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Abstract 

Brachyramphus murrelets were surveyed in Glacier Bay 9-15 July, 2007. A total of 48 

transects (91.7 km) extending from mid-channel to shore, were randomly located in the 

motorized waters of the Bay, and concurrent surveys conducted using strip and line transect 

methods. Bird distribution was mapped relative to depth and distance from shore. Small water 

bodies were censused. In addition, flying murrelets were counted as they passed in and out of the 

Bay through Sitakaday Narrows.  

Marbled Murrelets (B. marmoratus) comprised 87 percent and Kittlitz’s Murrelets (B. 

brevirostris) 13 percent of the population. The lower bay and the middle bay, collectively, 

contained over 75% of the murrelet population, with highest densities in the lower bay. The 

highest numbers of Kittlitz’s Murrelets were in the upper West Arm and associated fjords. 

Bird distribution relative to shore showed two peaks—one at 200-400 meters offshore, 

and a higher peak > 3 km from shore. The density of birds in the shoreline stratum (< 200 m 

from shore) was less than half the density in the next 200 m interval. The highest peak, > 3 km 

from shore, reflected high numbers of birds encountered in the middle of the lower bay— a 

shallow-water zone of strong mixing and generally high productivity. Birds were clearly 

stratified relative to depth. Mean depth for all birds was 110 m. The highest densities were found 

in waters 50-100 meters deep, while stratified waters > 250 m deep were relatively little used.  

Line transects returned substantially higher population densities, and lower coefficients 

of variation, than strip transects. Line transects returned population estimates of 31, 318 Marbled 

Murrelets and 4,207 Kittlitz’s Murrelets on the water. Assuming approximately 13% of the 

population is flying at any given time, the total population of Marbled, Kittlitz’s, and all 

Brachyramphus murrelets in Glacier Bay in early July was 35,389, 4,858, and 41,389 
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respectively. To facilitate comparisons with earlier predator surveys in Glacier Bay (1999-2003), 

I adjusted population estimates for survey method (strip transects) and survey date (mid June). 

The adjusted population estimates for Marbled and Kittlitz’s Murrelets are 20,662 and 3,271 

birds respectively.    

Dawn to dusk flyway counts revealed 2 distinct incoming pulses of birds in early 

morning and early afternoon, and two peaks of outgoing birds, in mid morning and early 

evening. Incoming birds peaked in phase with ebbing tides (90 minutes past high), and outgoing 

birds peaked with strong flooding tides (mid flood). At peak flux, more than 2000 birds an hour 

are entering and leaving the Bay. Based on the average daily flux of birds through the narrows, 

and assuming two round trips per bird per day, an estimated 10,500 murrelets (nearly 1/3 of the 

population) in the Bay are day users, or transients. 

Temporal variation in the numbers of murrelets using Glacier Bay is high, both day to 

day and week to week. Bird numbers appear to increase through the breeding season, peaking in 

late July-early August, and then decline. Analysis of replicate survey data found that July has the 

lowest coefficient of variation (CV) of any summer month. Surveys conducted during this time 

period would return the most accurate, precise counts, and have the greatest power to detect 

population trends. 

Given the conservation concerns surrounding Brachyramphus murrelets, and the 

importance of the Glacier Bay ecosystem to both species, the Park Service may wish to establish 

a monitoring program that is oriented specifically to these species. A number of 

recommendations are made that to increase the accuracy, precision, and power of a monitoring 

program for Brachyramphus murrelets. 
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Introduction 

The genus Brachyramphus includes two closely related species: the Marbled Murrelet (B. 

marmoratus), and the Kittlitz’s Murrelet  (B. brevirostris). They are members of the Alcidae 

family, and share the unusual trait, for seabirds, of being non-colonial breeders. The Marbled 

Murrelet, which ranges from central California north to the Aleutian chain, nests primarily on  

natural moss platforms in the canopies of old-growth trees.  The Kittlitz’s Murrelet, which ranges 

from central Southeast Alaska north to the Seward Peninsula, and west through the Aleutian 

islands, nests on the ground. Both species nest inland from the coast, and attend their nests 

mostly during dawn and dusk to avoid detection by predators. Because they are secretive, 

solitary nesters, population surveys must be conducted at sea. Over the past 20 years, population 

declines have heightened conservation concerns for both species (Burger 2002, Kuletz et al. 

2003, Huff et al. 2006, Piatt et al. 2007a). 

In Southeast Alaska, population trends in Marbled and Kittlitz’s Murrelets have been 

inferred from at-sea surveys conducted in 1991 and 1999-2003 in Glacier Bay and Icy Strait 

(Robards et al. 2003, Lindell 2005, Piatt et al. 2007b, 2007c, Drew et al. 2007). In Glacier Bay, 

there have been 9 bay-wide surveys conducted (Table 1). All of the surveys utilized 200-300 m 

wide strip transects, and counted all bird and mammal species encountered in the strip. With one 

exception, all surveys were stratified into a shoreline component and an offshore component. 

The 1993 survey by the USFWS (Lindell 2005) utilized a large vessel, and surveyed the offshore 

waters only. Only one survey (Agler et al. 1998), utilized a randomized sampling design. All 

others were systematic or opportunistic, with varying levels of effort devoted to the shoreline. 

Most surveys were conducted in June and July, with one survey conducted in early August. 
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The original intent of these surveys was to gather baseline data on the relative abundance 

and spatial distribution of all marine birds and mammals in Glacier Bay. The different sampling 

designs, vessels, observers, and protocols employed from year to year (Figure 1, Table 1) are 

potentially confounding factors in population trend analysis. 

An effective monitoring program for Brachyramphus murrelets requires prior knowledge 

about how the birds are distributed spatially and temporally. It also requires understanding the 

effects of survey methods and covariates (weather, sea state, tide stage, vessel size) on the 

accuracy and precision of population estimates. All of these factors should be considered in the 

design of an efficient and powerful monitoring program— one that can detect relatively small 

changes in the population for a reasonable cost. This research project was designed to provide 

some of this information, and make recommendations for future monitoring of these two species 

in Glacier Bay.   

This work was funded by State Wildlife Grant Funds, Grant T-3-1, Project No. 2.10, with 

nonfederal matching support from the State of Alaska. 
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Study Area 

Glacier Bay is a deep, 100 km-long Y-shaped fjord located on the mainland in northern 

Southeast Alaska (Figure 2).  The Bay represents an important breeding and foraging area for 

thousands of Brachyramphus murrelets, with some of the highest recorded densities in Southeast 

Alaska (Lindell 2005).  

The Glacier Bay study area can be broken into 5 smaller areas, each with distinctive 

water depths, tidal influences, degrees of mixing, and associated productivity (Figure 3).  These 

five areas within Glacier Bay are similar to those described by Robards et al. (2003), and are 

defined below. Water surface areas were determined using a standard dot-grid overlain on a 

1:80,000 scale nautical chart (NOAA 17318). All measurements reflect area at mean low tide. 

