1      | 7                  | 25            | 5          | 351                | 0            | 155     | 9       | 9          | 8           | 8          | 1        | 21              | 21            |
| Private non-profit    | District 101-95  | 2002 | 1      | 7                  | 26            | 5          | 3,032              | 0            | 540     | 60      | 60         | 52          | 52         | 1        | 52              | 52            |
| 1996 brood year total |                  |      |        |                    |               |            | 314,376            | 534,205      | 113,584 | 7,100   | 7,017      | 5,907       | 5,893      | 107      | 2,506           | 330           |
|                       |                  |      |        |                    | PANEL         | F: 1997 BR | OOD YE.            | AR           |         |         |            |             |            |          |                 |               |
| Recreational DE       | Ketchikan        | 2001 | 1      | 2                  | 12            | 4          | 311                | 0            | 269     | 34      | 34         | 31          | 31         | 1        | 15              | 15            |
| Traditional troll     | NW Quadrant      | 2001 | 1      | 7                  | 3             | 3          | 54,077             | 0            | 24,142  | 1,387   | 1,378      | 1,252       | 1,247      | 1        | 30              | 29            |
| Traditional troll     | NW Quadrant      | 2001 | 1      | 7                  | 4             | 3          | 28,528             | 0            | 10,776  | 986     | 975        | 880         | 876        | 1        | 35              | 35            |
| Traditional troll     | SE Quadrant      | 2001 | 1      | 7                  | 4             | 3          | 1,001              | 0            | 792     | 84      | 83         | 72          | 72         | 1        | 17              | 16            |
| Recreational DE       | Ketchikan        | 2002 | 1      | 2                  | 10            | 4          | 261                | 0            | 231     | 19      | 19         | 15          | 15         | 2        | 29              | 20            |
| Recreational DE       | Ketchikan        | 2002 | 1      | 2                  | 11            | 4          | 793                | 0            | 723     | 72      | 71         | 64          | 63         | 3        | 44              | 25            |
| Recreational MB       | Ketchikan        | 2002 | 1      | 2                  | 13            | 4          | 1,744              | 89,176       | 454     | 28      | 28         | 28          | 28         | 1        | 50              | 50            |
| Recreational MB       | Ketchikan        | 2002 | 1      | 2                  | 14            | 4          | 1,080              | 35,457       | 192     | 15      | 15         | 13          | 13         | 1        | 73              | 73            |
| Traditional troll     | NE Quadrant      | 2002 | 1      | 7                  | 1             | 3          | 1,985              | 0            | 761     | 57      | 57         | 50          | 50         | 2        | 68              | 48            |
| Traditional troll     | NW Quadrant      | 2002 | 1      | 7                  | 3             | 3          | 129,680            | 0            | 43,374  | 2,801   | 2,771      | 2,052       | 2,049      | 1        | 39              | 39            |
| Traditional troll     | SW Quadrant      | 2002 | 1      | 7                  | 3             | 3          | 51,881             | 0            | 33,852  | 1,412   | 1,392      | 1,099       | 1,093      | 1        | 20              | 20            |
| Traditional troll     | NW Quadrant      | 2002 | 1      | 7                  | 5             | 3          | 16,581             | 0            | 4,504   | 929     | 928        | 630         | 628        | 1        | 48              | 48            |
| Experimental troll    | District 113-95  | 2002 | 1      | 7                  | 20            | 5          | 534                | 0            | 494     | 23      | 23         | 19          | 19         | 1        | 14              | 14            |
| Experimental troll    | District 113-01  | 2002 | 1      | 7                  | 21            | 5          | 78                 | 0            | 78      | 3       | 3          | 3           | 3          | 1        | 13              | 13            |
| Experimental troll    | District 101-90  | 2002 | 1      | 7                  | 23            | 5          | 72                 | 0            | 72      | 8       | 8          | 8           | 8          | 1        | 13              | 13            |
| Traditional troll     | Area 001 CDFO    | 2002 | 1      | 7                  | 23            | 3          | 15,546             | 0            | 3,593   | 148     | 148        | 132         | 131        | 1        | 57              | 56            |
| Experimental troll    | District 101-29  | 2002 | 1      | 7                  | 24            | 5          | 1,088              | 0            | 546     | 35      | 33         | 29          | 29         | 2        | 55              | 39            |
| Experimental troll    | District 101-29  | 2002 | 1      | 7                  | 25            | 5          | 351                | 0            | 155     | 9       | 9          | 8           | 8          | 1        | 30              | 29            |
| Private non-profit    | District 101-95  | 2002 | 1      | 7                  | 26            | 5          | 3,032              | 0            | 540     | 60      | 60         | 52          | 52         | 1        | 73              | 73            |
| Recreational MB       | Cook Inlet       | 2002 | 4      | 8                  |               | 4          | 6,850              | 533          | 1,871   | 96      | 92         | 50          | 50         | 1        | 50              | 49            |
| Recreational MB       | Wrangell         | 2003 | 1      | 2                  | 10            | 4          | 545                | 0            | 86      | 4       | 4          | 3           | 3          | 1        | 83              | 82            |
| Recreational DE       | Sitka            | 2003 | 1      | 2                  | 11            | 4          | 419                | 0            | 419     | 19      | 19         | 17          | 17         | 1        | 13              | 13            |
| Recreational MB       | Sitka            | 2003 | 1      | 2                  | 11            | 4          | 2,782              | 237,329      | 487     | 24      | 24         | 24          | 24         | 1        | 75              | 74            |

Appendix B6.–Page 8 of 16.

|                       |                  |      | Sampla | Sampling | Sompling | Estimation |         | ( )                       |         |       | _      |       | _      |          |                | (2)                |
|-----------------------|------------------|------|--------|----------|----------|------------|---------|---------------------------|---------|-------|--------|-------|--------|----------|----------------|--------------------|
| Fishery               | Fishery location | Year | type   | type     | period   | level      | $H_{u}$ | $\operatorname{var}(H_u)$ | $n_{u}$ | $a_u$ | $a'_u$ | $t_u$ | $t'_u$ | $m_{uj}$ | $\hat{r}_{uj}$ | $SE(\hat{r}_{uj})$ |
| Traditional troll     | NW Quadrant      | 2003 | 1      | 7        | 1        | 3          | 26,879  | 0                         | 5,317   | 1,179 | 1,156  | 633   | 633    | 1        | 67             | 67                 |
| Experimental troll    | District 109-51  | 2003 | 1      | 7        | 19       | 5          | 212     | 0                         | 105     | 11    | 11     | 11    | 11     | 1        | 26             | 26                 |
| Traditional troll     | Area 001 CDFO    | 2003 | 1      | 7        | 20       | 3          | 10,368  | 0                         | 1,194   | 51    | 51     | 50    | 50     | 1        | 113            | 113                |
| Experimental troll    | District 102-50  | 2003 | 1      | 7        | 23       | 5          | 182     | 0                         | 186     | 12    | 12     | 10    | 10     | 1        | 13             | 12                 |
| Experimental troll    | District 114-50  | 2003 | 1      | 7        | 23       | 5          | 150     | 0                         | 122     | 10    | 10     | 10    | 10     | 2        | 32             | 22                 |
| Experimental troll    | District 101-45  | 2003 | 1      | 7        | 24       | 5          | 179     | 0                         | 113     | 10    | 10     | 10    | 10     | 1        | 21             | 20                 |
| Experimental troll    | District 101-29  | 2003 | 1      | 7        | 25       | 5          | 1,002   | 0                         | 639     | 52    | 48     | 45    | 45     | 2        | 44             | 31                 |
| Experimental troll    | District 101-29  | 2003 | 1      | 7        | 26       | 5          | 1,044   | 0                         | 922     | 72    | 70     | 55    | 55     | 2        | 30             | 21                 |
| Experimental troll    | District 101-29  | 2004 | 1      | 7        | 25       | 5          | 1,244   | 0                         | 714     | 44    | 43     | 36    | 36     | 1        | 23             | 23                 |
| 1997 brood year total |                  |      |        |          |          |            | 360,478 | 362,495                   | 137,723 | 9,694 | 9,585  | 7,391 | 7,369  | 40       | 1,315          | 254                |
|                       |                  |      |        |          | PANEL    | G: 1998 BR | OOD YEA | AR                        |         |       |        |       |        |          |                |                    |
| Recreational MB       | Ketchikan        | 2001 | 1      | 2        | 14       | 4          | 44      | 348                       | 8       | 2     | 2      | 1     | 1      | 1        | 59             | 58                 |
| Recreational DE       | Sitka            | 2002 | 1      | 2        | 11       | 4          | 467     | 0                         | 467     | 36    | 36     | 34    | 33     | 1        | 11             | 10                 |
| Recreational MB       | Ketchikan        | 2002 | 1      | 2        | 12       | 4          | 1,846   | 155,036                   | 325     | 33    | 33     | 27    | 27     | 1        | 61             | 60                 |
| Traditional troll     | SE Quadrant      | 2002 | 1      | 7        | 3        | 3          | 3,870   | 0                         | 1,676   | 146   | 146    | 118   | 117    | 1        | 25             | 24                 |
| Traditional troll     | NW Quadrant      | 2002 | 1      | 7        | 4        | 3          | 61,395  | 0                         | 21,787  | 2,083 | 2,057  | 1,444 | 1,438  | 1        | 31             | 30                 |
| Traditional troll     | SE Quadrant      | 2002 | 1      | 7        | 4        | 3          | 2,073   | 0                         | 1,236   | 115   | 114    | 92    | 92     | 3        | 54             | 31                 |
| Experimental troll    | District 101-29  | 2002 | 1      | 7        | 23       | 5          | 1,307   | 0                         | 857     | 63    | 62     | 62    | 61     | 1        | 17             | 16                 |
| Drift gillnet         | District 101 MIC | 2002 | 1      | 7        | 25       | 4          | 397     | 0                         | 183     | 12    | 12     | 12    | 12     | 2        | 46             | 32                 |
| Recreational DE       | Ketchikan        | 2003 | 1      | 2        | 11       | 4          | 562     | 0                         | 508     | 44    | 42     | 39    | 39     | 1        | 12             | 12                 |
| Recreational MB       | Ketchikan        | 2003 | 1      | 2        | 11       | 4          | 235     | 5,486                     | 41      | 2     | 2      | 2     | 2      | 1        | 61             | 61                 |
| Recreational MB       | Ketchikan        | 2003 | 1      | 2        | 12       | 4          | 1,722   | 202,928                   | 394     | 35    | 35     | 30    | 30     | 2        | 93             | 68                 |
| Recreational MB       | Ketchikan        | 2003 | 1      | 2        | 13       | 4          | 2,503   | 571,144                   | 453     | 33    | 31     | 30    | 30     | 2        | 125            | 92                 |
| Recreational MB       | Sitka            | 2003 | 1      | 2        | 17       | 4          | 2,316   | 249,524                   | 651     | 50    | 50     | 35    | 35     | 1        | 38             | 37                 |
| Traditional troll     | NW Quadrant      | 2003 | 1      | 7        | 3        | 3          | 187,173 | 0                         | 52,928  | 3,003 | 2,947  | 2,199 | 2,167  | 1        | 39             | 39                 |
| Traditional troll     | SW Quadrant      | 2003 | 1      | 7        | 3        | 3          | 37,330  | 0                         | 20,596  | 982   | 961    | 708   | 695    | 1        | 20             | 20                 |
| Traditional troll     | NW Quadrant      | 2003 | 1      | 7        | 5        | 3          | 8,935   | 0                         | 2,875   | 410   | 408    | 222   | 219    | 1        | 34             | 33                 |
| Experimental troll    | District 108-30  | 2003 | 1      | 7        | 19       | 5          | 10      | 0                         | 2       | 1     | 1      | 1     | 1      | 1        | 53             | 53                 |
| Experimental troll    | District 113-31  | 2003 | 1      | 7        | 21       | 5          | 300     | 0                         | 140     | 10    | 10     | 8     | 8      | 1        | 23             | 22                 |
| Experimental troll    | District 108-30  | 2003 | 1      | 7        | 22       | 5          | 179     | 0                         | 104     | 6     | 6      | 6     | 6      | 1        | 18             | 18                 |
| Experimental troll    | District 109-62  | 2003 | 1      | 7        | 22       | 5          | 268     | 0                         | 46      | 5     | 5      | 5     | 5      | 1        | 62             | 62                 |
| Experimental troll    | District 113-95  | 2003 | 1      | 7        | 22       | 5          | 454     | 0                         | 392     | 15    | 15     | 11    | 11     | 1        | 12             | 12                 |

