Genetic Stock Identification of Chinook salmon Harvest on the Yukon River 2006 by William D. Templin, Nicholas A. DeCovich, and Lisa W. Seeb April 2008 Alaska Department of Fish and Game **Divisions of Sport Fish and Commercial Fisheries** # **Symbols and Abbreviations** The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions. | Weights and measures (metric) | | General | | Measures (fisheries) | | |--|--------------------|--------------------------|-------------------|--|-------------------------| | centimeter | cm | Alaska Administrative | | fork length | FL | | deciliter | dL | Code | AAC | mideye-to-fork | MEF | | gram | g | all commonly accepted | | mideye-to-tail-fork | METF | | hectare | ha | abbreviations | e.g., Mr., Mrs., | standard length | SL | | kilogram | kg | | AM, PM, etc. | total length | TL | | kilometer | km | all commonly accepted | | C | | | liter | L | professional titles | e.g., Dr., Ph.D., | Mathematics, statistics | | | meter | m | | R.N., etc. | all standard mathematical | | | milliliter | mL | at | @ | signs, symbols and | | | millimeter | mm | compass directions: | | abbreviations | | | | | east | E | alternate hypothesis | H_A | | Weights and measures (English) | | north | N | base of natural logarithm | e | | cubic feet per second | ft ³ /s | south | S | catch per unit effort | CPUE | | foot | ft | west | W | coefficient of variation | CV | | gallon | gal | copyright | © | common test statistics | $(F, t, \chi^2, etc.)$ | | inch | in | corporate suffixes: | | confidence interval | CI | | mile | mi | Company | Co. | correlation coefficient | 01 | | nautical mile | nmi | Corporation | Corp. | (multiple) | R | | ounce | oz | Incorporated | Inc. | correlation coefficient | | | pound | lb | Limited | Ltd. | (simple) | r | | quart | qt | District of Columbia | D.C. | covariance | cov | | yard | yd | et alii (and others) | et al. | degree (angular) | 0 | | yard | yu | et cetera (and so forth) | etc. | degrees of freedom | df | | Time and temperature | | exempli gratia | | expected value | E | | day | d | (for example) | e.g. | greater than | > | | degrees Celsius | °C | Federal Information | 8- | greater than or equal to | <i>></i> | | degrees Fahrenheit | °F | Code | FIC | harvest per unit effort | HPUE | | degrees kelvin | K | id est (that is) | i.e. | less than | < < | | hour | h | latitude or longitude | lat. or long. | less than or equal to | <u> </u> | | minute | min | monetary symbols | int. or long. | logarithm (natural) | in | | second | S | (U.S.) | \$,¢ | logarithm (base 10) | log | | second | 3 | months (tables and | Ψ, γ | logarithm (specify base) | \log_{2} etc. | | Physics and chemistry | | figures): first three | | minute (angular) | 10g ₂ , etc. | | all atomic symbols | | letters | Jan,,Dec | not significant | NS | | alternating current | AC | registered trademark | ® | null hypothesis | H _o | | ampere | A | trademark | TM | percent | % | | calorie | cal | United States | | * | ⁷⁰ P | | direct current | DC | (adjective) | U.S. | probability
probability of a type I error | Г | | hertz | Hz | United States of | 0.5. | (rejection of the null | | | | | America (noun) | USA | · • | o. | | horsepower | hp
pH | U.S.C. | United States | hypothesis when true) probability of a type II error | α | | hydrogen ion activity
(negative log of) | рп | 0.5.C. | Code | (acceptance of the null | | | , , | | U.S. state | use two-letter | ` . | 0 | | parts per million | ppm | C.S. state | abbreviations | hypothesis when false) | β | | parts per thousand | ppt, | | (e.g., AK, WA) | second (angular)
standard deviation | | | volta | ‰
• | | | standard deviation
standard error | SD | | volts | V
W | | | standard error
variance | SE | | watts | vv | | | | Von | | | | | | population | Var | | | | | | sample | var | # FISHERY DATA SERIES NO. 08-15 # GENETIC STOCK IDENTIFICATION OF CHINOOK SALMON HARVEST ON THE YUKON RIVER 2006 by William D. Templin, Nicholas A. DeCovich, and Lisa W. Seeb Alaska Department of Fish and Game, Division of Commercial Fisheries Gene Conservation Laboratory, Anchorage Alaska Department of Fish and Game Division of Sport Fish, Research and Technical Services 333 Raspberry Road, Anchorage, Alaska, 99518-1599 April 2008 This investigation was financed by the United States Yukon River Research and Management Fund under project USRM 16-06. The Division of Sport Fish Fishery Data Series was established in 1987 for the publication of technically oriented results for a single project or group of closely related projects. Since 2004, the Division of Commercial Fisheries has also used the Fishery Data Series. Fishery Data Series reports are intended for fishery and other technical professionals. Fishery Data Series reports are available through the Alaska State Library and on the Internet: http://www.sf.adfg.state.ak.us/statewide/divreports/html/intersearch.cfm This publication has undergone editorial and peer review. William D. Templin, Alaska Department of Fish and Game, Division of Commercial Fisheries 333 Raspberry Road, Anchorage, AK 99518-1565 Nicholas A. Decovich, Alaska Department of Fish and Game, Division of Commercial Fisheries 333 Raspberry Road, Anchorage, AK 99518-1565 and Lisa W. Seeb Alaska Department of Fish and Game, Division of Commercial Fisheries 333 Raspberry Road, Anchorage, AK 99518-1565 This document should be cited as: Templin, W. D, N. A. Decovich, and L. W. Seeb. 2008. Genetic stock identification of Chinook salmon harvest on the Yukon River 2006. Alaska Department of Fish and Game, Fishery Data Series No. 08-15, Anchorage. The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972. ### If you believe you have been discriminated against in any program, activity, or facility please write: ADF&G ADA Coordinator, P.O. Box 115526, Juneau AK 99811-5526 U.S. Fish and Wildlife Service, 4040 N. Fairfax Drive, Suite 300 Webb, Arlington VA 22203 Office of Equal Opportunity, U.S. Department of the Interior, Washington DC 20240 #### The department's ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078 #### For information on alternative formats and questions on this publication, please contact: ADF&G, Sport Fish Division, Research and Technical Services, 333 Raspberry Road, Anchorage AK 99518 (907)267-2375. # TABLE OF CONTENTS | | rage | |-------------------------|------| | LIST OF TABLES | ii | | LIST OF FIGURES | ii | | LIST OF APPENDICES | iii | | ABSTRACT | 1 | | INTRODUCTION | 1 | | OBJECTIVES | 2 | | METHODS | 2 | | Collections | 2 | | Laboratory methods | | | Quality control methods | 3 | | Statistical analyses | 3 | | Simulations | 4 | | Mixed stock analysis | 4 | | RESULTS | 5 | | Collections | 5 | | Laboratory analysis | 5 | | Statistical analysis | 5 | | Simulations | 6 | | Mixture analysis | 6 | | DISCUSSION | 7 | | ACKNOWLEDGEMENTS | 8 | | REFERENCES CITED | 9 | | TABLES | 11 | | FIGURES | 21 | | APPENDIX | 27 | # LIST OF TABLES | Table | P | age | |--------|---|-----| | 1. | Chinook salmon collections from the Yukon River drainage organized hierarchically into reporting groups for mixed stock analysis. | 12 | | 2. | Chinook salmon collections from selected commercial and subsistence fishery harvests in the Yukon River drainage, 2006. | | | 3. | Single nucleotide polymorphisms assayed in individuals sampled from the commercial and subsistence harvest of Chinook salmon on the U.S. portion of the Yukon River drainage, 2006. | | | 4. | Mean reporting group allocations of simulated mixtures of Yukon River Chinook salmon from the baseline of 26 SNPs. | | | 5. | Estimated proportional contributions (P) and 90% confidence intervals of Chinook salmon harvested from the commercial fishery in District Y-1 of the Yukon River, 2006 | | | 6. | Estimated proportional contributions (P) and 90% confidence intervals of Chinook salmon harvested from the commercial fishery in District Y-2 of the Yukon River, 2006 | | | 7. | Estimated proportional contributions (P) and 90% confidence intervals of Chinook salmon harvested from the subsistence fisheries in District Y-1 and Y5, and the commercial fishery in District Y-3 and Y-5 of the Yukon River, 2006. | | | 8. | Estimated proportional contributions (P) and 90% confidence intervals of Chinook salmon harvested from the subsistence fishery in the 3 subdistricts of District Y-4 of the Yukon River, 2006. | | | | LIST OF FIGURES | | | Figure | e P | age | | 1. | Map of the locations of Chinook salmon collections in the Yukon