Lower Bay: This sub-region includes a broad shallow sill and a narrow constriction 

(Sitakaday Narrows) that create strong tide rips, upwelling, and concentrations of forage fish and 

krill that attract whales and seabirds (Robards et al. 2003). The area is defined by the Park 

Service’s “whale waters” boundaries. The southern boundary is demarcated by a line drawn 

between Point Carolus and Point Gustavus. The northern boundary is demarcated by a line 

drawn from the north end of Lars Island to the north end of Strawberry Island. The eastern 

boundary is defined by the Wilderness Waters boundary enclosing the Beardslee Islands (NOAA 

Chart 17318). The water surface area includes 114.8 km2, or 9.0% of Glacier Bay proper. 

Beardlsee Islands: A complex of numerous small islands and shallow marine waters. The 

boundaries of this area are demarcated by the Park Service’s Wilderness Waters boundaries, and 

include the area south of Beartrack Cove, north of Bartlett Cove, and east of a line connecting 

the west side of Lester, Young, and Strawberry islands, as well as a number of small unnamed 
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islands lying between Strawberry Island and Beartrack Cove. The water surface area includes 

56.2 km2, or 4.4% of Glacier Bay proper. 

Middle Bay: This part of the Bay is marked by relatively deep, stable, and (in summer) 

stratified water (Robards et al. 2003).  The area is bounded to the south by the whale waters 

boundary, and to the north by a line that demarcates the West Arm and the East Arm (defined 

below) of Glacier Bay. The water surface area includes 434.0 km2, or 34.0% of Glacier Bay 

proper. 

West Arm: The West Arm includes all of the bays and fjords north and west of a line 

extending from the north shore of Geike Inlet to the southern tip of Sebree Island. It includes the 

deepest waters of the Bay, and in the northern extent, a number of tidewater glaciers. The water 

surface area includes 471.1 km2, or 36.9% of Glacier Bay proper.  

East Arm: The East Arm includes Muir Inlet and associated bays, inlets, and fjords. It 

includes all waters north of a line drawn from the southern tip of Sebree Island, due east to a 

point on the mainland shore. It includes an area of upwelling at the mouth of Muir Inlet caused 

by a shallow submarine sill. The water surface area includes 199.7 km2, or 15.7% of Glacier Bay 

proper. 

Methods 

Survey Design 

The goal was to design a simple random survey for Brachyramphus murrelets that would 

document distribution relative to water depth and shoreline, and yield a valid bay-wide estimate 

of the population on the water. 

Knowing something about the distribution of animals, both in time and space, is essential 

to designing an optimal survey (Thompson et al. 1998, Rachowicz et al. 2006). Murrelets, like 
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most seabirds, tend to be concentrated in areas where marine upwelling, tidal rips, and fronts 

create zones of mixing and increased productivity for zooplankton and forage fish (Zamon 2003, 

Arimitsu et al. 2007).  Such concentrations of food are highly ephemeral (Gaston 2004), making 

them difficult to predict and map. However, averaged over time, some general patterns in Glacier 

Bay have become evident (Robards et al. 2003, Drew et al. in prep). For example, Kittlitz’s 

Murrelets are more commonly found in the upper bay, especially where there is floating ice from 

tidewater glacier’s present. And Marbled Murrelets appear to be distributed with respect to 

distance from shore, and water depth--environmental factors that are stable, predictable, and 

easily mapped. 

The gradient for these two environmental factors runs perpendicular to shore. If birds 

distribute themselves in relation to either of these gradients, the transects should be oriented 

parallel to the gradient (Buckland et al. 2001). This allows the varying densities along that 

gradient to be sampled proportional to occurrence, resulting in an unbiased estimate of the 

population. For this reason, all transects in this study extended from mid channel to the shore. 

The complex shoreline, with many small bays, inlets, and passages in Southeast Alaska, 

makes it difficult to construct an unbiased sampling design. For very small (or narrow) bodies of 

water, it is a simple matter to census every bird present, and there is no variance. I censused any 

bay which averaged less than 1000 meters shore to shore. These areas were easily censused by a 

meandering track, run at slow speed. In some cases, a central track allowed all birds from shore 

to shore to be counted. 

We censused 12 areas in Glacier Bay. Two of those areas, John’s Hopkins Inlet and 

Wachusett Inlet, had only a portion of their area censused. At John’s Hopkins Inlet, ice prevented 

access past Jaw Point, and so an area of open water south of Jaw Point was censused. At 
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Wachusett Inlet, only the western end was narrow enough to effectively census. The rest was 

sampled by transects. 

Most of the marine waters in Glacier Bay are composed of large bays, inlets, straits, and 

fjords. Because of their large area, they must be sampled rather than censused.  To generate a 

random sample in these waters, I drew a line down the center of every waterway within 

motorized waters. On these mid-channel lines, I numbered tick marks at intervals of 1.85 km (1 

nm) (although any interval could be used). These represented the universe of available starting 

points for transects. A random number generator was used to select 50 transect start points 

(without replacement) from the universe of possible start points. Transect lines were drawn from 

these start points to land on alternating sides of the mid-channel line. A charting program (Chart 

Navigator, Maptech, Boston MA) was used to project the latitude and longitude of both the start 

and end point for each transect. 

Wilderness Waters in Glacier Bay are closed to motorized access and represent 

approximately 13% of the marine waters of Glacier Bay. Survey results in non-wilderness waters 

were extrapolated to Wilderness waters. The location of transects, census areas, and non-

motorized wilderness areas are shown on Figure 4. Random transect assignment should result in 

sub-regions of the Bay being sampled proportional to their area; however, by chance, the West 

Arm was more intensively sampled and the mid-Bay less intensively sampled than expected 

(Table 2). 

A file is available from the author (and from Glacier Bay National Park), showing 

transect locations, latitude and longitude of start and stop points, transect length, and the 

approximate location of each bird counted along the transect line. 
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Survey Methods 

Boat-based surveys-- Surveys were conducted from the M/V Iyoukeen. The 9 m vessel 

provides ample standing room for several people on the bow deck, with clear lines of sight 

forward. Viewing height was from approximately 2.5 m above the water. The crew consisted of 

3 observers and a driver.  

At the beginning of each transect, the following data were recorded: Julian date, observer 

name, sea state (Beaufort scale), cloud cover (%), ceiling height (m), starting latitude and 

longitude, and start time. All transects were run from the mid-channel towards the shore, with the 

transect route followed using a GPS-linked chart plotter in the cabin. 

A handheld GPS was positioned on the bow, showing the vessel’s position on the transect 

line. The vessel traveled at a relatively slow 10 km/hr. When large flocks were encountered, the 

vessel slowed further to ensure accurate and complete counts. All transects ended within 30 m of 

the shoreline. 

Three observers collected data on each transect: one observer did a line transect; one did 

a strip transect, and one recorded distance from shore for each bird. The job assignments rotated 

one position with each successive transect to cancel any observer effect in comparing methods. 

Communication between the observers was allowed, and the observers were not visually 

screened, so detection rates for the two methods are not independent. 