Appendix B6.–Page 9 of 16.

|                       |                  |       | :          | Sampling | g        |            |         |                         |         |                |                |          |          |            |             | ( )                |
|-----------------------|------------------|-------|------------|----------|----------|------------|---------|-------------------------|---------|----------------|----------------|----------|----------|------------|-------------|--------------------|
| <b>P</b> ' 1          |                  | 17    | Sample     | period   | Sampling | Estimation | $H_{-}$ | $\operatorname{var}(H)$ | n       | a              | a'             | t        | t'       | <i>m</i> . | $\hat{r}$ . | $SE(\hat{r}_{ui})$ |
| Fishery               | Fishery location | Y ear | type       | type 7   | period   | level      | 192     | (                       | 196     | <i>u</i><br>12 | <i>u</i><br>12 | <i>u</i> | <i>u</i> | uj         | - uj        | ( uj )             |
| Experimental troll    | District 102-50  | 2003  | 1          | 7        | 25       | 5          | 182     | 0                       | 180     | 12             | 12             | 10       | 10       | 1          | 10          | 10                 |
| Experimental troll    | District 101-29  | 2003  | 1          | /        | 25       | 5          | 1,002   | 0                       | 639     | 52             | 48             | 45       | 45       | 4          | 12          | 35                 |
| Experimental troll    | District 101-45  | 2003  | 1          | /        | 25       | 5          | 2/4     | 0                       | 1/2     | 11             | 11             | 11       | 11       | 1          | 1/          | 16                 |
| Experimental troll    | District 113-35  | 2003  | l          | 7        | 25       | 5          | 1,465   | 0                       | 201     | 12             | 12             | 9        | 9        | l          | 78          | 77                 |
| Experimental troll    | District 101-29  | 2003  | 1          | 7        | 26       | 5          | 1,044   | 0                       | 922     | 72             | 70             | 55       | 55       | 5          | 62          | 27                 |
| Experimental troll    | District 102-50  | 2003  | 1          | 7        | 26       | 5          | 168     | 0                       | 171     | 11             | 11             | 7        | 7        | 1          | 10          | 10                 |
| Experimental troll    | District 101-45  | 2003  | 1          | 7        | 27       | 5          | 327     | 0                       | 169     | 20             | 20             | 20       | 20       | 1          | 21          | 20                 |
| NMFS trawl survey     | Bering Sea       | 2004  | 1          | 1        | 1        | 2          | 51,134  | 0                       | 28,783  | 9              | 9              | 9        | 9        | 1          | 19          | 18                 |
| Recreational DE       | Ketchikan        | 2004  | 1          | 2        | 11       | 4          | 880     | 0                       | 744     | 63             | 61             | 58       | 58       | 1          | 13          | 13                 |
| Recreational DE       | Ketchikan        | 2004  | 1          | 2        | 12       | 4          | 368     | 0                       | 325     | 27             | 24             | 22       | 22       | 1          | 14          | 13                 |
| Traditional troll     | NW Quadrant      | 2004  | 1          | 7        | 5        | 3          | 9,672   | 0                       | 2,510   | 354            | 354            | 210      | 209      | 1          | 41          | 41                 |
| Experimental troll    | District 109-51  | 2004  | 1          | 7        | 18       | 5          | 151     | 0                       | 89      | 11             | 11             | 10       | 10       | 1          | 18          | 18                 |
| Experimental troll    | District 113-95  | 2004  | 1          | 7        | 19       | 5          | 313     | 0                       | 245     | 7              | 7              | 6        | 6        | 1          | 14          | 13                 |
| Experimental troll    | District 109-51  | 2004  | 1          | 7        | 22       | 5          | 125     | 0                       | 88      | 5              | 5              | 4        | 4        | 1          | 15          | 15                 |
| Experimental troll    | District 101-29  | 2004  | 1          | 7        | 23       | 5          | 932     | 0                       | 513     | 41             | 38             | 34       | 34       | 1          | 21          | 20                 |
| Experimental troll    | District 107-10  | 2004  | 1          | 7        | 24       | 5          | 40      | 0                       | 40      | 4              | 4              | 4        | 4        | 1          | 11          | 10                 |
| Experimental troll    | District 101-29  | 2004  | 1          | 7        | 25       | 5          | 1,244   | 0                       | 714     | 44             | 43             | 36       | 36       | 1          | 19          | 19                 |
| Experimental troll    | District 101-29  | 2004  | 1          | 7        | 26       | 5          | 1,079   | 0                       | 883     | 53             | 53             | 46       | 46       | 1          | 13          | 13                 |
| Experimental troll    | District 113-35  | 2004  | 1          | 7        | 26       | 5          | 2,132   | 0                       | 714     | 48             | 47             | 39       | 39       | 1          | 33          | 32                 |
| 1998 brood year total |                  |       |            |          |          |            | 385,918 | 1,184,466               | 143,777 | 7,942          | 7,815          | 5,721    | 5,663    | 52         | 1,396       | 231                |
|                       |                  |       |            |          | PANEL    | H: 1999 BR | OOD YEA | AR                      |         |                |                |          |          |            |             |                    |
| Recreational MB       | Ketchikan        | 2003  | 3 1        | 2        | 12       | 4          | 1,722   | 202,928                 | 394     | 35             | 35             | 30       | 30       | ) 1        | 1 4         | 8 48               |
| Experimental troll    | District 114-50  | 2003  | 3 1        | 7        | 25       | 5          | 322     | 0                       | 214     | 11             | 11             | 9        | 9        | ) 1        | l 1'        | 7 16               |
| Mixed net and seine   | Area 003 CDFO    | 2003  | 3 1        | 7        | 28       | 3          | 703     | 0                       | 471     | 17             | 17             | 17       | 17       | / 1        | 1 1         | 6 16               |
| Recreational DE       | Ketchikan        | 2004  | 4 1        | 2        | 11       | 4          | 880     | 202,928                 | 744     | 63             | 61             | 58       | 58       | 3 1        | 1 1         | 3 13               |
| Recreational MB       | Sitka            | 2004  | <b>i</b> 1 | 2        | 12       | 4          | 6,826   | 651,330                 | 1,089   | 45             | 42             | 39       | 39       | ) ]        | 1 74        | 4 74               |
| Traditional troll     | NW Quadrant      | 2004  | <b>1</b>   | 7        | 3        | 3          | 138,726 | 0                       | 33,927  | 2,002          | 1,965          | 1,502    | 1,487    | 1          | 1 4         | 6 46               |
| Traditional troll     | NW Quadrant      | 2004  | <b>1</b>   | 7        | 5        | 3          | 9,672   | 0                       | 2,510   | 354            | 354            | 210      | 209      | ) 1        | 1 4         | 3 42               |
| Experimental troll    | District 101-29  | 2004  | <b>1</b>   | 7        | 23       | 5          | 932     | 0                       | 513     | 41             | 38             | 34       | 34       | L 1        | 1 2         | 2 21               |
| Drift gillnet         | District 101 MIC | 2004  | <b>i</b> 1 | 7        | 25       | 4          | 112     | 0                       | 42      | 2              | 2              | 2        | 2        | 2 1        | 1 2         | 9 29               |
| Drift gillnet         | District 106     | 2004  | <b>i</b> 1 | 7        | 26       | 4          | 465     | 0                       | 133     | 7              | · 7            | ' 7      | 7        | · 1        | 1 3         | 9 38               |
| Drift gillnet         | District 106     | 2004  | 4 1        | 7        | 27       | 4          | 801     | 0                       | 22      | 4              | . 4            | . 4      | 4        | - 1        | 1 40        | 1 401              |