River drainage. | | | 2. | Location of the fishing districts (and District Y-4 subdistricts) used for management of salmon fisheries in the United States portion of the Yukon River drainage. | | | 3. | Unweighted paired group-mean clustering tree based on genetic distances between pairs of Chinook salmon populations in the Yukon River drainage | | | 4. | Relative stock composition of 3 broad-scale reporting groups in the Chinook salmon harvest during the 5 commercial fishery periods in District Y-1, 2006. | | | 5. | Relative stock composition of 3 broad-scale reporting groups in the Chinook salmon harvest during the 4 commercial fishery periods in District Y-2, 2006. | 25 | | 6. | | | | | Relative proportion of Canada stocks in the 5- and 6-year old Chinook salmon harvested during the 5 commercial fishery periods in District Y-1, 2006. | 26 | # LIST OF APPENDICES | Appen | ndix | Page | |-------|---|------| | 1A. | Estimated proportional contributions (P) and 90% confidence intervals of 5-year old Chinook salmon harvested from the commercial fishery in District Y-1 of the Yukon River, 2006. The estimated group proportions are given for each of 3 hierarchical levels. Estimates may not sum to 1.0, because some | • | | 1B. | genotypes are classed as "unknown" due to low genotype probabilities | | | | harvested from the commercial fishery in District Y-2 of the Yukon River, 2006. The estimated group proportions are given for each of 3 hierarchical levels. Estimates may not sum to 1.0, because some genotypes are classed as "unknown" due to low genotype probabilities | | | 2A. | Estimated proportional contributions (P) and 90% confidence intervals of 6-year old Chinook salmon harvested from the commercial fishery in District Y-1 of the Yukon River, 2006. The estimated group proportions are given for each of 3 hierarchical levels. Estimates may not sum to 1.0, because some genotypes are classed as "unknown" due to low genotype probabilities | • | | 2B. | Estimated proportional contributions (P) and 90% confidence intervals of 6-year old Chinook salmon harvested from the commercial fishery in District Y-2 of the Yukon River, 2006. The estimated group proportions are given for each of 3 hierarchical levels. Estimates may not sum to 1.0, because some | | | | genotypes are classed as "unknown" due to low genotype probabilities | 31 | ## **ABSTRACT** Significant genetic variation exists among populations of Chinook salmon from the Yukon River drainage and use of this variation for providing estimates of stock composition of fishery harvests has been possible since the early 1990s. In 2006, a single nucleotide polymorphism baseline was used to estimate the stock composition of Chinook salmon harvests in the U.S. portion of the Yukon River. Of the samples collected from the subsistence and commercial fisheries, 4,977 individuals were assayed for genetic variation at the 26 single nucleotide polymorphisms. Mixed stock analysis of these samples enabled the estimation of the stock composition of the harvest at 3 hierarchical levels: country-of-origin (U.S. and Canada), broad-scale (Lower Yukon, Middle Yukon, and Canada), and fine-scale (Lower Yukon, Upper U.S. Yukon, Tanana River, Canada Border, Pelly, Carmacks and Takhini). In management District Y-1 the portion of harvest attributable to Canadian origin fish was consistently near 50% with the exception of one commercial fishing period, when it dropped below 40%. In the management District Y-2 harvest, Canadian stocks contributed between 36% and 60% of the harvest over the 4 commercial fishing periods. Key words: Chinook salmon, genetic stock identification, Yukon River, single nucleotide polymorphism, SNP #### INTRODUCTION Knowledge of the origin of Chinook salmon *Oncorhynchus tshawytscha* stocks harvested in the subsistence and commercial fisheries on the Yukon River is important for the successful management of these fisheries. The proportion of Canadian-origin Chinook salmon in fishery harvests in the U.S. waters of the Yukon River is necessary information for meeting the obligations of the Yukon River Salmon Agreement between the U.S. and Canada. Until recently, scale pattern analysis was used to estimate stock composition of the harvest, but the recent development of baseline data for Chinook salmon populations in the Yukon River drainage has demonstrated the ability of genetic stock identification to deliver the same information more accurately and more efficiently (Smith et al. 2005a; Templin et al. 2005; Templin et al. 2006a,b, Beacham and Candy 2006). Two types of genetic markers, single nucleotide polymorphisms (SNPs) (Smith et al. 2005a; Templin et al. 2006b) and microsatellites (Flannery et al. 2006; Templin et al. 2006a,c; Beacham et al. 2008) have been explored to provide a replacement for the allozyme baseline developed in the 1990's (Beacham et al. 1989; Wilmot et al. 1992; Templin et al. 2005). The baseline of 9 SNPs and 23 populations, completed in 2004, was increased to 17 SNPs and used to provide stock composition estimates of the 2004 Chinook harvests in the U.S. portion of the Yukon River drainage (Templin et al. 2006b). In 2006 this SNP baseline was augmented with the addition of both populations and genetic markers; the new version consists of 25 populations and 26 SNPs. Two collections were added from U.S. populations, the Sheenjek and Kantishna rivers, and one population, Little Salmon River, was added from Canada. One collection previously used in the 2004 baseline, Stoney Creek, was removed from the 2006 baseline based on recommendations from biologists from Department of Fisheries and Oceans Canada. This collection is comprised of juvenile samples and there is evidence it may be a mixture from separate spawning populations. This report describes the mixed stock analysis of the Chinook salmon harvest in the U.S. portion of the Yukon River in 2006. We describe the baseline used, the simulations used to verify the accuracy and precision of estimated stock proportions, and the stock composition of the subsistence and commercial harvest. The stock contribution estimates are provided for 3 hierarchical sets of reporting groups: Country, Broad-scale, and Fine-scale. In addition, we provide age-specific estimates for the 5- and 6-year-old components of the run. # **OBJECTIVES** The goal of this project was to provide estimates of the stock composition of Chinook salmon harvest in commercial and subsistence fisheries on the Yukon River in 2006. To achieve this goal, the following objectives were to be met: - 1) Sample individuals from each commercial or subsistence fishery opening in districts Y-1, Y-2, Y-4 and Y-5 (Figure 2) as follows: - i. District Y-1 subsistence 400 individuals - ii. District Y-1 commercial 400 individuals per period - iii. District Y-2 commercial 400 individuals per period - iv. District Y-4 subsistence 300 individuals from each subdistrict - v. District Y-5 subsistence 400 individuals - 2) Analyze a representative sample of individuals from each district and period for genetic variation using the SNP baseline. - 3) Estimate the relative contribution of stocks to the commercial and subsistence fisheries of the Yukon River. - 4) Augment the baseline through the analysis and inclusion of 400 individuals from unrepresented or under-represented spawning populations. ## **METHODS** #### **COLLECTIONS** Many of the Chinook salmon collections that comprise the baseline (Table 1, Figure 1) were assembled as a part of a 3-laboratory collaboration (Alaska Department of Fish and Game, Department of Fisheries and Oceans Canada, and U.S. Fish and Wildlife Service) to survey genetic variation in the Yukon River drainage (Flannery et al. 2006). Additional samples were obtained from Mike Turner, a subsistence fisher on the Kantishna River, and from a project on the Sheenjek River by the Council of Athabascan Tribal Governments. Chinook salmon were sampled from the commercial, subsistence, and test fisheries in the U.S. portion of the river (Table 2; Figure 2). Samples were collected randomly each fishing period during the process of sampling the harvest for age, sex, and length data (DuBois et al. 2007). A fishing period is a designated time during which either subsistence or commercial fishing is allowed. Chinook salmon fishing periods on the U.S. portion of the Yukon River are authorized by the Alaska Department of Fish and Game (ADF&G). The tissues collected were axillary processes preserved in ethanol. Target sample sizes of 400 individuals per period were established to allow for acceptable levels of precision and accuracy; estimates will be within 5% of the true value 90% of the time. Larger sample sizes also allow for subsampling by age for the purpose of providing age-structured estimates. Target sample sizes of 300 individuals were established for subsistence fisheries to account for smaller harvests and greater difficulty obtaining samples. Age structured estimates were not produced for these samples. ### LABORATORY METHODS Genetic data were collected from the fishery samples as individual multi-locus genotypes for 26 SNPs (Table 3). Samples were arranged into subsets for the purpose of fitting collections (a group of samples taken to represent a single fishing period) onto 384-well reaction plates. Baseline individuals were assayed for their genotypes at 26 SNPs (Table 3). SNP genotyping was performed in 384-well reaction plates, with 4 wells in each plate left empty as negative controls. Each polymerase chain reaction was conducted in a 5µL volume consisting of 0.10µL