For the strip transects, an observer counted all birds detected on the water within 100 m 

of the transect centerline. Birds were tallied by group, with a group being defined as birds with 

an average separation distance of less than 3 meters. For line transects, an observer counted all 

birds on the centerline, and other birds farther from the centerline as time allowed (Buckland et 

al. 2001). When a bird/group was detected, the observer would estimate the distance, and read 
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the angle to the bird with an indicator on the bow (Figure 5). On occasion, true distances to birds 

on the water were measured with a laser rangefinder (NewCon-Optik, Toronto, Canada). 

For every bird detected, the third person noted the boat’s distance from shore (from GPS) 

and the bird’s distance forward of the boat. At the conclusion of each transect a laser rangefinder 

was used to measure distance from boat to shore (high tide line). The offset between this distance 

and the GPS-indicated distance was used to adjust all distance-to-shore measurements. 

Because one of the assumptions of both line and strip transects is that distances are 

estimated accurately (Buckland et al. 2001), the crew was tested on a daily basis. During testing 

sessions with murrelets nearby, crew members would independently estimate and record their 

estimate of distance to each bird. Then, the driver would report the actual distance as measured 

by a laser rangefinder. When few birds were present, we conducted tests using painted brown 

floats similar in size and shape to murrelets. Over 424 trials (375 birds, 49 floats), among 3 

primary observers, the mean estimated distance to a target was 85 m. The mean true distance was 

89 meters, for a mean error of -4 meters (-4.5%).  

The precision measured in these tests has application to the line transect method, where 

the observer is estimating line of sight distance to each bird, or bird group.  It is less applicable to 

strip transect, in which the observer is estimating the perpendicular distance between a bird and 

the transect line projected some distance ahead of the vessel. There is a method for measuring 

that perpendicular distance (Heinemann 1981) but it requires a stable platform. 

Flyway Counts. A 3-person crew was placed on the western shore of Young Island, at 

Sitakaday Narrows in lower Glacier Bay (Figure 6) to monitor Brachyramphus murrelets flying 

into and out of the Bay through the narrows. With practice, murrelets could be reliably identified 

based on size, color, and flight characteristics. Observers positioned a Leica Televid 77mm scope 
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(or similar) with eyepiece at 40-50x, so the navigation buoy 1 km east of Rush Point was 

centered in the field of view. Murrelets flying in or out of the Bay between the scope and the 

navigation marker (3.4 km distant) were counted. 

Alternating 2-person crews conducted flyway surveys for 15 minutes, every half hour  

from sunrise to sunset, for 4 days (9-12 July), and from sunrise to 1100 hours on 13 July. At the 

start of each survey, the observer recorded their name, the Julian date, time of day, stage of tide, 

scope and power setting, cloud cover (%), ceiling height, precipitation, sea state, and visibility. A 

digital timer/alarm was used to mark the 15 minute survey period. A multiple tally counter was 

used to keep count of Brachyramphus murrelets going in (northbound) and going out 

(southbound) through the narrows. We noted birds holding fish as they flew, though this was 

only possible under good lighting conditions and for birds flying in the near field of view. A 

digital voice recorder was used to tally “other” species counted during the survey. Surveys were 

discontinued when visibility declined to “poor” (half or more of the distance not viewable) due 

to fog, rain, shimmer, or low light. 

Radar Surveys.  Murrelets can be detected flying inland in the predawn hours with the aid 

of high-frequency radar (Burger 2001, Cooper et al. 2001).  I used a Furuno model FR-8122, 12 

KW, X-band radar with a 1.2 m (4 ft.) un-tilted antenna mounted on a radar arch above the 

vessel’s cabin. Prior experimentation showed the settings that yielded the highest detection rates 

(Appendix A). Surveys were conducted from the head of Berg Bay on 7 July, and from the head 

of Geikie Inlet on 10 July (Figure 7), beginning 1 hour before sunrise, and ending one hour after 

sunrise (approximately 0300-0500 hrs).  

At the beginning of each survey, I recorded GPS coordinates of the survey location, cloud 

cover, sea state, precipitation, wind speed and direction. During the survey, I recorded the 
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number of murrelets detected in varying time intervals, from 3 minutes to 10 minutes, depending 

on the number of birds being tracked and the corresponding signal clutter (echo trails) on the 

screen. The screen would be refreshed (cleared) at the start and end of each time interval, and the 

time noted. Murrelets were distinguished from other birds by their high flight speed (22 m/s) and 

linear flight paths (Burger 2001, Elliot et al. 2004). Data were entered directly into a laptop 

computer in the ship’s cabin. 

Data Analysis 

All data collected in the field in Glacier Bay were recorded on write-in-the-rain 

notebooks (except for radar data) and entered into a computer for analysis. SPSS software was 

used for data analyses and graphical output.  

Because transects varied in length, I divided the mean number of birds on each strip 

transect by the mean transect area to get a valid ratio estimator (Stehman and Salzer 2000). The 

same method was used to calculate mean density on variable-size census areas. 

Line transect data were analyzed using program Distance 5.0 (Thomas et al. 2006). 

Analysis was based on exact distances. Widths were truncated at 180 m, and detection functions 

modeled using a half-normal key, cosine series expansion, and no adjustment factors. I used 

simple average as the expected cluster size, and stratified by species. Estimators were modeled 

using a range of keys and adjustment functions, with the final model selected on the basis of 

minimum AIC.  

A basic property of line transect sampling theory is that it is the absolute size of the 

sample that is important, not the fraction of the population sampled. Buckland et al (2001) 

recommend a minimum of 60-80 detections for reliable estimation of the detection function. This 

threshold was met for Brachyramphus murrelets in this survey. On 48 random transects, totaling 
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91.7 km, there were 218 detections, representing 549 individuals. Kittlitz’s Murrelets were 

relatively rare, with 69 individual birds counted in 22 detections, so these observations were 

pooled with Marbled Murrelets to arrive at a representative detection function (Thomas et al. 

2006). 

Results 

Sampling Effort  

In 2007, 48 randomly placed transects in Glacier Bay were surveyed using both line and 

strip transect methods simultaneously. A total of 91.7 km of transects were surveyed. In addition, 

complete censuses were made in 12 of the small bays or inlets, representing 4.6% of Glacier 

Bay. The random strip transects (width 200 m) sampled 1.4 % of the Bay’s marine surface area. 

The random line transects alone (effective width 436 m) sampled 3.1% of the Bay. And line 

transects plus censused water bodies sampled 7.8% of the entire Bay. 

Species Composition 

We detected 389 Brachyramphus murrelets on 200-m wide strip transects, and 549 

murrelets on line transects (no width constraint).  Of the 549 detections, 83.4% were Marbled 

Murrelets, 12.6 % were Kittlitz’s Murrelets, and 4.0% were unidentified. The low percentage of 

unidentified birds is attributable to the slow survey speed, and the fact that flying birds, which 

are hardest to identify to species, were not included in this survey. Unidentified birds were not 

included in species-specific population estimates, but are included in the Brachyramphus 

murrelet estimate.  
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Spatial Distribution 

Relative to subregion. Marbled Murrelets were widely distributed throughout the Bay, 

but the bulk of the population was in the middle and lower bay (Figure 8). In addition localized 

areas of high Marbled Murrelet density included the area north of the Beardslee Islands, 

Wachusett Inlet, Whidbey Passage, Tarr Inlet, and Fingers Bay. Kittlitz’s Murrelets were most 

abundant off Russell Island, and in John’s Hopkins Inlet, Reid Inlet, Upper Muir Inlet, and 

Wachussett Inlet. Kittlitz’s Murrelets were not common in the southern portion of Glacier Bay 

and none were counted south of Berg Bay.  