Appendix B6.–Page 10 of 16.

|                         |                  |      | ~ .      | Sampling           | g1       |             |         |                           |           |         |        |         |        |          |                   | ( )                |
|-------------------------|------------------|------|----------|--------------------|----------|-------------|---------|---------------------------|-----------|---------|--------|---------|--------|----------|-------------------|--------------------|
| Fisherv                 | Fishery location | Year | Sample   | period             | Sampling | Estimation  | $H_{u}$ | $\operatorname{var}(H_u)$ | $n_{\mu}$ | $a_{u}$ | $a'_u$ | $t_{u}$ | $t'_u$ | $m_{ui}$ | $\hat{r}_{\mu i}$ | $SE(\hat{r}_{uj})$ |
| Experimental troll      | District 101-29  | 2004 | <u>1</u> | <u>- 1990</u><br>7 | 27       | 5           | 715     | 0                         | 373       | 31      | 31     | 31      | 31     | 1        | 21                | 21                 |
| Experimental troll      | District 102-50  | 2004 | 1        | 7                  | 27       | 5           | 79      | 0                         | 74        | 4       | 4      | 3       | 3      | 1        | 12                | 11                 |
| Recreational DE         | Ketchikan        | 2005 | 1        | 2                  | 11       | 4           | 1.134   | 0                         | 898       | 52      | 51     | 49      | 48     | 3        | 43                | 25                 |
| Recreational MB         | Sitka            | 2005 | 1        | 2                  | 11       | 4           | 2.150   | 194.636                   | 439       | 21      | 21     | 19      | 19     | 1        | 54                | 54                 |
| Recreational DE         | Ketchikan        | 2005 | 1        | 2                  | 12       | 4           | 693     | 0                         | 619       | 50      | 44     | 43      | 43     | 1        | 14                | 14                 |
| Recreational MB         | Craig            | 2005 | 1        | 2                  | 13       | 4           | 2,343   | 0                         | 447       | 22      | 22     | 20      | 20     | 1        | 58                | 57                 |
| Traditional troll       | SE Quadrant      | 2005 | 1        | 7                  | 1        | 3           | 3,933   | 0                         | 1,167     | 62      | 60     | 43      | 42     | 1        | 39                | 39                 |
| Experimental troll      | District 109-62  | 2005 | 1        | 7                  | 19       | 5           | 811     | 0                         | 548       | 30      | 30     | 27      | 27     | 1        | 16                | 16                 |
| Experimental troll      | District 101-29  | 2005 | 1        | 7                  | 23       | 5           | 750     | 0                         | 535       | 29      | 27     | 25      | 25     | 2        | 33                | 23                 |
| Experimental troll      | District 102-50  | 2005 | 1        | 7                  | 24       | 5           | 323     | 0                         | 244       | 17      | 17     | 16      | 16     | 1        | 15                | 14                 |
| Experimental troll      | District 109-51  | 2005 | 1        | 7                  | 24       | 5           | 607     | 0                         | 102       | 9       | 9      | 8       | 8      | 1        | 66                | 65                 |
| Traditional troll       | Area 005 CDFO    | 2005 | 1        | 7                  | 24       | 3           | 24,262  | 0                         | 4,472     | 249     | 233    | 217     | 217    | 1        | 64                | 63                 |
| Drift gillnet           | District 108     | 2005 | 1        | 7                  | 25       | 4           | 1,367   | 0                         | 794       | 14      | 14     | 12      | 11     | 1        | 21                | 20                 |
| Drift gillnet           | District 101     | 2005 | 1        | 7                  | 26       | 4           | 624     | 0                         | 495       | 18      | 17     | 14      | 14     | 1        | 15                | 14                 |
| Experimental troll      | District 108-30  | 2005 | 1        | 7                  | 27       | 5           | 38      | 0                         | 34        | 3       | 3      | 3       | 3      | 1        | 12                | 12                 |
| Recreational MB         | Ketchikan        | 2006 | 1        | 2                  | 12       | 4           | 1,072   | 151,387                   | 211       | 18      | 17     | 17      | 17     | 1        | 59                | 59                 |
| 1999 brood year total   |                  |      |          |                    |          |             | 202,062 | 1,403,209                 | 51,511    | 3,210   | 3,136  | 2,459   | 2,440  | 30       | 1,291             | 445                |
|                         |                  |      |          |                    | PAN      | NEL I: 2000 | BROOD   |                           |           |         |        |         |        |          |                   |                    |
| Traditional purse seine | District 106     | 2003 | 1        | 7                  | 32       | 4           | 136     | 0                         | 136       | 18      | 18     | 13      | 13     | 1        | 12                | 12                 |
| Drift gillnet           | District 101     | 2004 | 1        | 7                  | 26       | 4           | 560     | 0                         | 586       | 26      | 26     | 20      | 20     | 1        | 12                | 11                 |
| Drift gillnet           | District 101     | 2004 | 1        | 7                  | 28       | 4           | 316     | 0                         | 323       | 9       | 9      | 9       | 9      | 1        | 12                | 11                 |
| Drift gillnet           | District 106     | 2004 | 1        | 7                  | 25       | 4           | 195     | 0                         | 73        | 4       | 4      | 4       | 4      | 1        | 33                | 32                 |
| Drift gillnet           | District 106     | 2004 | 1        | 7                  | 28       | 4           | 287     | 0                         | 20        | 2       | 2      | 2       | 2      | 1        | 175               | 174                |
| Drift gillnet           | District 108     | 2004 | 1        | 7                  | 25       | 4           | 1,897   | 0                         | 371       | 6       | 6      | 6       | 6      | 1        | 62                | 62                 |
| Experimental troll      | District 101-29  | 2004 | 1        | 7                  | 27       | 5           | 715     | 0                         | 373       | 31      | 31     | 31      | 31     | 1        | 23                | 23                 |
| Experimental troll      | District 106-30  | 2004 | 1        | 7                  | 25       | 5           | 95      | 0                         | 80        | 8       | 8      | 8       | 8      | 1        | 14                | 14                 |
| Experimental troll      | District 107-10  | 2004 | 1        | 7                  | 24       | 5           | 40      | 0                         | 40        | 4       | 4      | 4       | 4      | 1        | 12                | 12                 |
| Experimental troll      | District 107-10  | 2004 | 1        | 7                  | 26       | 5           | 20      | 0                         | 20        | 1       | 1      | 1       | 1      | 1        | 12                | 12                 |
| Experimental troll      | District 109-51  | 2004 | 1        | 7                  | 19       | 5           | 178     | 0                         | 37        | 4       | 4      | 4       | 4      | 1        | 59                | 58                 |
| Recreational MB         | Ketchikan        | 2004 | 1        | 2                  | 15       | 4           | 215     | 6,556                     | 94        | 10      | 10     | 7       | 7      | 1        | 28                | 27                 |
| Test fishery            | District 113     | 2004 | 1        | 7                  | 33       | 4           | 26      | 0                         | 26        | 4       | 4      | 4       | 4      | 1        | 12                | 12                 |
| Traditional troll       | NE Quadrant      | 2004 | 1        | 7                  | 3        | 3           | 4,423   | 0                         | 1,619     | 106     | 105    | 87      | 87     | 1        | 34                | 33                 |