template DNA in 1X TaqMan Universal Buffer (ABI), 900nM each polymerase chain reaction primer, and 200nM each probe. Thermal cycling was performed on a Dual 384-Well GeneAmp polymerase chain reaction System 9700 as follows: an initial denaturizing step of 10 min at 95°C followed by 50 cycles of: 92°C for 1 sec and annealing/extension temperature for 1 min. Cycling was conducted at a ramp speed of 1°C per second. The plates were read on an ABI PRISM 7900HT Sequence Detection System after amplification and scored using Sequence Detection Software 2.2 (ABI). The SNP data collected were individual diploid genotypes for each locus. Genotype data were stored as output text files on a network drive. The data on this network are backed up nightly. Long term storage of the data is in an Oracle database, *LOKI*, supported and maintained by ADF&G. # **QUALITY CONTROL METHODS** The following measures were implemented to insure the quality and consistency of data produced by laboratory procedures: - 1) Each individual was assigned a unique accession identifier. When DNA was extracted or analyzed from each individual, a sample sheet was created that linked each individual's code to a specific well in a uniquely numbered 96-well plate. This sample sheet accompanied the individual through all phases of a project, minimizing the risk of misidentification of samples. - 2) Genotypes were assigned to individuals using a double-scoring system. Two researchers designated allele scores for each individual. - 3) Approximately 8% of the individuals, 8 samples from each 96-well DNA extraction plate, were reanalyzed for all SNPs. This insured that the data are reproducible and any errors created from the processing of individual plates were corrected. - 4) The final data were checked for duplicated multi-locus genotypes for indication of errors caused prior to extraction of the DNA. When duplicate genotypes were found, the genotype was attributed to the first individual, and subsequent individuals with the same genotype were removed from the analysis to insure that any given individual did not appear more than once in the baseline. - 5) The data have been permanently stored in an Oracle database, *LOKI*, administered by ADF&G. # STATISTICAL ANALYSES When baseline collections were taken in multiple years from the same location, all collections were pooled for further analyses. The log likelihood ratio test (Weir 1990) was used to test for homogeneity among collections taken in multiple years. Comparison of population structure in this baseline of 26 SNPs to previous baselines was performed by first computing the Cavalli-Sforza and Edwards (1967) chord distances between population pairs and then clustering the populations using the unweighted paired group mean algorithm (UPGMA; Sneath and Sokal 1973) to display patterns of interpopulation similarity. ### **SIMULATIONS** Simulations were conducted to evaluate the accuracy and precision of the enlarged SNP baseline to provide compositional estimates of mixtures of Chinook salmon harvested in Yukon River fisheries. These simulations were used to help assess whether the baseline of allele frequencies at the 26 SNP markers would provide sufficient information to identify individual stocks or groups of stocks (reporting groups) in mixtures. Reporting groups for genetic stock identification of Yukon River Chinook salmon were defined in previous studies based on a combination of genetic similarity, geographic features, and management applications. Reporting groups were defined hierarchically into 3 levels: 1) country-of-origin, 2) broad-scale, and 3) fine-scale. The broad-scale groups (Lower Yukon, Middle Yukon, and Canada) were the same regions previously used for estimating stock composition of the harvest by scale pattern analysis. Another set of simulations was performed using fine-scale reporting groups (Table 1), which represent identifiable sets of populations useful for management and research. These groups were previously defined in 2004 (Templin et al. 2006b) when SNPs were used to estimate stock composition of the harvest. Simulations were performed using the Statistical Package for Analyzing Mixtures (SPAM version 3.7, Debevec et al. 2000). Baseline and mixture genotypes were randomly generated from the baseline allele frequencies assuming Hardy-Weinberg equilibrium. Each simulated mixture (N = 400) was composed 100% of the stock or reporting group under study. When a reporting group mixture was simulated, all stocks in the reporting group contributed equally to the mixture. Average estimates of mixture proportions and 90% confidence intervals were derived from 1000 simulations. Reporting groups with mean correct estimates of 90% or better are considered highly identifiable in fishery applications. Reporting groups with mean correct estimates lower than 90% can still be considered identifiable in mixtures, but sources of misallocation should be considered when interpreting the results. #### MIXED STOCK ANALYSIS Stock composition estimates for country-of-origin, the 3 broad-scale, and the 7 fine-scale stock groups were generated using SPAM. For each estimation procedure, genotypes were removed from the estimation procedure if their probability of occurring was near zero (1×10⁻⁴⁵). For these cases, the mixture estimates have a group labeled "unknown" containing the proportion of the mixture that was removed. Further, we deleted any individual missing data at 5 or more SNPs. Individual population or stock estimates were first calculated, and then summed into reporting regions. Ninety percent confidence intervals for all group contribution estimates were computed from 1,000 bootstrap resamples of the baseline and mixture genotypes. For each resample, contribution estimates were generated for all populations and summed to the group level. The 1,000 estimates for a group were then sorted from lowest to highest with the 51st and 950th values in the sequence taken respectively as the lower and upper bounds of the 90% confidence interval for that group. When sample sizes permitted, the stock compositions of the 5- and 6-year old portions of the harvest were also estimated. ## RESULTS ### **COLLECTIONS** The only new baseline tissue samples collected in 2006 that were available for this analysis were 37 individuals collected from the Sheenjek River (Table 1). The Kantishna River samples were collected in 2005 and the Little Salmon River samples were collected in 1987. Each of these sets of samples were assayed at 51 SNP loci and added to the baseline as part of this study. During 2006, 5,090 Chinook salmon were sampled as part of 16 collections from the commercial and subsistence fishery harvests in the U.S. portion of the Yukon River drainage (Table 2). Sampling was conducted in 5 periods in District Y-1. Chinook salmon were sampled in 4 out of 5 commercial fishing periods in District Y-2. No Chinook salmon samples were taken in Period 2 in Y-2 as this fishery was restricted to 6-inch mesh gear and intended to target chum salmon. #### LABORATORY ANALYSIS The baseline includes a total of 3,649 individuals from 43 collections representing 25 populations (Table 1). Of these, 351 individuals representing the Kantishna, Sheenjek, and Little Salmon rivers were added to the existing SNP baseline. In addition, the number of SNPs surveyed in the existing baseline increased from 18 to 26 for all populations. Of the fishery samples, a total of 4,977 individuals were analyzed for allelic variation at 26 SNPs. Because it is more efficient to analyze sets of 95 individuals (rather than 100) in the laboratory, in some cases subsets of collections were used. In general, no more than 10% of a collection was omitted, and individual collections were not reduced below a sample size of 190. Sampling theory (Thompson 1987) shows that this reduction in sample size should have little effect on the precision or accuracy of the estimate. The quality control checks employed demonstrated an overall error rate of less than 1% for baseline samples and 0% for fishery samples. # STATISTICAL ANALYSIS Collections taken in multiple years from the same location were pooled for further analyses. After adjusting for the number of tests, no significant differences were found between temporally-spaced collections from the same location. Genetic distances were calculated between each pair of populations and then used to create a dendrogram of genetic relationships between the populations in the baseline (Figure 3). This clustering analysis demonstrated the geographic structuring of Chinook salmon in the Yukon River. The most distinct group identified in this analysis was the set of Chinook salmon populations from the lower Yukon River and lower Koyukuk River. The next group contained the populations from the Takhini River. Within the remaining populations, 2 clusters were found. The first contained the remaining U.S. populations (the Tanana River and upper portions of the Yukon and Koyukuk river drainages) and the second contained the remaining Canadian populations. Within the main Canada cluster, populations also grouped geographically into 4 smaller regional clusters: populations near the U.S./Canada border, the Pelly and Stewart river drainages, populations from the Tatchun area, and the Whitehorse Hatchery collection. #### **Simulations** Reporting groups for mixed stock analysis of Chinook salmon in the Yukon River were defined based on previous studies (Templin et al. 2005; Smith et al. 2005a, Templin et al. 2006b) and supported by the structure revealed in this analysis: 1) Lower Yukon: Andreafsky River, Anvik River, Tozitna River, and Gisasa River, 2) Upper U.S. Yukon: Henshaw Creek, South Fork Koyukuk River, Beaver Creek, Chandalar River, and Sheenjek River, 3) Tanana River: Kantishna River, Chena River, Salcha River, 4) Canada Border: Chandindu River and Klondike River, 5) Pelly: Pelly River, Mayo River, Stewart River,