Relative to Shore.  The shoreline stratum includes waters < 200 meters from shore and 

the offshore stratum includes water > 200 m from shore (Piatt et al. 2007b). Assuming 906 

kilometers of shoreline, exclusive of islands, in Glacier Bay proper (W. Eichenlaub, GBNP, Pers. 

Comm.), there are approximately 181 km2 in this stratum, or 14.2% of the marine waters of 

Glacier Bay. Because of the randomized survey design, the proportion of each stratum in the 

sample should equal the proportions in the Bay (exclusive of the Beardlsee Islands, which are 

Wilderness waters, and were not surveyed). Our sampling effort in the shoreline stratum was 

somewhat lower (Table 3), reflecting the fact that 12 small bays with significant area in the 

shoreline stratum were censused rather than sampled. 

Consistent with previous studies in Southeast Alaska (Agler et al. 1998, Lindell 2005, 

Drew et al. in prep), there was no significant difference in the density of Brachyramphus 

murrelets < 200 m from shore compared to > 200 m from shore (P = 0.675, n = 48). A finding of 

no significant difference in his test, however, indicates only that this particular stratification is 

not meaningful for murrelets.  
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Murrelets show two peaks of abundance relative to shore. The first occurs 200-400 m 

from shore, and a second, larger peak occurs > 3 km from shore (Figure 9). The density of birds 

in the shoreline stratum (0-200 m) is less than half that in the next 200-400 m zone, a pattern 

seen consistently in other areas of Southeast Alaska (ADF&G unpubl. data). This has important 

implications for survey tracks that parallel the coastline 100 m offshore. There are practical 

limits to how accurately and precisely one can follow a fixed distance from a convoluted 

shoreline (Figure 10), especially if the boat driver is also responsible for counting (e.g., Bodkin 

et al. 2002). Because of the steep density gradient from the shoreline out to 0.5 km offshore, 

relatively minor differences in where the survey vessel is positioned relative to shore equate to 

relatively large differences in birds counted. Any departure from the line 200 m offshore adds 

artificial variance to the population estimate, and likely, a systematic bias. 

The very high densities > 3 km from shore reflect counts in the middle of the lower bay. 

These waters are relatively shallow, subject to extreme tidal action, and are known to be highly 

productive feeding areas for both whales and seabirds (Robards et al. 2003, Harney et al. 2005). 

Concentrations of murrelets in these waters are functionally related to water depth more than 

distance to shore. 

Relative to Depth. The mean water depth below all murrelets detected was 110 m 

(SE=3.5, N=563), with half of all murrelets found in waters 20-80 meters deep. Murrelet density 

was highest in waters of intermediate depth (50-100 m) (Figure 11). Murrelets target mid-water 

forage fish that are concentrated in areas where tidal currents create upwelling, fronts, and other 

oceanographic discontinuities (Zamon 2003, Arimitsu et al. 2007). Depths in this range (~75 m) 

represent environments with the highest energy and a well-mixed surface layer, particularly 

those areas south of Sitakaday Narrows and toward the mouth of Glacier Bay (Harney et al. 
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2005). In these zones, most exploitable fish biomass is in upper 25 m (Robards et al. 2003) 

which makes it available to murrelets. 

Temporal Variation 

Smaller areas within Glacier Bay have been resurveyed on a finer time scale (weekly, 

daily) to describe temporal variation in attendance by murrelets throughout the breeding season.  

Romano et al. (2004) surveyed murrelets in the upper bay every 5-9 days from 14 June to 7 

August 2003. They found Kittlitz’s Murrelets increase slightly through mid July, and then slowly 

decline (Figure 12). Marbled Murrelets increase more rapidly through June and July (Figure 12), 

and begin declining in early to mid August. Similar patterns were observed with respect to 

Brachyramphus murrelets in the Beardslee Islands (Duncan and Climo 1991). In Icy Strait, the 

density of Brachyramphus murrelets appears to peak in mid August (Lindell 2005). 

Two factors contribute to these general patterns of temporal variation. As birds begin 

incubation duties sometime in late May and early June, one of every breeding adult pair will be 

spending 24 hours on the nest, meaning lower at-sea densities. As nests either fail, or eggs hatch, 

more adults gradually return to the water, increasing the at-sea densities. Fledged birds may add 

to counts throughout the latter half of summer.  

In addition to changes related to breeding phenology, birds may be drawn to Glacier Bay 

from surrounding areas in late summer (K. Nelson, unpubl.data), and are presumably attracted to 

the Icy Strait-Glacier Bay area by rich foraging opportunities. There may also be a general 

westward movement in preparation for the post-nuptial molt in Gulf of Alaska waters. 

Flying Birds 

Whether or not flying birds are counted, and how they are counted, makes a significant 

difference in the returned population estimate. Some surveys conducted in Glacier Bay and 
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elsewhere in Southeast Alaska count flying birds as they intersect the survey window, or strip, on 

a continuous basis. Because these birds are coming from a much larger area than the strip width 

itself, using the strip area to calculate the density of flying birds leads to a positive bias (Spear et 

al. 1992). 

Using the continuous count method, Lindell’s (2005) surveys at 17 locations in Southeast 

Alaska showed the mean proportion of birds flying was 33 %, with a range of 5-76 %. In Glacier 

Bay, he reported 35 % (Table 4). Agler et al. (1998) using similar protocols over extensive areas, 

found flying birds comprised 23 % of their population estimates (cited in Lindell 2005). Drew et 

al. (unpubl. data) found flying murrelets in Glacier Bay constituted 9-20 % of their sample in any 

given year, with a 5-year mean of 13 percent (Table 5). I assume the wide range of estimates for 

flying birds imply reflect differing biases due to study-specific protocols and observer skill, as 

well as real differences in proportion of birds flying in different areas.  

To estimate the degree of bias, I computed the Brachyramphus density for a hypothetical 

transect correcting for the larger area a flying bird comes from (Appendix B). Depending on the 

assumptions used (speed of vessel, bird, and angle of approach) the percentage of birds in flight 

was estimated at 5 %, which is similar to the low range measured in the predator surveys (Table 

5). Further empirical data needs to be gathered to substantiate this modeled estimate. 

Abundance 

Census.  Census results from 12 small bays or inlets within Glacier Bay returned an 

average of 19.5 Brachyramphus murrelets per km2 (Table 6). The highest densities were found in 

Wachusett Inlet (45.9/km2) and Fingers Bay (30.7/km2). Because these are complete censuses of 

known-size areas, there is no variance. Berg Bay was censused 2 times, returning counts of 86 
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murrelets on 9 July, and 123 murrelets on 15 July. Numbers of birds counted in censuses were 

added to the population estimate from the random sample.  