Appendix B6.–Page 11 of 16.

|                    |                  |      |        | Sampling | 5        |            |       |             |                      |     |     |            |            |                  |      |                    |
|--------------------|------------------|------|--------|----------|----------|------------|-------|-------------|----------------------|-----|-----|------------|------------|------------------|------|--------------------|
| <b>P</b> ' 1       |                  |      | Sample | period   | Sampling | Estimation | H     | var(H)      | n                    | a   | a'  | t          | t'         | <i>m</i> .       | ŕ.   | $SE(\hat{r}_{ij})$ |
| Fishery            | Fishery location | Year | type   | type     | period   | level      | u     | · ••= ( u ) | <i>n<sub>u</sub></i> | 254 | 254 | • <i>u</i> | • <i>u</i> | nr <sub>uj</sub> | • uj | ( uj )             |
| Traditional troll  | NW Quadrant      | 2004 | 1      | -        | 5        | 3          | 9,672 | 0           | 2,510                | 354 | 354 | 210        | 209        | 1                | 47   | 47                 |
| Traditional troll  | SE Quadrant      | 2004 | l      | 7        | 5        | 3          | 1,413 | 0           | 594                  | 38  | 38  | 35         | 35         | l                | 29   | 28                 |
| Drift gillnet      | District 101     | 2005 | 1      | 7        | 28       | 4          | 148   | 0           | 96                   | 6   | 6   | 6          | 6          | 1                | 19   | 18                 |
| Drift gillnet      | District 108     | 2005 | 1      | 7        | 21       | 4          | 2,982 | 0           | 2,492                | 24  | 24  | 22         | 22         | 1                | 15   | 14                 |
| Drift gillnet      | District 108     | 2005 | 1      | 7        | 25       | 4          | 1,367 | 0           | 794                  | 14  | 14  | 12         | 11         | 2                | 46   | 32                 |
| Drift gillnet      | District 108     | 2005 | 1      | 7        | 26       | 4          | 913   | 0           | 325                  | 15  | 15  | 15         | 15         | 1                | 34   | 34                 |
| Experimental troll | District 101-29  | 2005 | 1      | 7        | 23       | 5          | 750   | 0           | 535                  | 29  | 27  | 25         | 25         | 1                | 18   | 18                 |
| Experimental troll | District 101-29  | 2005 | 1      | 7        | 25       | 5          | 1,411 | 0           | 1,003                | 74  | 74  | 66         | 66         | 5                | 86   | 38                 |
| Experimental troll | District 101-29  | 2005 | 1      | 7        | 26       | 5          | 1,395 | 0           | 680                  | 56  | 55  | 48         | 48         | 4                | 102  | 50                 |
| Experimental troll | District 101-45  | 2005 | 1      | 7        | 25       | 5          | 544   | 0           | 338                  | 22  | 22  | 21         | 21         | 1                | 20   | 19                 |
| Experimental troll | District 101-45  | 2005 | 1      | 7        | 26       | 5          | 691   | 0           | 474                  | 41  | 41  | 38         | 38         | 1                | 18   | 17                 |
| Experimental troll | District 102-50  | 2005 | 1      | 7        | 24       | 5          | 323   | 0           | 244                  | 17  | 17  | 16         | 16         | 1                | 16   | 16                 |
| Experimental troll | District 102-50  | 2005 | 1      | 7        | 25       | 5          | 388   | 0           | 388                  | 32  | 32  | 25         | 25         | 2                | 24   | 17                 |
| Experimental troll | District 102-50  | 2005 | 1      | 7        | 26       | 5          | 894   | 0           | 717                  | 58  | 58  | 50         | 50         | 3                | 46   | 26                 |
| Experimental troll | District 106-30  | 2005 | 1      | 7        | 27       | 5          | 110   | 0           | 48                   | 3   | 3   | 3          | 3          | 1                | 28   | 27                 |
| Experimental troll | District 108-40  | 2005 | 1      | 7        | 25       | 5          | 381   | 0           | 191                  | 4   | 4   | 4          | 4          | 1                | 24   | 24                 |
| Experimental troll | District 109-62  | 2005 | 1      | 7        | 21       | 5          | 1,075 | 0           | 507                  | 40  | 40  | 37         | 37         | 2                | 52   | 36                 |
| Experimental troll | District 113-31  | 2005 | 1      | 7        | 22       | 5          | 1,069 | 0           | 606                  | 28  | 28  | 22         | 22         | 1                | 22   | 21                 |
| Experimental troll | District 113-31  | 2005 | 1      | 7        | 23       | 5          | 476   | 0           | 274                  | 25  | 25  | 21         | 21         | 1                | 21   | 21                 |
| Experimental troll | District 113-31  | 2005 | 1      | 7        | 24       | 5          | 3,715 | 0           | 1,478                | 82  | 82  | 76         | 76         | 2                | 61   | 43                 |
| Experimental troll | District 113-35  | 2005 | 1      | 7        | 26       | 5          | 882   | 0           | 355                  | 13  | 13  | 13         | 13         | 1                | 30   | 30                 |
| Experimental troll | District 113-41  | 2005 | 1      | 7        | 22       | 5          | 504   | 0           | 193                  | 11  | 11  | 9          | 9          | 1                | 32   | 31                 |
| Experimental troll | District 113-62  | 2005 | 1      | 7        | 24       | 5          | 3.068 | 0           | 1.523                | 86  | 86  | 76         | 76         | 1                | 25   | 24                 |
| Troll              | District 101 MIC | 2005 | 1      | 7        | 2        | 3          | 196   | 0           | 178                  | 11  | 10  | 9          | 9          | 1                | 15   | 14                 |
| Recreational MB    | Craig            | 2005 | 1      | 2        | 11       | 4          | 303   | 0           | 177                  | 7   | 7   | 7          | 7          | 1                | 21   | 20                 |
| Recreational MB    | Craig            | 2005 | 1      | 2        | 13       | 4          | 2,343 | 0           | 447                  | 22  | 22  | 20         | 20         | 1                | 64   | 63                 |
| Recreational MB    | Elfin Cove       | 2005 | 1      | 2        | 13       | 4          | 540   | 0           | 108                  | 12  | 12  | 11         | 11         | 1                | 61   | 60                 |
| Recreational DE    | Ketchikan        | 2005 | 1      | 2        | 11       | 4          | 1.134 | 1.738       | 898                  | 52  | 51  | 49         | 48         | 1                | 16   | 16                 |
| Recreational DE    | Ketchikan        | 2005 | 1      | 2        | 12       | 4          | 693   | 1.561       | 619                  | 50  | 44  | 43         | 43         | 1                | 16   | 15                 |
| Recreational MB    | Ketchikan        | 2005 | 1      | 2        | 11       | 4          | 451   | 23,189      | 42                   | 5   | 5   | 5          | 5          | 1                | 131  | 130                |
| Recreational MB    | Ketchikan        | 2005 | 1      | 2        | 13       | 4          | 2.843 | 158,780     | 541                  | 39  | 37  | 34         | 34         | 3                | 203  | 119                |
| Recreational DE    | Sitka            | 2005 | 1      | 2        | 11       | 4          | 1,175 | 19,521      | 1,175                | 67  | 67  | 59         | 59         | 1                | 12   | 12                 |