and Blind Creek, 6) Carmacks: Tatchun River, Nisutlin River, Nordenskiold River, Big Salmon River, and Little Salmon River, 7) Takhini: Takhini River and Whitehorse Hatchery. Simulation studies based on this fine-scale structure indicate that these reporting groups are highly identifiable in mixtures. When simulated mixtures composed entirely from a single reporting group were treated as mixtures of unknown origin more than 90% of the mixture was correctly identified to region-of-origin (Table 4). As expected, a higher level of distinction was also seen when simulating mixtures from broad-scale groups (97% correct allocation) and country-of-origin (98% correct allocation). # Mixture analysis Estimates of stock composition in the commercial harvest in District Y-1 of the Yukon River indicate that Chinook salmon of Canadian origin contributed approximately 50% of the harvest during 3 of the 5 commercial fishing periods (Table 5; Figure 4). The largest portion of the Canadian component was estimated to be from the Carmacks Region. During periods 3 (June 30) and 4 (July 4) the contribution of Canadian populations in the harvest dropped to 44% and 36%, respectively. These reductions were matched by an increase in the presence of Lower Yukon populations in the harvest (44% and 56% respectively). Stock composition estimates of the Canadian contribution to the commercial harvest in District Y-2 varied more widely over the 2 weeks of the fishery (Table 6; Figure 5). The Canadian component of the harvest ranged from a high of 60% in period 1 (June 15) to a low of 36% in period 4 (June 27). The Middle Yukon portion of the harvest dropped over the course of the 4 periods from 37% to 10%, while the Lower Yukon contribution increased from 3% to 47%. In the district Y-3 commercial harvest, 54% of the harvest was estimated to be of Canadian origin. The largest component of the Canadian portion of the harvest was comprised of stocks from the Canada Border Region with 21% of the harvest, while the largest component of the U.S. harvest came from Tanana River stocks with 22% of the harvest (Table 7). The stock composition of the commercial harvest in District Y-5 was similar to that in District Y-3 when considering country-of-origin, with 53% of the harvest estimated to be from Canada. Unlike District Y-3, however, the largest component of the Canadian portion of the commercial harvest in District Y-5 was estimated to be from the Carmacks Region, and the largest component of the U.S. portion of the harvest was from the Upper U.S. Region (Table 7). In the District Y-1 subsistence fishery, 45% of the harvest was comprised of Canadian populations. The Pelly Region contributed the largest component of the Canadian harvest with 23% (Table 7). Of the U.S. contribution, almost half was estimated to be from the Tanana River (25%). The estimated contribution of Canadian populations to the subsistence harvest in District Y-4 varied from a high of 50% in subdistrict 4-A to a low of 4% in subdistrict 4-C. As with the commercial harvest in District Y-1, the Carmacks Region comprised the greatest portion of the Canadian estimate in District Y-4 in all 3 subdistricts (Table 8). Estimates for subdistrict 4-A were produced using only individuals sampled in Kaltag and Nulato. A total of 49 individuals were collected from Koyukuk, however the exact collection location for these samples was unknown at the time of this report. These samples will be included in the appropriate mixture once the collection location is established, and this updated estimate will be used by ADF&G to produce estimates of harvest abundance. The Canadian contribution to the subsistence harvest in District Y-5 was larger than the Y-5 commercial harvest; Canadian populations were estimated to contribute 71% of the subsistence harvest. The Upper U.S populations contributed most of the U.S. portion of the harvest, and the Pelly Region contributed the largest portion of the Canadian harvest (Table 7). Stock composition of the harvests was also estimated independently by age class. Sufficient samples were available to estimate the composition of the 5- and 6-year-old components for the Y-1 and Y-2 commercial (Appendices 1 and 2; Figures 6 and 7). In the District Y-1 commercial fishery, the Canadian component of 5- and 6-year-old Chinook salmon harvested remained approximately equal in periods 1 through 3 (June 20, 26 and 30), with an increase in the Canadian contribution to the 6-year old component seen in periods 4 and 5 (July 4, 6). In the District Y-2 commercial fishery, 6-year old Canadian Chinook salmon made up the largest component of the harvest in periods 1 and 3 (June 15 and 24), while the 5- and 6-year-old components were approximately equal in periods 4 and 5 (June 27 and July 2). ## **DISCUSSION** In 2006, the stock composition of the Chinook salmon harvest in the Yukon River was estimated using a baseline of 26 SNPs from 25 populations. Due to the differences in marker type, loci, and populations used in this baseline, the fine-scale reporting groups for 2006 are not the same as those used in either 2004 (SNPs) or 2005 (microsatellites). However, the country-of-origin and broad-scale reporting groups remain unchanged. Both clustering-based methods and simulations indicate that these reporting groups are supported by the data and are adequately identifiable in mixtures. The stock composition estimates from the 2006 commercial fisheries in District Y-1 show similar patterns to the estimates from 2004 and 2005. In 2006, the Canadian component of the District Y-1 commercial fishery was near 50% in all periods except period 4 (July 4) when it dropped to 36%. A similar pattern was seen in 2004, when estimates of the Canadian component in this fishery were near 50% except for a drop in period 3 (37% on June 24–25) and period 6 (25% on July 2–3). In 2005, the Canadian component of this fishery was lowest during period 3 (43% on June 30–July 1). In both districts Y-1 and Y-2 there is a general trend of decreasing contributions to the harvest from Canada and the Middle Yukon matched by an increase in the presence of Lower Yukon populations in the harvest. A similar pattern was seen in the commercial harvests in District Y-1 in 2005 and District Y-2 in 2004. A large difference in the Canadian component of the harvest was seen in the District Y-4 subsistence fishery. Canadian stocks contributed 52% of the harvest in subdistrict 4-A, 48% in subdistrict 4-B, and only 4% in subdistrict 4-C. This decrease in the Canadian component in subdistrict 4-C was accompanied by an increase in the Tanana River component (25%, 21% and 70% in subdistricts 4-A, B and C, respectively). A similar pattern was also seen in the stock contribution estimates for the subsistence fisheries in District Y-4 in 2005 (ADF&G Unpublished data). The Canadian component of the District Y-5 commercial fishery was 53%. This is the lowest percentage of the Canadian component seen in this fishery since 2004, when genetic stock identification was first used to estimate the stock composition of the harvest. Canadian populations contributed 85% of the harvest in 2004 and 77% in 2005. The contribution of Canadian populations to the commercial harvest in District Y-5 can be compared to the estimated contribution to the subsistence fishery (71%). This was the first year that the subsistence harvest in District Y-5 was sampled. ### **ACKNOWLEDGEMENTS** Tissue collections from the commercial and subsistence fisheries were collected by ADF&G personnel under the coordination of Larry DuBois. Stan Zuray collected subsistence samples from District Y-5. Subsistence samples from District Y-4 were collected by the City of Kaltag and the Yukon River Drainage Fisheries Association. Additional baseline samples were obtained from Mike Turner, a subsistence fisher on the Kantishna River and from the Sheenjek River by the Council of Athabascan Tribal Governments. Laboratory analysis was performed with the assistance of Andy Barclay, Zac Grauvogel, Gina Johnston, Beth McLain, and Heather Hoyt. Carita Elfstrom and Judy Berger assisted with project and sample coordination. Funding for this project was provided by the 2006 Yukon River Panel River Panel Restoration and Management Fund (Project URM 16-06) under Agreement No. 70181-6-G400. # REFERENCES CITED - Beacham, T. D., C. B. Murray, and R. E. Withler. 1989. Age, morphology, and biochemical genetic variation of Yukon River Chinook salmon. Transactions of the American Fisheries Society 118:46–63. - Beacham, T. D. and J. R. Candy. 2006. Stock identification of Yukon River Chinook and chum salmon using microsatellite DNA loci. Final report to Yukon River Panel Restoration and Enhancement Fund Project CRE 79-05. - Beacham, T. D., M. Wetklo, C. Wallace, J. B. Olsen, B. G. Flannery, J. K. Wenburg, W. D. Templin, A. Antonovich, and L. W. Seeb. 2008. The application of microsatellites for stock identification of Yukon River Chinook salmon. North American Journal of Fisheries Management 28:283–295. - Cavalli-Sforza, L.L. and A.W. Edwards. 1967. Phylogenetic analysis: models and estimation procedures. American Journal of Human Genetics 19:233–257. - Debevec, E. M., R. B. Gates, M. Masuda, J. Pella, J. Reynolds, and L. W. Seeb. 2000. SPAM (Version 3.2): Statistics program for analyzing mixtures. Journal of Heredity 91:509–511. - DuBois, L., J. M. Berger, N. A. DeCovich, and W. D. Templin. 2007. Origins of Chinook salmon in the Yukon River fisheries, 2004. Alaska Department of Fish and Game, Fishery Data Series No. 07-05, Anchorage. - Flannery B., T. Beacham, M. Wetklo, C. Smith, W. Templin, A. Antonovich, L. Seeb, S. Miller, O. Schlei, J. K. Wenburg. 2006. Run timing, migratory patterns, and harvest information of Chinook salmon stocks within the Yukon River. Alaska Fisheries Technical Report 92, U.S. Fish and Wildlife Service, Anchorage. - Smith, C. T., W. D. Templin, J. E. Seeb, and L. W. Seeb.