Strip Transects. Based on the strip transect results, the estimated population of 

Brachyramphus murrelets on the water in Glacier Bay, in early July 2007, was 27,538 (Table 7). 

The estimated population of Kittlitz’s Murrelets on the water in early July 2007, was 3,692, and 

the estimated population of Marbled Murrelets was 23,029 (Table 7). Coefficients of Variation 

were 39 and 37 percent for the two species respectively. 

 Line Transects. If both line and strip transects return unbiased estimates of murrelet 

abundance, simultaneous surveys of the same transect lines should yield similar results. In this 

study, line transects returned a population estimate for Brachyramphus murrelets that was 33 % 

higher than strip transects. Based on line transects, the number of Brachyramphus murrelets on 

the water was 36,627, with Marbled Murrelets numbering 31,318 and Kittlitz’s Murrelets 

numbering 4,299 (Table 8).  Coefficients of variation were 0.18 and 0.38 for the 2 species 

respectively. If we assume 13% of the population is flying at any given time (Table 5), the 

population total population of Marbled, Kittlitz’s, and Brachyramphus murrelets in the Bay in 

early July was 35,389, 4,858, and 41,389 respectively. 

Although it is commonly assumed that no birds are missed within the width of a strip 

transect, some birds are inevitably missed, especially when seas are rough. The detection 

function for this survey is shown in Figure 13. The maximum detection distance from the 

centerline was 218 m, and the effective strip width was 97 m. The CV for the population 

Brachyramphus murrelet population estimate was 17 %, which is a little more than half the CV 

for strip counts on the same lines. The component percentages of this variance were 12.2 % for 
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detection probability, 73.7 % for encounter probability, and 14.1 % for cluster size. Mean cluster 

size was 2.44.  

Adjusted Population Estimate.  Comparing the current population estimate for Marbled 

and Kittlitz’s Murrelets with estimates made in prior years is complicated by difference in survey 

methods. These include differences in the date of the survey, transect layout (if not random), 

visibility (different weather), and protocols for counting flying birds. Empirical data can be used 

to adjust population estimates based on the date the surveys were conducted (Figure 12), and to 

account for flying birds (Table 5).  

To estimate the mid June population estimate from a 12 July survey, I reduced the 

number of Marbled Murrelets by 20.6 % and the number of Kittlitz’s Murrelets by 21.6 % using 

the percentage change predicted by the trend lines in Figure 12. To estimate the total population, 

including flying birds, I increased the population estimates by 13 %, which is the mean 

percentage of Brachyramphus murrelets flying over 5 years of surveys in Glacier Bay (Table 5). 

With these adjustments, the mid-June 2007 population estimates for Glacier Bay, using strip 

transect methods, are 20,662 Marbled Murrelets, and 3,271 Kittlitz’s Murrelets. 

Flyway Counts 

In an at-sea survey, the observer himself moves past birds that are essentially stationary 

on the water. Flyway counts are analogous to migration counts (Dunn and Hussell 1995), or 

radar surveys (Burger 2001), where the observer remains stationary and the birds fly past. The 

fact that Brachyramphus murrelets make predictable, daily, long-distance foraging flights, and 

can be counted in the hundreds or thousands per hour (van Vliet, unpublished data, Whitworth et 

al. 2000, Lindell, unpubl. data) suggest potential value as a monitoring method.  
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Time of Day. In this survey, murrelets were counted from shore with a spotting scope as 

they flew north (in) and south (out) of Glacier Bay through Sitakaday Narrows in the lower bay 

(Figure 6).  The numbers of birds flying through this narrows each day was impressive. Between 

sunrise to sunset, we counted an average of 331 murrelets per 15 minute survey flying into the 

Bay (SE 32.8, N=108). Birds arrived in two main pulses, mid morning and mid day (Figure 14). 

The lulls between those two incoming pulses were balanced by two pulses of birds flying out of 

the Bay (Figure 14). The greatest incoming pulse of birds occurred at mid day. As the rate of 

incoming birds slows, the rate of outgoing birds builds. By evening, thousands of murrelets are 

moving out of the Bay. Over 108 surveys, the mean number of birds counted (in plus out) was 

521 per survey (SE = 30.13). The coefficient of variation was low, at 0.06.  

Stage of Tide. Tides appear to strongly influence the timing of these pulses. Birds moved 

in and out of the Bay counter to the direction of tidal flow (Figure 15). The daily peak count of 

incoming birds occurred 1.5 hours after high tide (x = 97 minutes, SE=6.6, N=4). As the tide 

ebbs, large volumes of water from Glacier Bay flow through this constriction, creating major 

currents and tide rips. It was not uncommon to see many murrelets, and other seabirds (including 

thousands of Northern Phalaropes [Phalaropus lobatus]) actively foraging there. 

The maximum number of birds coming into the Bay occurred during moderate stages of 

ebbing tides (1.5-2 hours past high); and the maximum number of birds flying out of the Bay 

coincided with maximum flooding tidal volume (3-4 hours past low tide) (Figure 15). Because 

significantly more murrelets are entering the Bay than leaving it during our daylight surveys, the 

difference is presumably leaving Glacier Bay sometime during the evening hours, after the last 

survey is conducted. 
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Transients. Such high counts of birds flying into and out of the Bay on a daily basis 

suggest a significant percentage of the Brachyramphus murrelets in Glacier Bay are transients, 

presumably taking advantage of opportunities to forage by day, but moving out of the Bay at 

night. We expect from the high densities observed in Eastern Icy Strait (Lindell 2005, Drew et 

al., in prep) that the outgoing birds may be settling there. Marbled Murrelets in Port Snettisham 

show a similar diurnal movement pattern (ADF&G, unpubl. data). 

The fact that there are two distinct pulses of incoming and outgoing birds, suggests that 

birds may be making 2 round trips, possibly provisioning young. For estimation purposes, I 

assumed that every bird makes 2 incoming and 2 outgoing trips per day. With an average 1324 

incoming birds per hour counted over a 16 hour day, and assuming each bird comes in and out 

twice a day, approximately 10,500 birds are making day-use of Glacier Bay. If so, nearly a third 

of the murrelets we find in Glacier Bay in July are day users, or transients. Breeding birds 

needing to secure high-quality forage fish to provision their young may be attracted to Capelin 

(Mallotus villosus) which thrive in the relatively cold waters of Glacier Bay (Arimitsu et al., in 

press) 

Radar Counts 

Birds were successfully detected with radar as they flew inland past the heads of Berg 

Bay and Geikie Inlet on two separate mornings. Unfortunately, the survey data that were entered 

into a computer during these surveys were not backed up, and were subsequently lost to a hard 

drive failure. Despite my inability to quantify the counts, some qualitative impressions can be 

offered. The rate of birds flying inland clearly tapered off during the second hour of the surveys, 

which is consistent with patterns observed elsewhere (Burger 2001). And the numbers of birds 
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flying inland was noticeably greater in Berg Bay than in Geikie Inlet, which is likely a reflection 

of the more extensive and better developed forestlands in the valley west of Berg Bay (Figure 7). 