|                      |                  |      | Sample | Sampling<br>period | Sampling | Estimation | П                      | uor(U)       |        | a       | <i>a</i> ′ | 4           | <b>.</b> ' |          | <u>^</u>        | SE(îr)       |
|----------------------|------------------|------|--------|--------------------|----------|------------|------------------------|--------------|--------|---------|------------|-------------|------------|----------|-----------------|--------------|
| Fishery Fi           | ishery location  | Year | type   | type               | period   | level      | $\boldsymbol{\Pi}_{u}$ | $var(\Pi_u)$ | $n_u$  | $a_{u}$ | $a_{u}$    | $\iota_{u}$ | $l_{u}$    | $m_{uj}$ | r <sub>uj</sub> | $SL(r_{uj})$ |
| Recreational MB Si   | itka             | 2005 | 1      | 2                  | 12       | 4          | 5,280                  | 194,636      | 1,628  | 84      | 83         | 73          | 73         | 1        | 40              | 40           |
| Traditional troll N  | IE Quadrant      | 2005 | 1      | 7                  | 1        | 3          | 2,184                  | 0            | 515    | 40      | 40         | 37          | 37         | 1        | 52              | 51           |
| Traditional troll N  | IE Quadrant      | 2005 | 1      | 7                  | 4        | 3          | 3,717                  | 0            | 688    | 153     | 143        | 127         | 127        | 1        | 70              | 70           |
| Traditional troll N  | IE Quadrant      | 2005 | 1      | 7                  | 6        | 3          | 1,802                  | 0            | 654    | 203     | 203        | 193         | 192        | 1        | 34              | 33           |
| Traditional troll N  | W Quadrant       | 2005 | 1      | 7                  | 1        | 3          | 28,349                 | 0            | 5,803  | 615     | 608        | 345         | 345        | 4        | 241             | 120          |
| Traditional troll N  | W Quadrant       | 2005 | 1      | 7                  | 3        | 3          | 97,209                 | 0            | 28,826 | 1,530   | 1,474      | 1,238       | 1,235      | 5        | 214             | 95           |
| Traditional troll N  | W Quadrant       | 2005 | 1      | 7                  | 6        | 3          | 10,030                 | 0            | 3,095  | 331     | 317        | 227         | 226        | 1        | 41              | 41           |
| Traditional troll SI | E Quadrant       | 2005 | 1      | 7                  | 3        | 3          | 10,208                 | 0            | 2,707  | 149     | 141        | 104         | 104        | 1        | 49              | 48           |
| Traditional troll SY | W Quadrant       | 2005 | 1      | 7                  | 3        | 3          | 23,066                 | 0            | 8,841  | 369     | 354        | 282         | 282        | 2        | 66              | 46           |
| Drift gillnet D      | District 106     | 2006 | 1      | 7                  | 26       | 4          | 398                    | 0            | 159    | 11      | 11         | 8           | 8          | 1        | 31              | 30           |
| Drift gillnet D      | District 108     | 2006 | 1      | 7                  | 22       | 4          | 4,369                  | 0            | 2,126  | 44      | 43         | 37          | 37         | 1        | 26              | 25           |
| Drift gillnet D      | District 108     | 2006 | 1      | 7                  | 23       | 4          | 5,337                  | 0            | 2,735  | 46      | 46         | 45          | 45         | 1        | 24              | 23           |
| Drift gillnet D      | District 108     | 2006 | 1      | 7                  | 24       | 4          | 5,766                  | 0            | 2,645  | 61      | 60         | 56          | 56         | 2        | 54              | 38           |
| Drift gillnet D      | District 108     | 2006 | 1      | 7                  | 25       | 4          | 4,538                  | 0            | 2,888  | 119     | 119        | 114         | 114        | 1        | 19              | 19           |
| Drift gillnet D      | District 101 MIC | 2006 | 1      | 7                  | 26       | 4          | 114                    | 0            | 32     | 5       | 5          | 4           | 4          | 1        | 43              | 43           |
| Experimental troll D | istrict 101-29   | 2006 | 1      | 7                  | 21       | 5          | 620                    | 0            | 523    | 32      | 32         | 25          | 25         | 1        | 14              | 14           |
| Experimental troll D | District 105-41  | 2006 | 1      | 7                  | 23       | 5          | 160                    | 0            | 44     | 1       | 1          | 1           | 1          | 1        | 44              | 44           |
| Experimental troll D | District 107-10  | 2006 | 1      | 7                  | 26       | 5          | 29                     | 0            | 29     | 2       | 2          | 1           | 1          | 1        | 12              | 12           |
| Experimental troll D | District 112-12  | 2006 | 1      | 7                  | 25       | 5          | 1,579                  | 0            | 734    | 132     | 129        | 123         | 122        | 1        | 27              | 27           |
| Experimental troll D | District 113-01  | 2006 | 1      | 7                  | 25       | 5          | 175                    | 0            | 104    | 5       | 5          | 4           | 4          | 1        | 21              | 20           |
| Experimental troll D | District 113-31  | 2006 | 1      | 7                  | 24       | 5          | 978                    | 0            | 436    | 22      | 22         | 21          | 21         | 1        | 27              | 27           |
| Experimental troll D | District 113-95  | 2006 | 1      | 7                  | 25       | 5          | 423                    | 0            | 337    | 17      | 17         | 16          | 16         | 1        | 15              | 15           |
| Experimental troll D | District 114-50  | 2006 | 1      | 7                  | 25       | 5          | 450                    | 0            | 262    | 15      | 15         | 13          | 13         | 1        | 21              | 20           |
| Recreational DE K    | Letchikan        | 2006 | 1      | 2                  | 11       | 4          | 625                    | 0            | 533    | 41      | 39         | 36          | 36         | 1        | 15              | 15           |
| Recreational DE K    | Letchikan        | 2006 | 1      | 2                  | 12       | 4          | 337                    | 0            | 295    | 18      | 18         | 18          | 18         | 1        | 14              | 13           |
| Recreational MB K    | letchikan        | 2006 | 1      | 2                  | 11       | 4          | 235                    | 10,824       | 32     | 3       | 3          | 3           | 3          | 1        | 90              | 89           |
| Recreational MB K    | letchikan        | 2006 | 1      | 2                  | 13       | 4          | 1,654                  | 99,566       | 365    | 22      | 21         | 21          | 21         | 2        | 58              | 57           |
| Recreational MB Si   | itka             | 2006 | 1      | 2                  | 11       | 4          | 1,939                  | 354,983      | 638    | 30      | 30         | 29          | 29         | 2        | 74              | 54           |
| Recreational MB Si   | itka             | 2006 | 1      | 2                  | 13       | 4          | 4,658                  | 226,907      | 1,683  | 72      | 71         | 62          | 62         | 1        | 34              | 34           |
| Traditional troll N  | IE Quadrant      | 2006 | 1      | 7                  | 1        | 3          | 2,377                  | 0            | 885    | 105     | 104        | 101         | 101        | 2        | 66              | 46           |
| Traditional troll SI | E Quadrant       | 2006 | 1      | 7                  | 1        | 3          | 4,891                  | 0            | 2,476  | 142     | 141        | 117         | 117        | 1        | 24              | 24           |

|                                     |                   |       |        | Sampling    | ,            |             |            |             |         |          |              |       |                   |            |             |                    |
|-------------------------------------|-------------------|-------|--------|-------------|--------------|-------------|------------|-------------|---------|----------|--------------|-------|-------------------|------------|-------------|--------------------|
| <b>D</b> 'alara                     | Fisher less (is a | V     | Sample | period      | Sampling     | Estimation  | $H_{}$     | $var(H_{})$ | n       | <i>a</i> | $a'_{\cdot}$ | t.    | $t'_{\cdot\cdot}$ | <i>m</i> . | $\hat{r}$ . | $SE(\hat{r}_{ui})$ |
| <u>Fishery</u><br>Traditional trall | Area 001 CDEO     | Y ear | type   | <u>type</u> | 24           | level 2     | u<br>7 461 | ( ""        | 1 652   | 175      | 172          | 154   | 15A               | 1 1        | - uj<br>21  | 20                 |
|                                     | Alea 001 CDFO     | 2000  | 1      | /           | 24           | 3           | 7,401      | 1 000 2(1   | 4,033   | 1/3      | 1/3          | 134   | 134               | 105        | 2 4 9 1     | 20                 |
| 2000 brood year total               |                   |       |        |             | <b>D</b> ( ) | IEL 1 2001  | 283,910    | 1,098,261   | 101,/19 | 6,164    | 6,026        | 4,922 | 4,913             | 105        | 3,481       | 415                |
|                                     |                   |       |        |             | PAN          | NEL J: 2001 | BROOD      |             |         |          |              |       |                   |            |             |                    |
| Test fishery                        | District 113      | 2004  | 1      | 7           | 45           | 4           | 8          | 0           | 8       | 2        | 2            | 1     | 1                 | 1          | 11          | 10                 |
| Traditional purse seine             | District 110      | 2004  | 1      | 7           | 30           | 4           | 126        | 0           | 126     | 28       | 28           | 27    | 27                | 1          | 11          | 10                 |
| Drift gillnet                       | District 101 MIC  | 2005  | 1      | 7           | 26           | 4           | 359        | 0           | 191     | 6        | 6            | 6     | 6                 | 1          | 20          | 20                 |
| Experimental troll                  | District 101-29   | 2005  | 1      | 7           | 26           | 5           | 1,395      | 0           | 680     | 56       | 55           | 48    | 48                | 1          | 22          | 22                 |
| Recreational DE                     | Ketchikan         | 2005  | 1      | 2           | 12           | 4           | 693        | 1,561       | 619     | 50       | 44           | 43    | 43                | 1          | 14          | 13                 |
| Test fishery                        | District 105-41   | 2005  | 1      | 7           | 35           | 4           | 6          | 0           | 6       | 1        | 1            | 1     | 1                 | 1          | 11          | 10                 |
| Traditional troll                   | NW Quadrant       | 2005  | 1      | 7           | 6            | 3           | 10,030     | 0           | 3,095   | 331      | 317          | 227   | 226               | 1          | 36          | 36                 |
| Traditional troll                   | SE Quadrant       | 2005  | 1      | 7           | 6            | 3           | 1,962      | 0           | 641     | 53       | 53           | 48    | 48                | 1          | 33          | 32                 |
| Drift gillnet                       | District 101      | 2006  | 1      | 7           | 26           | 4           | 513        | 0           | 221     | 9        | 9            | 7     | 7                 | 1          | 25          | 24                 |
| Drift gillnet                       | District 108      | 2006  | 1      | 7           | 19           | 4           | 934        | 0           | 484     | 4        | 4            | 2     | 2                 | 1          | 21          | 20                 |
| Experimental troll                  | District 101-29   | 2006  | 1      | 7           | 25           | 5           | 1,570      | 0           | 622     | 40       | 40           | 37    | 37                | 1          | 27          | 27                 |
| Experimental troll                  | District 101-29   | 2006  | 1      | 7           | 26           | 5           | 534        | 0           | 136     | 7        | 7            | 6     | 6                 | 1          | 42          | 42                 |
| Experimental troll                  | District 107-10   | 2006  | 1      | 7           | 25           | 5           | 26         | 0           | 23      | 2        | 2            | 1     | 1                 | 1          | 12          | 12                 |
| Recreational DE                     | Ketchikan         | 2006  | 1      | 2           | 11           | 4           | 625        | 0           | 533     | 41       | 39           | 36    | 36                | 1          | 13          | 13                 |
| Recreational MB                     | Ketchikan         | 2006  | 1      | 2           | 13           | 4           | 1,654      | 99,566      | 365     | 22       | 21           | 21    | 21                | 1          | 51          | 50                 |
| Recreational DE                     | Sitka             | 2006  | 1      | 2           | 11           | 4           | 846        | 0           | 846     | 41       | 40           | 33    | 33                | 1          | 11          | 10                 |
| Recreational MB                     | Sitka             | 2006  | 1      | 2           | 12           | 4           | 4,105      | 296,983     | 2,254   | 50       | 49           | 45    | 45                | 1          | 20          | 19                 |
| Traditional purse seine             | District 101      | 2006  | 1      | 7           | 29           | 4           | 209        | 0           | 73      | 7        | 7            | 5     | 5                 | 1          | 31          | 30                 |
| Traditional purse seine             | District 107      | 2006  | 1      | 7           | 28           | 4           | 440        | 0           | 132     | 4        | 3            | 3     | 3                 | 1          | 48          | 47                 |
| Traditional troll                   | NW Quadrant       | 2006  | 1      | 7           | 3            | 3           | 96,526     | 0           | 27,048  | 1,274    | 1,225        | 910   | 909               | 4          | 159         | 80                 |
| Traditional troll                   | SE Quadrant       | 2006  | 1      | 7           | 3            | 3           | 4,100      | 0           | 1,682   | 68       | 67           | 48    | 48                | 1          | 26          | 26                 |
| Traditional troll                   | Area 001 CDFO     | 2006  | 1      | 7           | 26           | 3           | 19,955     | 0           | 12,544  | 326      | 326          | 302   | 302               | 1          | 18          | 17                 |
| Experimental troll                  | District 101-29   | 2007  | 1      | 7           | 20           | 5           | 139        | 0           | 46      | 4        | 4            | 3     | 3                 | 1          | 32          | 32                 |
| Experimental troll                  | District 105-41   | 2007  | 1      | 7           | 22           | 5           | 210        | 0           | 177     | 9        | 9            | 9     | 9                 | 1          | 13          | 12                 |
| Experimental troll                  | District 105-41   | 2007  | 1      | 7           | 24           | 5           | 431        | 0           | 138     | 5        | 5            | 5     | 5                 | 1          | 33          | 33                 |
| Experimental troll                  | District 106-30   | 2007  | 1      | 7           | 24           | 5           | 543        | 0           | 214     | 15       | 15           | 14    | 14                | 1          | 27          | 27                 |
| Experimental troll                  | District 106-30   | 2007  | 1      | 7           | 25           | 5           | 1.277      | 0           | 391     | 35       | 35           | 34    | 34                | 1          | 35          | 34                 |
| Experimental troll                  | District 109-62   | 2007  | 1      | 7           | 21           | 5           | 1.443      | 0           | 1.036   | 98       | 98           | 94    | 94                | 1          | 15          | 14                 |
| Recreational MB                     | Ketchikan         | 2007  | 1      | 2           | 13           | 4           | 2,262      | 11,603      | 356     | 23       | 22           | 20    | 20                | 2          | 142         | 100                |