2005a. Single nucleotide polymorphisms (SNPs) provide rapid and accurate estimates of the proportions of U.S. and Canadian Chinook salmon caught in Yukon River fisheries. North American Journal of Fisheries Management 25:944–953. - Smith C. T., Seeb J. E., Schwenke P., Seeb L. W. 2005b. Use of the 5'-nuclease reaction for SNP genotyping in Chinook salmon. Transactions of the American Fisheries Society 134:207–217. - Sneath, P. H. A., and R. R. Sokal. 1973. Numerical taxonomy. W. H. Freeman, San Francisco, California. - Templin, W. D., R. L. Wilmot, C. M. Guthrie III, and L. W. Seeb. 2005. United States and Canadian Chinook salmon populations in the Yukon River can be segregated based on genetic characteristics. Alaska Fishery Research Bulletin 11(1):44–60. - Templin, W. D, N. A. DeCovich, and L. W. Seeb. 2006a. Yukon River Chinook salmon genetic baseline: Survey of Pacific Salmon Commission loci for U.S. populations. Alaska Department of Fish and Game, Fishery Data Series No. 06-46, Anchorage. - Templin, W. D., J. M. Berger, N. A. DeCovich, and L. W. Seeb. 2006b. Genetic stock identification of Chinook salmon harvest on the Yukon River in 2004. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 3A06-06, Anchorage. - Templin, W. D., N. A. DeCovich, and L. W. Seeb. 2006c. Genetic stock identification of Chinook salmon harvest on the Yukon River, 2005. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 3A06-05, Anchorage. - Weir, B. S. 1990. Genetic data analysis. Sinauer Associates, Inc. Sunderland, MA. - Wilmot, R. L., R. J. Everett, W. J. Spearman, and R. Baccus. 1992. Genetic stock identification of Yukon River chum and Chinook salmon 1987-1990. Progress Report U.S. Fish and Wildlife Service, Anchorage, Alaska. # **TABLES** **Table 1.**–Chinook salmon collections from the Yukon River drainage organized hierarchically into reporting groups for mixed stock analysis. | Country | Broad scale | Fine scale | Population | Year(s) | Sample size | |------------|--------------|-------------------|-----------------------|------------------------|-------------| | United Sta | ates | | | | | | Lower Yu | ıkon | | | | | | | Lower Yukon | n | | | | | | | | Anvik River | 2002 | 99 | | | | | Andreafsky River | 2003 | 208 | | | | | Tozitna River | 2002, 2003 | 450 | | | | | Gisasa River | 2001 | 228 | | Middle Y | ukon | | | | | | | Upper U.S. Y | ['] ukon | | | | | | | | Sheenjek River | 2002, 2004,2006 | 51 | | | | | Beaver Creek | 1997 | 100 | | | | | Chandalar River | 2002, 2003, 2004 | 178 | | | | | Henshaw Creek | 2001 | 150 | | | | | S. Fork Koyukuk River | 2003 | 56 | | | Tanana River | r | - | | | | | | | Kantishna River | 2005 | 200 | | | | | Chena River | 2001 | 200 | | | | | Salcha River | 2005 | 200 | | Canada | | | | | | | | Canada | | | | | | | | Border | | | | | | | | Chandindu River | 2001 | 158 | | | | | Klondike River | 2001, 2003 | 80 | | | | Pelly | | | | | | | | Mayo River | 1997, 2003 | 62 | | | | | Stewart River | 1997 | 99 | | | | | Blind Creek | 1997, 2003 | 139 | | | | | Pelly River | 1996, 1997 | 150 | | | | Carmacks | | | | | | | | Little Salmon | 1987, 1997 | 100 | | | | | Big Salmon | 1987, 1997 | 119 | | | | | Tatchun Creek | 1987, 1997, 2002, 2003 | 169 | | | | | Nordenskiold River | 2003 | 56 | | | | | Nisutlin River | 1987, 1997 | 56 | | | | Takhini | | | | | | | | Takhini River | 1997, 2003 | 101 | | | | | Whitehorse Hatchery | 1985, 1987, 1997 | 242 | | | | | • | Total | 3,649 | **Table 2.**—Chinook salmon collections from selected commercial and subsistence fishery harvests in the Yukon River drainage, 2006. | | | | | Sampl | le size | |-------------|--------|------------------|-------------------------|-----------|----------| | District | Period | Dates | Location | Collected | Analyzed | | Commercia | al | | | | | | Y1 | 1 | June 20 | Emmonak | 400 | 400 | | | 2 | June 26 | Emmonak | 400 | 400 | | | 3 | June 30 | Emmonak | 400 | 400 | | | 4 | July 4 | Emmonak | 398 | 398 | | | 5 | July 6 | Emmonak | 241 | 241 | | Y2 | 1 | June 15 | Saint Marys | 293 | 293 | | | 3 | June 24 | Saint Marys | 400 | 400 | | | 4 | June 27 | Saint Marys | 400 | 400 | | | 5 | July 2 | Saint Marys | 400 | 379 | | Y3 | | June 21 | | 107 | 107 | | Y5 | | July 8-13 | Rampart | 500 | 475 | | | | | Total | 3,939 | 3,893 | | Subsistence | e | | | | | | Y1 | | June 7-23 | Emmonak | 139 | 139 | | Y4A | | June 27- July 11 | Kaltag/ Nulato/ Koyukuk | 420 | 380 | | Y4B | | July 5-15 | Bishop Rock | 200 | 190 | | Y4C | | July 7-15 | Ruby | 90 | 90 | | Y5 | | | Rapids | 302 | 285 | | | | | Total | 1,151 | 1,084 | | | | | Grand Total | 5,090 | 4,977 | **Table 3.**—Single nucleotide polymorphisms assayed in individuals sampled from the commercial and subsistence harvest of Chinook salmon on the U.S. portion of the Yukon River drainage, 2006. | Locus | Source | |------------------|--------------------| | Ots_E2-275 | Smith et al. 2005a | | Ots_ETIF1A | Unpublished | | Ots_FGF6A | Unpublished | | Ots_FGF6B | Unpublished | | Ots_GH2 | Smith et al. 2005b | | Ots_GPDH-338 | Smith et al. 2005a | | Ots_GST-207 | Smith et al. 2005a | | Ots_hnRNPL-533 | Smith et al. 2005a | | Ots_HSP90B-100 | Smith et al. 2005a | | Ots_HSP90B-385 | Smith et al. 2005a | | Ots_IGF-I.1-76 | Smith et al. 2005a | | Ots_il-1racp-166 | Smith et al. 2005a | | Ots_MHC1 | Smith et al. 2005b | | Ots_MHC2 | Smith et al. 2005b | | Ots_SWS1op-182 | Smith et al. 2005a | | Ots_P53 | Smith et al. 2005b | | Ots_Prl2 | Smith et al. 2005b | | S7-1 | Unpublished | | Ots_SClkF2R2-135 | Smith et al. 2005a | | Ots_SERPC1-209 | Smith et al. 2005a | | Ots_SL | Smith et al. 2005b | | Ots_Tnsf | Smith et al. 2005b | | Ots_u202-161 | Smith et al. 2005a | | Ots_u4-92 | Smith et al. 2005a | | unkn526 | Unpublished | | Ots_u6-75 | Smith et al. 2005a | **Table 4.**—Mean reporting group allocations of simulated mixtures of Yukon River Chinook salmon from the baseline of 26 SNPs. Each set of mixtures (N=400) was created from a single reporting region based on allelic frequencies for that region. The results reported are the mean and bounds of the middle 90% (CI) of correct allocations from 1,000 bootstrap iterations. | Reporting Re | gion | Mean | 90% CI | |--------------|---------------|-------|-----------------| | Country | | | | | | United States | 0.983 | (0.962 - 0.999) | | | Canada | 0.987 | (0.965-1.000) | | Broad-scale | | | | | | Lower Yukon | 0.990 | (0.975-1.000) | | | Middle Yukon | 0.971 | (0.941-0.994) | | | Canada | 0.987 | (0.965-1.000) | | Fine-scale | | | | | | Lower Yukon | 0.990 | (0.975-1.000) | | | Upper US | 0.907 | (0.840-0.967) | | | Tanana | 0.940 | (0.886 - 0.980) | | | Canada Border | 0.968 | (0.933-0.993) | | | Pelly | 0.913 | (0.933-0.993) | | | Carmacks | 0.931 | (0.870 - 0.981) | | | Takhini | 0.981 | (0.956 - 0.998) | **Table 5.