Discussion 

This study shows that methodological factors related to the placement of sample units, 

timing of sampling, and methods of counting (line versus strip, flying versus sitting birds) have a 

large effect on the accuracy and precision of the survey results. Understanding patterns of 

variation in a population is a precursor to designing an accurate, precise, and powerful 

monitoring plan. Knowing how different methods of counting affect accuracy and precision are 

equally important. This discussion focuses on some of the patterns identified in this study, and 

their implications in terms of future surveys of Brachyramphus murrelets in the Glacier Bay. 

Sampling in Space 

In the absence of any information on the distribution and abundance of a particular 

species, a simple randomized sampling design is preferred. It ensures that the habitats available 

to a particular species are sampled proportional to area. However, if birds are distributed in 

different areas, at different densities, the survey’s precision may be increased by sampling these 

areas (or strata) at different intensities. For example, in Glacier Bay, waters that are 18-36 meters 

deep represent just 5.4% in terms of area, but 28% of all Brachyramphus murrelets are found 

there. In contrast, waters over 183 m deep represent over 40% in terms of area, but hold just 10% 

of the murrelet population (this study). 

In stratified random sampling, sampling effort is assigned to strata proportional to their 

population size, or to their variance. In the case of seabirds, variance and population size are 

usually correlated (Hatch 2003), so either approach can be beneficial. One of the key decisions in 

any monitoring program is how to best define strata. That is done with some prior knowledge 
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about patterns of abundance in the species being monitored. In the case of Glacier Bay, the 

stratification commonly used (shoreline and offshore) has excellent properties from an inventory 

standpoint. Its utility for population monitoring of particular taxa has not been examined until 

recently (see Drew et al. in prep). 

In previous surveys, the shoreline stratum has received the majority of survey effort (65-

90 %), which is appropriate for detecting birds that occur on the beach of very near shore. For 

purposes of monitoring Brachyramphus murrelet populations murrelets, however, Drew et al (in 

prep) recommend the optimal allocation of effort to this stratum be 8 % (their Appendix 8). If 

this stratum is to be surveyed roughly proportionally (e.g., 14.2 % by area, or 12.3 % by 

population), then transects oriented perpendicular to the shoreline are preferred. This not only 

ensures proportional sampling of the nearshore and offshore waters, but more importantly, it 

samples across the steep Murrelet density gradient from 0-500 m offshore (Figure 9), and 

eliminates potential bias (Buckland et al 2001). Finally, straight-line transects can be 

unambiguously defined and accurately replicated year after year. If other considerations dictate 

that transects be run parallel to the shore, the distance of individual segments from the shore 

should be varied on a randomized basis (e.g., Raphael et al. 2007) to avoid bias. 

Murrelets exhibit a distribution pattern relative to shore (Figure 9), with low numbers in 

the 0-200 m band, and much higher numbers in the 200-400 meter band. Similar distributional 

patterns were observed off the coast of Oregon, with peak abundance of Marbled Murrelets 

found at 500 m (11 surveys), 1000 m (6 surveys) and 1500 m (5 surveys) from the shoreline 

(Strong 1999).  Kissling et al. (2007) also found a strong density gradient with Kittltiz’s 

Murrelets in Icy Bay, and recommended transects be oriented perpendicular to shore to sample 

along that gradient. The distribution relative to shore probably has to do with mixing zones, tidal 



 27

influences, and where preferred forage fish are concentrated. Regardless of actual water depth, 

murrelets will be foraging primarily in the top 25 m of the water column because this is where 

forage fish concentrate (Robards et al. 2003).  

The shallow waters in the lower Bay (55-70 m) exhibit a high degree of mixing and are 

relatively productive (Robards et al. 2003, Harney et al. 2005).  Looking over all of Glacier Bay, 

the highest densities of murrelets occur in waters 50-100 meters deep, and the lowest densities 

occur over the deepest waters (>250 m) (Figure 11). From this, a stratified sampling design that 

allocates more effort to the high density strata will result in a more precise population estimate. 

Weighing against such a stratification is the fact that the boundaries of depth-based strata are 

irregular, and not immediately obvious when at sea. This makes transect layout in the various 

depth strata somewhat challenging. 

Another stratification system that might be profitably considered, alone or in conjunction 

with depth strata, is to allocate effort by subregion of Glacier Bay (Figure 3). The lower bay 

(subregion 1) is mostly intermediate depth, and in this survey, had the bulk of the Murrelet 

population (Figure 8). The Middle Bay is much larger, has a mix of shallow, intermediate, and 

deep waters, and appears to produce murrelets proportional to its size (Figure 8).  The East and 

West Arms both produced fewer birds than would be expected based on area alone (Figure 8), 

and can therefore be less intensively sampled.  Data collected in other surveys, at other times of 

the year, might suggest different allocation schemes (Robards et al., 2003, Romano et al. 2004, 

Drew et al., in prep). 

An important cautionary note: Kittlitz’s Murrelets have a different distribution than 

Marbled Murrelets at sea (Day et al. 2000, Romano et al., 2004). A monitoring program designed 

for Kittlitz’s Murrelets, specifically, should consider those spatial and temporal patterns 
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(Kissling et al. 2007). In Glacier Bay, more survey effort would need to be devoted to “hotspots” 

in the upper arms and fjords of the Bay where Kittlitz’s Murrelets are locally abundant. 

Although I suspect it wasn’t intentionally designed so, Lindell’s 1993 surveys of the Bay 

under-sampled the East and West Arms slightly, and over-sampled the murrelet-rich (B. 

marmoratus) waters of the lower Bay by approximately 2 times what would be prescribed based 

on area alone (Figure 16). This may have biased his population estimate for Glacier Bay high. 

However, if his transects in the lower bay were expanded over that lower bay stratum only, bias 

would be eliminated and precision of the Bay-wide estimate would increase.   

Sampling in Time 

Within-day variation. As is typical of seabirds, murrelet use of a small area, or “patch”, is 

often linked to available food resources, which in turn, is often tied to favorable oceanographic 

conditions such as stage of tide, upwelling, and thermal or salinity discontinuities (Zamon 2003, 

Gaston 2004, Arimitsu et al. 2007). Other factors, such as the need to deliver a large fish to a 

chick at night, no doubt influence feeding and staging locations. If repeated consistently, short 

surveys of small areas may serve as a useful index for monitoring population trends.  The stage 

of tide, and possibly time of day, that one chooses to survey in a given patch should stay constant 

to reduce within-day variation (Speckman et al. 2000). Tide and time effects will vary locally, 

since higher bird numbers in one place are balanced by lower bird numbers someplace else. 

Surveys of short time-duration (e.g., focal area scans, flyway counts, or boat-based 

surveys of small areas) will be most sensitive to time and tide. Pilot data should be collected over 

a range of times and tides to determine relationships, if any. The optimal time for surveys is 

determined by minimum CV. For most at-sea survey work from vessels, within-day variation is 
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not a concern because the surveys are long enough (day-long, or multi day) to encompass the full 

spectrum of hours and tide stages. 