## Appendix B6.–Page 13 of 16.

## Appendix B6.–Page 14 of 16.

|                         |                  |      |             | Sampling | 5        |            |           |                               |                 |           |          |           |            |                |                    | ( )                |
|-------------------------|------------------|------|-------------|----------|----------|------------|-----------|-------------------------------|-----------------|-----------|----------|-----------|------------|----------------|--------------------|--------------------|
| Fichary                 | Fishery location | Voor | Sample      | period   | Sampling | Estimation | $H_{\mu}$ | $\operatorname{var}(H_{\mu})$ | <i>n</i>        | $a_{\mu}$ | $a'_{u}$ | $t_{\mu}$ | $t'_{\mu}$ | $m_{\mu\nu}$   | $\hat{r}_{\mu\nu}$ | $SE(\hat{r}_{ui})$ |
| Recreational MB         | Sitka            | 2007 | <u>type</u> | 2 19pe   | 14       | 4          | 2 432     | 110.816                       | <u>u</u><br>729 | 36        | 36       | 32        | 32         | <i>uj</i><br>1 | 36                 | 35                 |
| Traditional troll       | NW Quadrant      | 2007 | 1           | 7        | 1        | 3          | 29 540    | 0                             | 9 788           | 620       | 615      | 408       | 407        | 2              | 65                 | 46                 |
| Traditional troll       | NW Quadrant      | 2007 | 1           | ,<br>7   | 3        | 3          | 103 464   | 0                             | 32,704          | 1 529     | 1 4 2 6  | 1 098     | 1 093      | 1              | 36                 | 36                 |
| Traditional troll       | SW Ouadrant      | 2007 | 1           | 7        | 3        | 3          | 24.807    | 0                             | 10.193          | 316       | 311      | 224       | 223        | 1              | 27                 | 26                 |
| 2001 brood year total   | ~                |      | -           |          |          | -          | 313,164   | 520,529                       | 108,101         | 5,112     | 4,921    | 3,798     | 3,789      | 38             | 1,123              | 202                |
|                         |                  |      |             |          | PAN      | EL L: 2002 | BROOD     | ,                             | ,               |           |          |           |            |                |                    |                    |
| Trad. purse seine, jack | District 101     | 2005 | 1           | 7        | 28       | 4          | 17        | 0                             | 17              | 5         | 5        | 3         | 3          | 1              | 15                 | 15                 |
| Drift gillnet           | District 108     | 2006 | 1           | 7        | 38       | 4          | 16        | 0                             | 5               | 3         | 3        | 3         | 3          | 1              | 48                 | 48                 |
| Drift gillnet, jack     | District 108     | 2006 | 1           | 7        | 30       | 4          | 22        | 0                             | 7               | 1         | 1        | 1         | 1          | 1              | 48                 | 47                 |
| Experimental troll      | District 101-29  | 2006 | 1           | 7        | 23       | 5          | 1,141     | 0                             | 482             | 27        | 24       | 21        | 20         | 1              | 42                 | 42                 |
| Recreational MB         | Ketchikan        | 2006 | 1           | 2        | 16       | 4          | 544       | 97,141                        | 167             | 14        | 14       | 10        | 10         | 1              | 49                 | 49                 |
| Recreational MB         | Ketchikan        | 2006 | 1           | 2        | 17       | 4          | 196       | 1,777                         | 76              | 3         | 3        | 3         | 3          | 1              | 39                 | 39                 |
| Recreational MB, jack   | Ketchikan        | 2006 | 1           | 2        | 13       | 4          | 56        | 568                           | 19              | 2         | 2        | 1         | 1          | 1              | 45                 | 44                 |
| Recreational DE         | Sitka            | 2006 | 1           | 2        | 11       | 4          | 846       | 0                             | 846             | 41        | 40       | 33        | 33         | 1              | 16                 | 15                 |
| Traditional purse seine | District 102     | 2006 | 1           | 7        | 27       | 4          | 296       | 0                             | 70              | 9         | 9        | 7         | 7          | 1              | 64                 | 64                 |
| Traditional purse seine | District 104     | 2006 | 1           | 7        | 27       | 4          | 343       | 0                             | 143             | 7         | 7        | 5         | 5          | 1              | 36                 | 36                 |
| Traditional purse seine | District 104     | 2006 | 1           | 7        | 29       | 4          | 901       | 0                             | 367             | 6         | 6        | 4         | 4          | 1              | 37                 | 37                 |
| Traditional troll       | NE Quadrant      | 2006 | 1           | 7        | 5        | 3          | 1,575     | 0                             | 908             | 214       | 214      | 204       | 204        | 2              | 53                 | 37                 |
| Traditional troll       | NW Quadrant      | 2006 | 1           | 7        | 3        | 3          | 96,526    | 0                             | 27,048          | 1,274     | 1,225    | 910       | 909        | 2              | 113                | 79                 |
| Traditional troll       | NW Quadrant      | 2006 | 1           | 7        | 4        | 3          | 42,231    | 0                             | 13,226          | 591       | 558      | 408       | 407        | 1              | 51                 | 51                 |
| Traditional troll       | SE Quadrant      | 2006 | 1           | 7        | 4        | 3          | 5,651     | 0                             | 1,906           | 146       | 144      | 102       | 102        | 1              | 46                 | 45                 |
| Traditional troll       | SW Quadrant      | 2006 | 1           | 7        | 4        | 3          | 13,435    | 0                             | 4,338           | 215       | 213      | 158       | 157        | 1              | 48                 | 47                 |
| Traditional troll       | Area 001 CDFO    | 2006 | 1           | 7        | 25       | 3          | 24,177    | 0                             | 11,778          | 348       | 348      | 314       | 313        | 1              | 31                 | 31                 |
| Mixed net and seine     | Area 000 CDFO    | 2007 | 1           | 7        | 25       | 3          | 3,679     | 0                             | 863             | 17        | 17       | 17        | 17         | 1              | 65                 | 64                 |
| Drift gillnet           | District 106     | 2007 | 1           | 7        | 25       | 4          | 634       | 0                             | 198             | 14        | 14       | 11        | 11         | 1              | 48                 | 48                 |
| Drift gillnet           | District 106     | 2007 | 1           | 7        | 29       | 4          | 85        | 0                             | 20              | 3         | 3        | 3         | 3          | 1              | 64                 | 64                 |
| Drift gillnet           | District 106     | 2007 | 1           | 7        | 30       | 4          | 50        | 0                             | 29              | 4         | 4        | 4         | 4          | 1              | 26                 | 26                 |
| Drift gillnet           | District 108     | 2007 | 1           | 7        | 25       | 4          | 1,265     | 0                             | 316             | 20        | 19       | 16        | 16         | 1              | 64                 | 63                 |
| Experimental troll      | District 101-29  | 2007 | 1           | 7        | 22       | 5          | 202       | 0                             | 113             | 5         | 5        | 5         | 5          | 1              | 27                 | 27                 |
| Experimental troll      | District 101-29  | 2007 | 1           | 7        | 23       | 5          | 423       | 0                             | 239             | 22        | 22       | 14        | 14         | 1              | 27                 | 26                 |
| Experimental troll      | District 101-29  | 2007 | 1           | 7        | 24       | 5          | 1,165     | 0                             | 516             | 20        | 20       | 13        | 13         | 1              | 34                 | 34                 |
| Experimental troll      | District 101-29  | 2007 | 1           | 7        | 25       | 5          | 2,151     | 0                             | 737             | 33        | 32       | 23        | 23         | 1              | 46                 | 45                 |