**—Estimated proportional contributions (P) and 90% confidence intervals of Chinook salmon harvested from the commercial fishery in District Y-1 of the Yukon River, 2006. The estimated group proportions are given for each of 3 hierarchical levels. Estimates may not sum to 1.0, because some genotypes are classed as "unknown" due to low genotype probabilities. | | | Peri | od 1 | Period 2 | | | | Peri | od 3 | | Peri | od 4 | | Perio | od 5 | | |------------------|---------|-------|---------------|----------|--------|-----------------|---------|--------|-----------------|---------|-------|-----------------|---------|-------|-----------------|--| | | | 20- | Jun | | 26-Jun | | | 30-Jun | | | 4-Jul | | | 6-Jul | | | | | N = 396 | | | N = | 399 | | N = 399 | | | N = 397 | | | N = 240 | | | | | Reporting Group | P | S.D. | 90%CI | | | Country | | | | | | | | | | | | | | | | | | United States | 0.463 | 0.036 | (0.402-0.520) | 0.493 | 0.031 | (0.439 - 0.542) | 0.564 | 0.032 | (0.514-0.617) | 0.646 | 0.030 | (0.597-0.692) | 0.470 | 0.038 | (0.408-0.531) | | | Canada | 0.537 | 0.036 | (0.480-0.598) | 0.507 | 0.031 | (0.458-0.561) | 0.436 | 0.032 | (0.383-0.486) | 0.355 | 0.030 | (0.308-0.403) | 0.530 | 0.038 | (0.469-0.592) | | | Broad-scale | | | | | | | | | | | | | | | | | | Lower Yukon | 0.062 | 0.019 | (0.034-0.098) | 0.332 | 0.032 | (0.280-0.383) | 0.436 | 0.033 | (0.382-0.487) | 0.558 | 0.030 | (0.512-0.612) | 0.381 | 0.037 | (0.316-0.435) | | | Middle Yukon | 0.402 | 0.038 | (0.333-0.463) | 0.161 | 0.030 | (0.112-0.209) | 0.128 | 0.028 | (0.085 - 0.179) | 0.088 | 0.023 | (0.047-0.121) | 0.089 | 0.028 | (0.050-0.141) | | | Canada | 0.537 | 0.036 | (0.480-0.598) | 0.507 | 0.031 | (0.458-0.561) | 0.436 | 0.032 | (0.383-0.486) | 0.355 | 0.030 | (0.308-0.403) | 0.530 | 0.038 | (0.469-0.592) | | | Fine-scale | | | | | | | | | | | | | | | | | | Lower Yukon | 0.062 | 0.019 | (0.034-0.098) | 0.332 | 0.032 | (0.280 - 0.383) | 0.436 | 0.033 | (0.382-0.487) | 0.558 | 0.030 | (0.512-0.612) | 0.381 | 0.037 | (0.316-0.435) | | | Upper U.S. Yukon | 0.195 | 0.049 | (0.102-0.264) | 0.058 | 0.025 | (0.019 - 0.100) | 0.034 | 0.026 | (0.002 - 0.087) | 0.069 | 0.023 | (0.024 - 0.099) | 0.061 | 0.029 | (0.015-0.110) | | | Tanana | 0.206 | 0.042 | (0.146-0.289) | 0.102 | 0.027 | (0.058 - 0.149) | 0.094 | 0.026 | (0.049-0.132) | 0.019 | 0.014 | (0.000 - 0.046) | 0.028 | 0.022 | (0.000 - 0.074) | | | Canada Border | 0.063 | 0.023 | (0.031-0.106) | 0.012 | 0.016 | (0.000 - 0.050) | 0.021 | 0.013 | (0.000 - 0.044) | 0.009 | 0.010 | (0.000-0.031) | 0.019 | 0.015 | (0.000 - 0.049) | | | Pelly | 0.161 | 0.047 | (0.108-0.260) | 0.143 | 0.041 | (0.084 - 0.220) | 0.084 | 0.034 | (0.041-0.151) | 0.061 | 0.031 | (0.027-0.130) | 0.000 | 0.030 | (0.000 - 0.085) | | | Carmacks | 0.293 | 0.044 | (0.188-0.335) | 0.268 | 0.043 | (0.184-0.324) | 0.273 | 0.040 | (0.194-0.323) | 0.216 | 0.037 | (0.142-0.262) | 0.409 | 0.050 | (0.296-0.460) | | | Takhini | 0.021 | 0.015 | (0.004-0.053) | 0.085 | 0.021 | (0.051-0.118) | 0.059 | 0.020 | (0.032-0.097) | 0.069 | 0.019 | (0.035 -
0.099) | 0.103 | 0.034 | (0.051-0.162) | | **Table 6.**—Estimated proportional contributions (P) and 90% confidence intervals of Chinook salmon harvested from the commercial fishery in District Y-2 of the Yukon River, 2006. The estimated group proportions are given for each of 3 hierarchical levels. Estimates may not sum to 1.0, because some genotypes are classed as "unknown" due to low genotype probabilities. | Period 1 | | | | Period 3 | | | | Per | iod 4 | Period 5 | | | | |------------------|-------|-------|-----------------|----------|-------|-----------------|---------|-------|-----------------|----------|-------|-----------------|--| | | | 15 | Jun | | 24- | Jun | | 27 | -Jun | 2-Jul | | | | | | N = | 292 | | N = | 398 | | N = 397 | | | N = 379 | | | | | Reporting Group | P | S.D. | 90% CI | | | Country | | | _ | | | _ | | | _ | | | | | | United States | 0.398 | 0.042 | (0.337 - 0.480) | 0.473 | 0.033 | (0.412-0.520) | 0.644 | 0.032 | (0.588-0.693) | 0.573 | 0.030 | (0.523-0.623) | | | Canada | 0.602 | 0.042 | (0.520-0.663) | 0.528 | 0.033 | (0.480-0.588) | 0.356 | 0.032 | (0.307-0.412) | 0.427 | 0.030 | (0.377-0.477) | | | Broad-scale | | | | | | | | | | | | | | | Lower Yukon | 0.025 | 0.015 | (0.006 - 0.055) | 0.111 | 0.022 | (0.081 - 0.154) | 0.394 | 0.030 | (0.349 - 0.446) | 0.472 | 0.032 | (0.422 - 0.526) | | | Middle Yukon | 0.373 | 0.044 | (0.306 - 0.452) | 0.361 | 0.035 | (0.292 - 0.406) | 0.250 | 0.031 | (0.193 - 0.293) | 0.102 | 0.022 | (0.065 - 0.138) | | | Canada | 0.602 | 0.042 | (0.520-0.663) | 0.528 | 0.033 | (0.480-0.588) | 0.356 | 0.032 | (0.307-0.412) | 0.427 | 0.030 | (0.377-0.477) | | | Fine-scale | | | | | | | | | | | | | | | Lower Yukon | 0.025 | 0.015 | (0.006 - 0.055) | 0.111 | 0.022 | (0.081 - 0.154) | 0.394 | 0.030 | (0.349-0.446) | 0.472 | 0.032 | (0.422-0.526) | | | Upper U.S. Yukon | 0.129 | 0.050 | (0.067 - 0.232) | 0.178 | 0.036 | (0.107 - 0.228) | 0.093 | 0.037 | (0.054 - 0.175) | 0.033 | 0.020 | (0.003 - 0.071) | | | Tanana | 0.244 | 0.042 | (0.161-0.300) | 0.183 | 0.035 | (0.128 - 0.246) | 0.156 | 0.035 | (0.075 - 0.190) | 0.069 | 0.021 | (0.032 - 0.102) | | | Canada Border | 0.173 | 0.036 | (0.113-0.231) | 0.056 | 0.025 | (0.028 - 0.112) | 0.014 | 0.010 | (0.000 - 0.033) | 0.000 | 0.004 | (0.000 - 0.012) | | | Pelly | 0.288 | 0.052 | (0.200 - 0.370) | 0.114 | 0.042 | (0.070 - 0.205) | 0.048 | 0.034 | (0.015 - 0.124) | 0.043 | 0.035 | (0.009 - 0.125) | | | Carmacks | 0.142 | 0.043 | (0.072 - 0.212) | 0.352 | 0.044 | (0.249 - 0.392) | 0.246 | 0.041 | (0.162 - 0.295) | 0.311 | 0.042 | (0.216-0.356) | | | Takhini | 0.000 | 0.003 | (0.000-0.007) | 0.007 | 0.010 | (0.000-0.031) | 0.048 | 0.020 | (0.016-0.081) | 0.073 | 0.021 | (0.040 - 0.111) | | **Table 7.**—Estimated proportional contributions (P) and 90% confidence intervals of Chinook salmon harvested from the subsistence fisheries in District Y-1 and Y5, and the commercial fishery in District Y-3 and Y-5 of the Yukon River, 2006. The estimated group proportions are given for each of 3 hierarchical levels. Estimates may not sum to 1.0, because some genotypes are classed as "unknown" due to low genotype probabilities. | Y-1 Subsistence | | | | | $\frac{\text{Y-3 Commercial}}{\text{N} = 106}$ | | | Y-5 Co | nmerical | Y-5 Subsistence | | | | |------------------|-------|-------|-----------------|-------|--|-----------------|-------|--------|-----------------|-----------------|-------|-----------------|--| | | N = | 472 | | N = | | | | | | | | | | | Reporting Group | P | S.D. | 90%CI | | | Country | | | | | | _ | | | _ | ' | | | | | United States | 0.553 | 0.053 | (0.471 - 0.645) | 0.457 | 0.077 | (0.336-0.586) | 0.470 | 0.037 | (0.389-0.512) | 0.295 | 0.044 | (0.223 - 0.365) | | | Canada | 0.448 | 0.053 | (0.355-0.529) | 0.543 | 0.077 | (0.414-0.664) | 0.530 | 0.037 | (0.488-0.612) | 0.705 | 0.044 | (0.635-0.777) | | | Broad-scale | | | | | | | | | | | | | | | Lower Yukon | 0.193 | 0.043 | (0.124-0.263) | 0.067 | 0.034 | (0.018 - 0.129) | 0.016 | 0.009 | (0.004 - 0.034) | 0.011 | 0.010 | (0.000-0.032) | | | Middle Yukon | 0.360 | 0.056 | (0.270 - 0.455) | 0.390 | 0.079 | (0.268 - 0.524) | 0.454 | 0.037 | (0.371 - 0.496) | 0.284 | 0.043 | (0.213 - 0.352) | | | Canada | 0.448 | 0.053 | (0.355-0.529) | 0.543 | 0.077 | (0.414-0.664) | 0.530 | 0.037 | (0.488-0.612) | 0.705 | 0.044 | (0.635-0.777) | | | Fine-scale | | | | | | | | | | | | | | | Lower Yukon | 0.193 | 0.043 | (0.124-0.263) | 0.067 | 0.034 | (0.018 - 0.129) | 0.016 | 0.009 | (0.004 - 0.034) | 0.011 | 0.010 | (0.000-0.032) | | | Upper U.S. Yukon | 0.107 | 0.061 | (0.045 - 0.244) | 0.172 | 0.081 | (0.053 - 0.317) | 0.441 | 0.043 | (0.335-0.474) | 0.239 | 0.046 | (0.165-0.312) | | | Tanana | 0.253 | 0.060 | (0.133-0.332) | 0.218 | 0.069 | (0.098-0.332) | 0.013 | 0.019 | (0.000-0.062) | 0.045 | 0.026 | (0.005 - 0.091) | | | Canada Border | 0.052 | 0.032 | (0.000-0.108) | 0.205 | 0.076 | (0.079 - 0.322) | 0.029 | 0.025 | (0.010 - 0.093) | 0.190 | 0.041 | (0.134-0.269) | | | Pelly | 0.234 | 0.062 | (0.118-0.317) | 0.185 | 0.082 | (0.048-0.315) | 0.198 | 0.047 | (0.137-0.293) | 0.294 | 0.062 | (0.170-0.370) | | | Carmacks | 0.106 | 0.052 | (0.037-0.206) | 0.150 | 0.064 | (0.056-0.264) | 0.287 | 0.043 | (0.201-0.338) | 0.198 | 0.055 | (0.125-0.305) | | | Takhini | 0.056 | 0.028 | (0.015 - 0.106) | 0.003 | 0.013 | (0.000-0.037) | 0.024 | 0.011 | (0.004-0.052) | 0.024 | 0.015 | (0.004-0.052) | | **Table 8.**—Estimated proportional contributions (P) and 90% confidence intervals of Chinook salmon harvested from the subsistence fishery in the 3 subdistricts of District Y-4 of the Yukon River, 2006. The estimated group proportions are given for each of 3 hierarchical levels. Estimates may not sum to 1.0, because some genotypes are classed as "unknown" due to low genotype probabilities. | | | trict A | | Subdis | strict B | Subdistrict C | | | | |------------------|-------|---------|-----------------|--------|----------|-----------------|-------|-------|-----------------| | | N = | 378 | | N = | 188 | | N = | 89 | | | Reporting Group | P | S.D. | 90%CI | P | S.D. | 90%CI | P | S.D. | 90%CI | | Country | | | | | | | | | | | United States | 0.484 | 0.036 | (0.418-0.551) | 0.523 | 0.046 | (0.443 - 0.593) | 0.956 | 0.033 | (0.887 - 0.999) | | Canada | 0.516 | 0.036 | (0.449-0.582) | 0.477 | 0.046 | (0.407-0.557) | 0.044 | 0.033 | (0.001-0.113) | | Broad-scale | | | | | | | | | | | Lower Yukon | 0.036 | 0.016 | (0.018 - 0.077) | 0.104 | 0.037 | (0.055 - 0.175) | 0.174 | 0.055 | (0.095 - 0.279) | | Middle Yukon | 0.448 | 0.038 | (0.368-0.512) | 0.419 | 0.053 | (0.316-0.490) | 0.781 | 0.062 | (0.663 - 0.868) | | Canada | 0.516 | 0.036 | (0.449-0.582) | 0.477 | 0.046 | (0.407-0.557) | 0.044 | 0.033 | (0.001-0.113) | | Fine-scale | | | | | | | | | | | Lower Yukon | 0.036 | 0.016 | (0.018 - 0.077) | 0.104 | 0.037 | (0.055 - 0.175) | 0.174 | 0.055 | (0.095 - 0.279) | | Upper U.S. Yukor | 0.196 | 0.044 | (0.120 - 0.277) | 0.212 | 0.058 | (0.112-0.303) | 0.082 | 0.072 | (0.004-0.240) | | Tanana | 0.252 | 0.039 | (0.171 - 0.309) | 0.207 | 0.050 | (0.118-0.282) | 0.699 | 0.085 | (0.512 - 0.798) | | Canada Border | 0.057 | 0.024 | (0.021-0.103) | 0.002 | 0.014 | (0.000 - 0.040) | 0.011 | 0.016 | (0.000-0.043) | | Pelly | 0.121 | 0.043 | (0.053 - 0.211) | 0.112 | 0.056 | (0.034 - 0.219) | 0.000 | 0.022 | (0.000 - 0.057) | | Carmacks | 0.308 | 0.043 | (0.214 - 0.371) | 0.319 | 0.064 | (0.194-0.401) | 0.034 | 0.023 | (0.000 - 0.074) | | Takhini | 0.030 | 0.016 | (0.007 - 0.066) | 0.044 | 0.032 | (0.004-0.112) | 0.000 | 0.002 | (0.000-0.000) | # **FIGURES** Figure 1.—Map of the locations of Chinook salmon collections in the Yukon River drainage. **Figure 2.**—Location of the fishing districts (and District Y-4 subdistricts) used for management of salmon fisheries in the United States portion of the Yukon River drainage. **Figure 3.**—Unweighted paired group-mean clustering tree based on genetic distances between pairs of Chinook salmon populations in the Yukon River drainage. Population membership in the fine-scale reporting groups from Table 1 is indicated in the right margin. **Figure 4.**—Relative stock composition of 3 broad-scale reporting groups in the Chinook salmon harvest during the 5 commercial fishery periods in District Y-1, 2006. **Figure 5.**—Relative stock composition of 3 broad-scale reporting groups in the Chinook salmon harvest during the 4 commercial fishery periods in District Y-2, 2006. **Figure 6.**—Relative proportion of Canada stocks in the 5- and 6-year old Chinook salmon harvested during the 5 commercial fishery periods in District Y-1, 2006. **Figure 7.**—Relative proportion of Canada stocks in the 5- and 6-year old Chinook salmon harvested during the 4 commercial fishery periods in District Y-2, 2006. # **APPENDIX** **Appendix 1A.**—Estimated proportional contributions (P) and 90% confidence intervals of 5-year old Chinook salmon harvested from the commercial fishery in District Y-1 of the Yukon River, 2006. The estimated group proportions are given for each of 3 hierarchical levels. Estimates may not sum to 1.0, because some genotypes are classed as "unknown" due to low genotype probabilities. | | Period 1 | | Period 2 | | Period 3 | | Period 4 | | Period 5 | | |------------------|----------|-----------------|--------------------|-----------------|----------|-----------------|----------|-----------------|----------|-----------------| | | | June 20 | June 26
N = 168 | | | June 30 | | July 4 | July 6 | | | | N = | 207 | | | N = 189 | | N = 165 | | N = 100 | | | Reporting Group | P | 90%CI | | Country | | | | | | | | | | | | United States | 0.467 | (0.377 - 0.542) | 0.496 | (0.420 - 0.592) | 0.583 | (0.506 - 0.662) | 0.698 | (0.629 - 0.762) | 0.557 | (0.462 - 0.644) | | Canada | 0.533 | (0.458-0.623) | 0.504 | (0.409-0.581) | 0.417 | (0.338-0.495) | 0.302 | (0.238-0.371) | 0.443 | (0.356-0.538) | | Broad-scale | | | | | | | |
| | | | Lower Yukon | 0.034 | (0.007 - 0.089) | 0.306 | (0.231 - 0.375) | 0.413 | (0.344 - 0.493) | 0.616 | (0.553-0.693) | 0.442 | (0.347-0.540) | | Middle Yukon | 0.433 | (0.332 - 0.506) | 0.190 | (0.126-0.280) | 0.171 | (0.100-0.241) | 0.082 | (0.027 - 0.122) | 0.114 | (0.036 - 0.193) | | Canada | 0.533 | (0.458-0.623) | 0.504 | (0.409-0.581) | 0.417 | (0.338-0.495) | 0.302 | (0.238-0.371) | 0.443 | (0.356-0.538) | | Fine-scale | | | | | | | | | | | | Lower Yukon | 0.034 | (0.007 - 0.089) | 0.306 | (0.231-0.375) | 0.413 | (0.344-0.493) | 0.616 | (0.553-0.693) | 0.442 | (0.347 - 0.540) | | Upper U.S. Yukon | 0.241 | (0.115-0.340) | 0.156 | (0.083 - 0.236) | 0.055 | (0.000-0.139) | 0.082 | (0.014-0.110) | 0.114 | (0.032 - 0.190) | | Tanana | 0.191 | (0.114-0.285) | 0.035 | (0.000 - 0.095) | 0.115 | (0.037 - 0.178) | 0.000 | (0.000 - 0.044) | 0.000 | (0.000 - 0.026) | | Canada Border | 0.075 | (0.033-0.144) | 0.009 | (0.000 - 0.061) | 0.024 | (0.000 - 0.070) | 0.006 | (0.000 - 0.038) | 0.017 | (0.000 - 0.055) | | Pelly | 0.112 | (0.053 - 0.245) | 0.123 | (0.045 - 0.229) | 0.110 | (0.037-0.211) | 0.044 | (0.000-0.132) | 0.000 | (0.000 - 0.135) | | Carmacks | 0.334 | (0.190 - 0.383) | 0.285 | (0.165 - 0.355) | 0.265 | (0.151-0.330) | 0.214 | (0.112-0.280) | 0.336 | (0.169 - 0.440) | | Takhini | 0.012 | (0.000 - 0.065) | 0.086 | (0.041 - 0.142) | 0.017 | (0.000 - 0.059) | 0.039 | (0.000 - 0.081) | 0.091 | (0.008-0.180) | **Appendix 1B.