Between-day variation.  We expect birds to move from patch to patch within Glacier Bay 

on a daily or hourly basis (see above), but it has been implicitly assumed that the populations of 

birds in Glacier Bay and Icy Strait are resident in the summer. There is evidence, however, of 

significant day-to-day variation in attendance at these relatively large areas.  Four times over a 3 

year period, the entire set of Icy Strait transects was sampled in close succession (days apart). 

The results of those paired surveys showed between-day differences of 25-97 percent, with a 

mean difference of 47 percent (Table 9). 

There are two possible reasons for differences of this magnitude. If the population 

estimates are accurate, then Icy Strait does not have a population of birds unto itself, but rather, 

is simply a foraging “patch” which birds from a large geographic area may choose to attend, or 

not attend, on any given day. There is some independent evidence for this (van Vliet 1993, 

Whitworth et al. 2003).  Whether the murrelet population in Glacier Bay follows this model is 

uncertain, but the high numbers of birds flying through Sitakaday Narrows on a daily basis 

(Figure 14) suggest that a substantial daily flux exists. How it varies day by day, or week by 

week, is unknown. 

 Another source of day-to-day variability comes from factors affecting ability to detect 

birds.  In table 9, the survey pair with the greatest difference (97%) was surveyed at almost the 

same point in time, but by different crews on different vessels (USGS in small vessels, USFWS 

in a large vessel). This suggests that “other” factors (observer skill, platform, exact transect 

routes, survey protocols) biased one or both estimates.  



 30

One doesn’t need to know the cause of the differences (population flux versus survey 

bias) to recognize the implications for trend analysis. If this day-to-day variation of 50% is the 

norm, for whatever reason, conducting a single survey over a 2 or 3 day period will certainly 

underestimate the true variance in that year. The variance will not be “lost”, but will be reflected 

at the year to year scale instead. The only way to reduce this variance, and increase power, is to 

conduct more surveys per year, or, wait more years to detect a trend. If there is a conservation 

concern for a species being monitored, waiting more years may be unacceptable. 

Within-season variation.  Bird numbers in Glacier Bay are known to change over the 

course of a summer breeding season (Figure 12). Changes at this scale are typically in response 

to such things as incubation (adult birds moving inland), provisioning (both adults foraging at 

sea for their chick), fledging (juveniles joining adults on the water), and availability of schooling 

forage fish (which draws birds from elsewhere). These types of changes can be detected by 

making repeated surveys throughout the summer. 

Optimal Time to Conduct Surveys 

Murrelet Surveys in Southeast Alaska are mostly conducted in June or July (Agler et al. 

1998, Lindell 2005, Kissling et al. 2007a, 2007b, Drew et al. in prep).  In order to maximize 

power to detect trends, populations should be surveyed during the period in the summer when 

variability, as measured by the coefficient of variation (CV), is lowest.  Within Glacier Bay, 2 

studies have been conducted that examined temporal variation in Brachyramphus Murrelet 

numbers during the summer. Romano et al. (2004) conducted weekly surveys in two areas in the 

Upper Bay (which were combined for this analysis). Duncan and Climo (1991) conducted 

weekly surveys over a 3 year period in the Beardslee Islands in Glacier Bay. I summarized these 

data and calculated within-month coefficients of variation for all month-years of data (Table 10). 
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The CV’s ranged from a low of 0.07 (July 1987 and 2003) to a high of 70 % (August 1991), with 

mean CV’s for June, July, and August of 0.28. 0.11, and 0.53 respectively (Figure 17).  There 

may be valid reasons to conduct surveys in June, including better surveying weather, historic 

precedent, and a desire to capture temporal variability. But if the goal is to conduct a single 

survey with the greatest power to detect changes in the population, July is the optimal month. 

This conclusion applies to Glacier Bay. Other areas may exhibit different patterns, and different 

optimal times for surveys (Speckman et al., 2000, ADF&G unpublished data).   

Line versus Strip Transects 

The assumption of line transects (no birds missed on the center line) is more easily 

satisfied than the assumption of a strip transect (no birds missed in the strip) (Buckland et al. 

2001). For this reason, line transects can be expected to return a more accurate and less variable 

population estimate than strip transects, especially when weather and detection rates vary by 

survey or observer. The improvement in precision with line transects was substantial for 

Brachyramphus murrelets (17 % versus 32 %). While I would expected line transects to have 

greater precision (Becker et al. 1997), I was surprised at the degree of improvement given the 

good survey conditions and the fact that observer effects were cancelled by the study design.  

This proffers an important advantage to line transects in terms of power to detect trends.  

The higher absolute numbers returned by line transects versus strip transects is also to be 

expected, but again, the magnitude of the difference was large, with 33 % higher densities for 

Brachyramphus murrelets from line transects. Becker et al.(1997), making similar comparisons, 

found line transects returned densities that were 40 percent higher than some 200m wide strip 

transects. Differences of this magnitude will confound efforts to compare future line transect 

estimates with previous strip transect estimates. One simple solution to this problem is to survey 
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a subset of transects with both methods (as in this study) so that an adjustment factor between the 

two estimates can be derived. Although there may be some resistance to the added work that 

getting an angle and distance to each bird involves, it is not a difficult job with the proper 

equipment and training. My crew conducted both with equal ease and expressed no preference 

for one method over the other. 

Counting Flying Birds 

Counting flying birds is a thorny problem for at-sea surveys. The additional 

measurements needed to adjust densities for flying birds can be burdensome (Spear et al, 1992, 

and Appendix B). Few Alaska surveys quantify or correct for the positive bias associated with 

continuous counts of flying birds. Certainly, the bias is not always small. Lindell’s population 

estimate for Glacier Bay was 35% flying birds. Elsewhere in the region, he found the proportion 

of flying birds averaged 33% (Table 6). And Agler et al. (1998), summarizing data for 3 very 

large areas of the state, found population estimates were boosted 23% by flying birds.  I 

substituted approximate values into the equation in Appendix B, and found that a more 

reasonable percentage of flying birds is on the order of 5%. This fits reasonably well with the 

percentage of flying birds reported on predator surveys from 1999-2003. When birds could be 

identified to species, the mean percentage flying was approximately 5-10% (Drew et al., in prep, 

Table 5, this report).  

Improving Survey Precision 

The precision estimates that accompany most surveys includes an element of temporal 

variation at the within-day and within-week scales, since at-sea surveys typically sample over 

multiple days, hours, and tidal stages.  The reported variance also has a strong spatial 

component, reflecting the different counts from transects scattered throughout the Bay. As a rule, 
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precision is increased with increasing sample size. For this reason, sampling more, shorter 

transects will return a more precise estimate than sampling fewer longer transects (Drew et al. in 

rep). The segments should be separated sufficiently in either space, or time, to be truly 

independent (Hurlburt 1984, Buckland et al. 2001, Kissling et al. 2007). 