Appendix B6.–Page 15 of 16.

|                       |                  |      | :      | Sampling | g        |            |                   |                               |         |                       |                       |                |                |                 |           |                       |
|-----------------------|------------------|------|--------|----------|----------|------------|-------------------|-------------------------------|---------|-----------------------|-----------------------|----------------|----------------|-----------------|-----------|-----------------------|
|                       |                  |      | Sample | period   | Sampling | Estimation | H                 | var(H)                        | n       | a                     | a'                    | t              | ť              | т               | $\hat{r}$ | $SE(\hat{r}_{\perp})$ |
| Fishery               | Fishery location | Year | type   | type     | period   | level      | <b>1</b> <i>u</i> | <b>v</b> ar(11 <sub>u</sub> ) | $n_{u}$ | <i>u</i> <sub>u</sub> | <i>u</i> <sub>u</sub> | <sup>r</sup> u | <sup>u</sup> u | m <sub>uj</sub> | ' uj      | $\mathcal{L}(u_j)$    |
| Experimental troll    | District 101-29  | 2007 | 1      | 7        | 26       | 5          | 1,908             | 0                             | 623     | 39                    | 39                    | 31             | 31             | 1               | 46        | 46                    |
| Experimental troll    | District 105-41  | 2007 | 1      | 7        | 21       | 5          | 78                | 0                             | 68      | 8                     | 8                     | 8              | 8              | 1               | 17        | 17                    |
| Experimental troll    | District 105-41  | 2007 | 1      | 7        | 26       | 5          | 442               | 0                             | 188     | 8                     | 8                     | 7              | 7              | 1               | 36        | 35                    |
| Experimental troll    | District 106-20  | 2007 | 1      | 7        | 24       | 5          | 33                | 0                             | 33      | 4                     | 4                     | 4              | 4              | 1               | 15        | 15                    |
| Experimental troll    | District 106-30  | 2007 | 1      | 7        | 24       | 5          | 543               | 0                             | 214     | 15                    | 15                    | 14             | 14             | 1               | 38        | 38                    |
| Experimental troll    | District 108-41  | 2007 | 1      | 7        | 20       | 5          | 298               | 0                             | 135     | 8                     | 8                     | 8              | 8              | 1               | 33        | 33                    |
| Experimental troll    | District 108-41  | 2007 | 1      | 7        | 23       | 5          | 464               | 0                             | 260     | 8                     | 8                     | 8              | 8              | 1               | 27        | 27                    |
| Experimental troll    | District 108-41  | 2007 | 1      | 7        | 24       | 5          | 384               | 0                             | 171     | 10                    | 10                    | 9              | 9              | 1               | 34        | 34                    |
| Experimental troll    | District 109-62  | 2007 | 1      | 7        | 21       | 5          | 1,443             | 0                             | 1,036   | 98                    | 98                    | 94             | 94             | 2               | 42        | 29                    |
| Experimental troll    | District 112-12  | 2007 | 1      | 7        | 25       | 5          | 1,242             | 0                             | 796     | 189                   | 189                   | 178            | 178            | 1               | 24        | 23                    |
| Recreational MB       | Craig            | 2007 | 1      | 2        | 13       | 4          | 398               | 0                             | 366     | 11                    | 11                    | 11             | 11             | 1               | 16        | 16                    |
| Recreational DE       | Ketchikan        | 2007 | 1      | 2        | 12       | 4          | 322               | 0                             | 188     | 26                    | 26                    | 23             | 23             | 1               | 26        | 25                    |
| Recreational DE       | Sitka            | 2007 | 1      | 2        | 11       | 4          | 809               | 0                             | 809     | 43                    | 43                    | 36             | 36             | 1               | 15        | 15                    |
| Recreational MB       | Sitka            | 2007 | 1      | 2        | 10       | 4          | 2,261             | 567,179                       | 467     | 12                    | 12                    | 11             | 11             | 1               | 73        | 73                    |
| Traditional troll     | NE Quadrant      | 2007 | 1      | 7        | 3        | 3          | 4,921             | 0                             | 2,009   | 192                   | 185                   | 173            | 173            | 1               | 39        | 38                    |
| Traditional troll     | NW Quadrant      | 2007 | 1      | 7        | 3        | 3          | 103,464           | 0                             | 32,704  | 1,529                 | 1,426                 | 1,098          | 1,093          | 7               | 361       | 139                   |
| Traditional troll     | SE Quadrant      | 2007 | 1      | 7        | 3        | 3          | 7,357             | 0                             | 3,459   | 185                   | 180                   | 127            | 127            | 2               | 66        | 46                    |
| Traditional troll     | SW Quadrant      | 2007 | 1      | 7        | 1        | 3          | 3,477             | 0                             | 2,483   | 116                   | 116                   | 73             | 72             | 2               | 43        | 30                    |
| Traditional troll     | SW Quadrant      | 2007 | 1      | 7        | 3        | 3          | 24,807            | 0                             | 10,193  | 316                   | 311                   | 224            | 223            | 4               | 150       | 75                    |
| Traditional troll     | Area 001 CDFO    | 2007 | 1      | 7        | 25       | 3          | 18,076            | 0                             | 7,710   | 167                   | 167                   | 144            | 144            | 1               | 36        | 35                    |
| Drift gillnet         | District 101     | 2008 | 1      | 7        | 28       | 4          | 182               | 0                             | 98      | 8                     | 8                     | 6              | 6              | 1               | 28        | 28                    |
| Drift gillnet         | District 106     | 2008 | 1      | 7        | 26       | 4          | 175               | 0                             | 100     | 10                    | 10                    | 10             | 10             | 1               | 27        | 26                    |
| Drift gillnet         | District 108     | 2008 | 1      | 7        | 21       | 4          | 1,591             | 0                             | 1,041   | 40                    | 40                    | 39             | 39             | 1               | 23        | 23                    |
| Drift gillnet         | District 108     | 2008 | 1      | 7        | 24       | 4          | 1,267             | 0                             | 655     | 29                    | 29                    | 29             | 29             | 1               | 29        | 29                    |
| Experimental troll    | District 108-41  | 2008 | 1      | 7        | 24       | 5          | 331               | 0                             | 222     | 15                    | 15                    | 15             | 15             | 1               | 23        | 22                    |
| Experimental troll    | District 112-12  | 2008 | 1      | 7        | 19       | 5          | 356               | 0                             | 232     | 34                    | 34                    | 32             | 32             | 1               | 23        | 23                    |
| Recreational DE       | Ketchikan        | 2008 | 1      | 2        | 11       | 4          | 358               | 0                             | 286     | 22                    | 21                    | 20             | 20             | 1               | 20        | 19                    |
| Recreational MB       | Yakutat          | 2008 | 1      | 2        | 10       | 4          | 79                | 0                             | 74      | 2                     | 2                     | 2              | 2              | 1               | 16        | 16                    |
| Traditional troll     | NW Ouadrant      | 2008 | 1      | 7        | 1        | 3          | 10.799            | 0                             | 3.854   | 241                   | 238                   | 173            | 172            | 3               | 130       | 75                    |
| Traditional troll     | NW Quadrant      | 2008 | 1      | 7        | 3        | 3          | 48.029            | 0                             | 18.729  | 1.286                 | 1.258                 | 906            | 900            | 1               | 40        | 39                    |
| Traditional troll     | SW Ouadrant      | 2008 | 1      | 7        | 3        | 3          | 10.064            | 0                             | 6.137   | 284                   | 278                   | 195            | 195            | 1               | 25        | 25                    |
| 2002 brood year total | ·····            |      | -      | •        | -        | -          | 443 585           | 666 665                       | 159 774 | 7 999                 | 7 749                 | 6 001          | 5 982          | 73              | 2 705     | 336                   |
| 2002 bioba your total |                  |      |        |          |          |            | 115,505           | 000,005                       | 127,114 | ,,,,,                 | 1,11                  | 5,001          | 5,702          | , 5             | 2,705     | 550                   |