**—Estimated proportional contributions (P) and 90% confidence intervals of 5-year old Chinook salmon harvested from the commercial fishery in District Y-2 of the Yukon River, 2006. The estimated group proportions are given for each of 3 hierarchical levels. Estimates may not sum to 1.0, because some genotypes are classed as "unknown" due to low genotype probabilities. | | Period 1 | | | | Period 3 | | Period 4 | Period 5 July 2 N = 175 | | |-----------------|------------------|---------|-----------------|-------|-----------------|---------|-----------------|---------------------------|-----------------| | | | June 15 | | | June 24 | | June 27 | | | | | | N = 180 | | N = 2 | 209 | N = 220 | | | | | Reporting Group | | P | 90% CI | | Country | | | | | | | | | | | | United States | 0.460 | (0.373-0.558) | 0.521 | (0.429 - 0.585) | 0.633 | (0.566-0.699) | 0.589 | (0.525 - 0.668) | | | Canada | 0.541 | (0.442-0.628) | 0.479 | (0.415-0.571) | 0.367 | (0.301-0.434) | 0.411 | (0.332-0.476) | | Broad-scale | | | | | | | | | | | | Lower Yukon | 0.018 | (0.000-0.053) | 0.114 | (0.065 - 0.167) | 0.380 | (0.312-0.451) | 0.472 | (0.413-0.560) | | | Middle Yukon | 0.441 | (0.345-0.537) | 0.408 | (0.310-0.476) | 0.253 | (0.183-0.322) | 0.117 | (0.059 - 0.171) | | | Canada | 0.541 | (0.442-0.628) | 0.479 | (0.415-0.571) | 0.367 | (0.301-0.434) | 0.411 | (0.332-0.476) | | Fine-scale | | | | | | | | | | | | Lower Yukon | 0.018 | (0.000-0.053) | 0.114 | (0.065-0.167) | 0.380 | (0.312-0.451) | 0.472 | (0.413-0.560) | | | Upper U.S. Yukon | 0.243 | (0.145-0.376) | 0.328 | (0.188-0.391) | 0.099 | (0.049-0.201) | 0.050 | (0.000-0.108) | | | Tanana | 0.198 | (0.100-0.277) | 0.080 | (0.026 - 0.183) | 0.154 | (0.058 - 0.203) | 0.067 | (0.017 - 0.120) | | | Canada Border | 0.137 | (0.071 - 0.218) | 0.068 | (0.028 - 0.145) | 0.010 | (0.000 - 0.036) | 0.000 | (0.000 - 0.024) | | | Pelly | 0.299 | (0.170 - 0.399) | 0.137 | (0.069 - 0.258) | 0.084 | (0.021 - 0.168) | 0.082 | (0.022 - 0.185) | | | Carmacks | 0.104 | (0.024 - 0.187) | 0.260 | (0.137-0.326) | 0.205 | (0.112-0.293) | 0.306 | (0.185 - 0.372) | | | Takhini | 0.000 | (0.000-0.010) | 0.013 | (0.000-0.046) | 0.068 | (0.020 - 0.116) | 0.022 | (0.000-0.060) | **Appendix 2A**.—Estimated proportional contributions (P) and 90% confidence intervals of 6-year old Chinook salmon harvested from the commercial fishery in District Y-1 of the Yukon River, 2006. The estimated group proportions are given for each of 3 hierarchical levels. Estimates may not sum to 1.0, because some genotypes are classed as "unknown" due to low genotype probabilities. | | Period 1 | | Period 2 | | | Period 3 | | Period 4 | | Period 5 | | |------------------|----------|-----------------|----------|-----------------|---------|-----------------|---------|-----------------|---------|-----------------|--| | | June 20 | | June 26 | | | June 30 | | July 4 | | July 6 | | | | N = 207 | | N = 168 | | N = 189 | | N = 165 | | N = 100 | | | | Reporting Group | P | 90%CI | | | Country | | | | | | | | | | | | | United States | 0.453 | (0.371 - 0.548) | 0.498 | (0.432 - 0.571) | 0.557 | (0.487 - 0.627) | 0.611 | (0.537 - 0.677) | 0.393 | (0.316 - 0.484) | | | Canada | 0.547 | (0.452-0.629) | 0.502 | (0.429-0.568) | 0.443 | (0.373-0.513) | 0.389 | (0.323-0.463) | 0.608 | (0.516-0.684) | | | Broad-scale | | | | | | | | | | | | | Lower Yukon | 0.065 | (0.018 - 0.112) | 0.353 | (0.285 - 0.427) | 0.460 | (0.377 - 0.519) | 0.518 | (0.441 - 0.579) | 0.308 | (0.222 - 0.388) | | | Middle Yukon | 0.388 | (0.305 - 0.486) | 0.145 | (0.086 - 0.209) | 0.097 | (0.050 - 0.172) | 0.093 | (0.042 - 0.155) | 0.085 | (0.043 - 0.151) | | | Canada | 0.547 | (0.452-0.629) | 0.502 | (0.429-0.568) | 0.443 | (0.373-0.513) | 0.389 | (0.323-0.463) | 0.608 | (0.516-0.684) | | | Fine-scale | | | | | | | | | | | | | Lower Yukon | 0.065 | (0.018 - 0.112) | 0.353 | (0.285 - 0.427) | 0.460 | (0.377 - 0.519) | 0.518 | (0.441 - 0.579) | 0.308 | (0.222 - 0.388) | | | Upper U.S. Yukon | 0.166 | (0.069 - 0.281) | 0.000 | (0.000 - 0.040) | 0.032 | (0.000-0.097) | 0.059 | (0.015 - 0.125) | 0.001 | (0.000-0.087) | | | Tanana | 0.222 | (0.128 - 0.321) | 0.145 | (0.081 - 0.202) | 0.065 | (0.019 - 0.125) | 0.034 | (0.000-0.072) | 0.084 | (0.014 - 0.120) | | | Canada Border | 0.049 | (0.000 - 0.091) | 0.025 | (0.000 - 0.063) | 0.018 | (0.000 - 0.041) | 0.020 | (0.000 - 0.047) | 0.020 | (0.000-0.060) | | | Pelly | 0.160 | (0.083 - 0.308) | 0.180 | (0.093-0.279) | 0.051 | (0.013-0.138) | 0.058 | (0.011-0.163) | 0.000 | (0.000-0.122) | | | Carmacks | 0.316 | (0.176-0.387) | 0.211 | (0.103-0.299) | 0.283 | (0.187-0.344) | 0.212 | (0.117-0.283) | 0.482 | (0.319-0.541) | | | Takhini | 0.022 | (0.000 - 0.066) | 0.086 | (0.040 - 0.133) | 0.091 | (0.046-0.145) | 0.099 | (0.052 - 0.143) | 0.106 | (0.038-0.176) | | **Appendix 2B.**—Estimated proportional contributions (P) and 90% confidence intervals of 6-year old Chinook salmon harvested from the commercial fishery in District Y-2 of the Yukon River, 2006. The estimated group proportions are given for each of 3 hierarchical levels. Estimates may not sum to 1.0, because some genotypes are classed as "unknown" due to low genotype probabilities. | | Period 1 | | | Period 3 | | Period 4 | Period 5 | | | | |-----------------|------------------|--------------------|-----------------|----------|-----------------|----------|-----------------|---------|-----------------|--| | Reporting Group | | June 15
N = 180 | | | June 24 | | June 27 | | July 2 | | | | | | | N = | 209 | N = 220 | | N = 175 | | | | | | P | 90% CI | | | Country | | | _ | | _ | | | | _ | | | | United States | 0.323 | (0.252 - 0.437) | 0.431 | (0.364 - 0.506) | 0.662 | (0.584 - 0.732) | 0.543 | (0.470 - 0.612) | | | | Canada | 0.677 | (0.563-0.748) | 0.570 | (0.494-0.636) | 0.339 | (0.268-0.416) | 0.457 | (0.388-0.530) | | | Broad-scale | | | | | | | | | | | | | Lower Yukon | 0.037 | (0.000-0.090) | 0.117 | (0.073 - 0.182) | 0.422 | (0.338 - 0.491) | 0.445 | (0.371 - 0.514) | | | | Middle Yukon | 0.286 | (0.201 - 0.400) | 0.314 | (0.237 - 0.386) | 0.240 | (0.168-0.327) | 0.099 | (0.055-0.157) | | | | Canada | 0.677 | (0.563-0.748) | 0.570 | (0.494-0.636) | 0.339 | (0.268-0.416) | 0.457 | (0.388-0.530) | | | Fine-scale | | | | | | | | | | | | | Lower Yukon | 0.037 | (0.000-0.090) | 0.117 | (0.073 - 0.182) | 0.422 | (0.338 - 0.491) | 0.445 | (0.371 - 0.514) | | | | Upper U.S. Yukon | 0.000 | (0.000-0.126) | 0.062 | (0.014 - 0.127) | 0.068 | (0.023 - 0.196) | 0.031 | (0.000-0.093) | | | | Tanana | 0.286 | (0.171 - 0.368) | 0.251 | (0.169 - 0.316) | 0.171 | (0.055 - 0.241) | 0.068 | (0.013 - 0.109) | | | | Canada Border | 0.189 | (0.104 - 0.275) | 0.034 | (0.000-0.090) | 0.019 | (0.000-0.047) | 0.000 | (0.000-0.022) | | | | Pelly | 0.275 | (0.148 - 0.389) | 0.066 | (0.006 - 0.183) | 0.046 | (0.000 - 0.149) | 0.014 | (0.000-0.122) | | | | Carmacks | 0.214 | (0.105 - 0.315) | 0.455 | (0.324 - 0.518) | 0.254 | (0.146 - 0.320) | 0.317 | (0.187 - 0.377) | | | | Takhini | 0.000 | (0.000 - 0.001) | 0.015 | (0.000-0.046) | 0.020 | (0.000 - 0.057) | 0.126 | (0.069 - 0.189) | |