Appendix B6.–Page 16 of 16.

|                            |                     |      |        | Sampling | 5        |             |        |                         |        |       |       |       |       |     |      |                  |
|----------------------------|---------------------|------|--------|----------|----------|-------------|--------|-------------------------|--------|-------|-------|-------|-------|-----|------|------------------|
| <b>T</b> 1                 |                     | ••   | Sample | period   | Sampling | Estimation  | H      | var(H)                  | n      | a     | a'    | t     | t'    | т.  | ŕ.   | $SE(\hat{r}_{})$ |
| Fishery                    | Fishery location    | Year | type   | type     | period   | level       | u      | ( <b>u</b> ( <b>u</b> ) | $n_u$  | сu    | счи   | ° u   | °и    | тиj | ' uj | ( uj )           |
|                            | PANEL K: 2003 BKOUD |      |        |          |          |             |        |                         |        |       |       |       |       |     |      |                  |
| Terminal purse seine, jack | District 112-22     | 2006 | 1      | 7        | 28       | 5           | 207    | 0                       | 157    | 26    | 26    | 24    | 24    | 1   | 16   | 15               |
| Drift gillnet              | District 108        | 2007 | 1      | 7        | 27       | 4           | 731    | 0                       | 731    | 62    | 61    | 59    | 59    | 1   | 12   | 12               |
| Recreational DE            | Ketchikan           | 2007 | 1      | 2        | 12       | 4           | 322    | 0                       | 188    | 26    | 26    | 23    | 23    | 1   | 21   | 20               |
| Trad. purse seine, jack    | District 107        | 2007 | 1      | 7        | 28       | 4           | 64     | 0                       | 64     | 1     | 1     | 1     | 1     | 1   | 12   | 12               |
| Experimental troll         | District 101-29     | 2008 | 1      | 7        | 21       | 5           | 175    | 0                       | 85     | 7     | 7     | 6     | 5     | 1   | 30   | 29               |
| Experimental troll         | District 101-29     | 2008 | 1      | 7        | 23       | 5           | 315    | 0                       | 173    | 12    | 12    | 12    | 12    | 2   | 44   | 31               |
| Experimental troll         | District 101-45     | 2008 | 1      | 7        | 23       | 5           | 13     | 0                       | 13     | 2     | 2     | 2     | 2     | 1   | 12   | 12               |
| Experimental troll         | District 105-41     | 2008 | 1      | 7        | 23       | 5           | 217    | 0                       | 159    | 10    | 10    | 10    | 10    | 1   | 16   | 16               |
| Experimental troll         | District 106-30     | 2008 | 1      | 7        | 26       | 5           | 107    | 0                       | 20     | 2     | 2     | 2     | 2     | 1   | 64   | 64               |
| Experimental troll         | District 109-62     | 2008 | 1      | 7        | 21       | 5           | 698    | 0                       | 595    | 91    | 91    | 87    | 87    | 1   | 14   | 14               |
| Experimental troll         | District 109-62     | 2008 | 1      | 7        | 24       | 5           | 1,854  | 0                       | 983    | 186   | 185   | 170   | 170   | 1   | 23   | 22               |
| Recreational DE            | Ketchikan           | 2008 | 1      | 2        | 11       | 4           | 358    | 0                       | 286    | 22    | 21    | 20    | 20    | 1   | 16   | 15               |
| Traditional troll          | NE Quadrant         | 2008 | 1      | 7        | 1        | 3           | 1,455  | 0                       | 863    | 95    | 95    | 83    | 83    | 1   | 20   | 20               |
| Traditional troll          | NW Quadrant         | 2008 | 1      | 7        | 3        | 3           | 48,029 | 0                       | 18,729 | 1,286 | 1,258 | 906   | 900   | 2   | 63   | 45               |
| Traditional troll          | NW Quadrant         | 2008 | 1      | 7        | 4        | 3           | 24,386 | 0                       | 8,788  | 813   | 806   | 506   | 502   | 1   | 34   | 33               |
| Traditional troll          | SE Quadrant         | 2008 | 1      | 7        | 1        | 3           | 3,319  | 0                       | 1,872  | 75    | 74    | 66    | 66    | 1   | 22   | 21               |
| 2003 brood year total      |                     |      |        |          |          |             | 82,250 | 0                       | 33,706 | 2,716 | 2,677 | 1,977 | 1,966 | 18  | 419  | 110              |
|                            |                     |      |        |          | PAN      | JEL L: 2004 | BROOD  |                         |        |       |       |       |       |     |      |                  |
| Drift gillnet              | District 106        | 2008 | 1      | 7        | 27       | 4           | 318    | 0                       | 206    | 17    | 17    | 14    | 14    | 1   | 25   | 25               |
| Drift gillnet, jack        | District 108        | 2008 | 1      | 7        | 22       | 4           | 67     | 0                       | 60     | 3     | 3     | 3     | 3     | 1   | 18   | 18               |
| Private non-profit         | District 101-95     | 2008 | 1      | 7        | 28       | 5           | 2,511  | 0                       | 1,080  | 95    | 95    | 91    | 91    | 1   | 38   | 37               |
| Trad. purse seine, jack    | District 107        | 2008 | 1      | 2        | 30       | 4           | 7      | 0                       | 7      | 2     | 2     | 2     | 2     | 1   | 16   | 16               |
| 2004 brood year total      |                     |      |        |          |          |             | 2,903  | 0                       | 1,353  | 117   | 117   | 110   | 110   | 4   | 97   | 51               |

| Fisherv                         | Fishery location | Year | Recoverv date | Tag code | Brood year |
|---------------------------------|------------------|------|---------------|----------|------------|
| Recreational                    | CDFO Area 001    | 1999 | 05/21/1999    | 44213    | 1993       |
| Recreational                    | CDFO Area 002    | 2000 | 05/21/2000    | 43829    | 1995       |
| Recreational                    | CDFO Area 001    | 2000 | 06/09/2000    | 44712    | 1995       |
| Recreational                    | Ketchikan        | 2001 | 06/17/2001    | 44712    | 1995       |
| Recreational                    | Ketchikan        | 2001 | 06/21/2001    | 44236    | 1995       |
| Recreational                    | Ketchikan        | 2001 | 10/10/2001    | 44713    | 1996       |
| Recreational                    | CDFO Area 000    | 2002 | 05/18/2002    | 44339    | 1996       |
| Recreational                    | Homer            | 2003 | 06/17/2003    | 40256    | 1998       |
| Recreational                    | Ketchikan        | 2004 | 06/24/2004    | 40142    | 1998       |
| Recreational                    | Ketchikan        | 2004 | 06/29/2004    | 40142    | 1998       |
| Recreational                    | Ketchikan        | 2004 | 07/01/2004    | 40256    | 1998       |
| Recreational, sublegal research | District 101-85  | 2005 | 05/27/2005    | 40810    | 2002       |
| Recreational                    | CDFO Area 009    | 2005 | 06/21/2005    | 40145    | 1999       |
| Recreational, sublegal research | District 101-85  | 2005 | 07/25/2005    | 40810    | 2002       |
| Recreational, sublegal research | District 101-90  | 2005 | 08/07/2005    | 40842    | 2002       |

Appendix B7.–Voluntary recoveries of Chinook salmon possessing a valid Unuk River Chinook salmon CWT from 1995 to 2008. CDFO = Canadian Department of Fisheries and Oceans.

**APPENDIX C** 

| File name          | Description                                                      |
|--------------------|------------------------------------------------------------------|
| UNUK41Theta08F.xls | Tables 3, 9, 10-20, B1, B5, and B6.                              |
| 08UNUK41AF.xls     | Tables 7, 8, A4, and A7 and Figures 13 and 17.                   |
| 07UNUK41AF.xls     | Tables 5, 6, and A5 and Figure 9.                                |
| 08UNUK41ASLF.xls   | 2008 Mark-recapture data file.                                   |
| 07UNUK41ASLF.xls   | 2007 Mark-recapture data file.                                   |
| 07KS41UNUK.7s      | 2007 K-S test data input and output for Figures 10-12 and 14-16. |
| 08KS41UNUK.7s      | 2008 K-S test data input and output for Figures 18-23.           |
| 41Migration08.xls  | Table 4.                                                         |
| 08UNUK41SMOLT.xls  | Tables B2-B4.                                                    |

Appendix C1.–Computer files used in the creation of this manuscript that are archived by ADF&G, Research Technical Services.