Although a relatively small area was sampled in this survey, the precision for line 

transects was reasonable, returning a CV of 0.18 to 0.38 for Marbled Murrelets and Kittltiz’s 

Murrelets respectively. If one wants to increase precision further, more transects can be added to 

the survey. I examined the effect of sample size on precision by asking how much more effort 

would be needed to increase the precision by approximately 1/3. The transect length required to 

achieve a CV of 10% would require 127 km of transect, or 38% more than in this survey 

(Buckland et al., 2001: eq 7.12, p 244, with b=3). 

Abundance 

Abundance is the currency of most population monitoring programs. For a single survey 

in a given year, the reported confidence interval is usually interpreted to mean the true 

population size lies within that interval. A single survey a season cannot possibly capture that 

temporal variability in the population, and so confidence intervals derived from single-survey 

estimates overestimate precision.  

An issue that is commonly overlooked is the effect of murrelet nesting on population 

abundance estimates. Most surveys in Glacier Bay are conducted in mid-June, at the height of 

the incubation period for Brachyramphus murrelets. During incubation, half of the adult breeding 

birds are off the water sitting on nests. We know from other studies that breeding effort in 

murrelets is variable year to year (Peery et al. 2004, Bigger et al. 2006). This has implications for 

the timing of surveys. It also has implications when reporting the abundance of birds in the 
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population. If 50% of the population is breeding in a given year, then 25% of the total population 

will be missing form the area when surveys are conducted in June. If knowing the absolute size 

of the population is important, then population estimates in June should be adjusted upwards for 

the estimated proportion of birds off the water.   

Population Trend versus Population Size 

Concerns over bias are largely alleviated when one focuses on estimating population 

trend rather than population abundance. It doesn’t matter if an observer misses 10% of the birds 

on the water, or if flying birds are counted continuously. All that matters is that the bias be 

consistent from year to year. Shifting the emphasis to monitoring on smaller geographic areas 

allows one to replicate surveys, and will result in trend analyses that are more powerful, accurate, 

and efficient than attempts to enumerate entire populations (Becker et al. 1997).  

Flyway surveys and radar surveys are good examples of trend monitoring methods. The 

location of survey sites is certainly not selected at random. Sitakaday Narrows is a pinch point 

through which large numbers of birds funnel, making it ideal for flyway surveys. The head of 

Berg Bay has a good anchorage, and an extensive forested valley beyond, making it ideal for 

radar surveys. These methods return counts of birds per unit time, not area, and so density 

estimates cannot be generated. They can, however, be very useful for detecting changes in 

murrelet populations over time (Arcese et al. 2005, Bigger et al. 2006), as long as the proportion 

of the population that breeds each year is stable (Peery et al. 2004).  

Other examples of trend monitoring involving at-sea work is that by Duncan and Climo 

(1991) in the Beardslee islands, and Romano et al (2004) in the upper bay. The densities 

recorded on those sites cannot be fairly extrapolated to a population estimate for all of Glacier 
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Bay. But if they are sampled annually over a period of years, we can reasonably assume trends in 

the population would be reflected in trends in these smaller areas. 

Finally, some surveys straddle the middle ground. The 1991 survey in Glacier Bay 

surveyed the entire coastline, and so can draw very robust conclusions about birds in that 

stratum. But the waters > 200 m from the shore, including the bulk of the Bay waters and its 

murrelets, was surveyed by a handful of transects selected opportunistically, and so the estimate 

for the “offshore” stratum may be biased. The “zig-zag” surveys by Lindell in 1993 (Appendix 

C) represent an effort to blend extensive coverage with convenience. There is no “off-survey” 

travel time in this design, so it is efficient. However, the design under-samples the near-shore 

environment, so the population estimate is also potentially biased (direction unknown). Such 

biases are of concern only if the objective is estimating population size of murrelets. It is of little 

concern if the objective is to estimate population trend only. 

Recommendations 

What direction the Park chooses to go in terms of its monitoring program hinges on many 

factors, not the least of which is a clear sense of the objective. Does the Park desire better 

information on population trend, or population size? Does it want generalized information about 

many species, or better information on a few? What level of population change would they like 

to be able to detect, for which taxa, over what period of time? These are questions that should be 

addressed before deciding what a monitoring program will specifically look like.  

The analysis by Drew et al.(in prep) provides a thorough analysis of the 1997-2003 

“predator surveys”, with a number of recommendations for how those can be modified and 

continued to provide cost effective monitoring for multiple species. The recommendations I offer 

below should not be interpreted as contradicting those by Drew et al.(in prep). They have 
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relevance only if the Park Service wishes to initiate a monitoring program that focuses narrowly 

on detecting trends in Brachyramphus murrelets. With that as a frame, I offer the following: 

1. Adopt line transects as the standard for at-sea survey work. Line transects yield 

population estimates that are more precise, and more accurate, across a range of viewing 

conditions. They are the standard for at-sea surveys of Brachyramphus murrelets outside 

Alaska, and we should follow suit. I recommend radial distances be estimated directly (as 

opposed to perpendicular distances, or binning), especially for surveys of few taxa.   

2. Conduct surveys in July. Survey data collected throughout the summer in Glacier Bay 

indicates July has the lowest average coefficient of variation (CV). Surveys conducted in 

this month will have the highest power to detect population trends of Brachyramphus 

murrelets. It also moves surveys away from the incubation period, when variable 

breeding effort from year to year can confound population trends. 

3. Conduct replicate surveys within a breeding season. Temporal variability in the numbers 

of murrelets using Glacier Bay is high, which makes the accuracy and precision of single-

survey estimates correspondingly low. The way to most efficiently overcome this is to 

replicate surveys. I recommend 3 surveys per summer, with one in mid June (since 

historic surveys were conducted in June), and 2 more surveys during the first half of July.  

4.  Stratify by water depth. The current coastline/offshore strata is not meaningful for 

murrelets, and the shoreline transects are difficult to replicate precisely. Stratifying 

relative to depth would represent a significant improvement in both accuracy and 

precision, but may be difficult to implement logistically.  If so, a simple random sample 

is preferred. 
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5. Stratify by sub-area within the Bay. Allocate sampling effort proportional to the observed 

density of Marbled and Kittlitz’s Murrelets in different sub-regions of the Bay.  This will 

significantly improve precision of the population estimates, especially for Kittlitz’s 

Murrelets which are found mostly in fjords in the upper West and East arms of the Bay.  

6. Orient transects perpendicular to shore. Murrelets are not uniformly or randomly 

distributed, but show a characteristic distribution relative to the shore and water depth. 

Transects should be oriented parallel to this gradient (perpendicular to the shore) to avoid 

a biased sample. 

7. Count flying birds separately, and by an unbiased method. Recording flying birds by the 

“continuous count” method adds significant positive bias to population estimates. Other 

methods, though more difficult, should be adopted to eliminate this bias. The density of 

birds flying and birds sitting on the water should be recorded, and reported, separately. 

For population monitoring purposes, the simple density of birds sitting on the water is 

adequate. 

8. For trend information, repeat the 1993 survey of Lindell (2005).  The previous 

recommendations are aimed at providing a more accurate, precise population estimate. 

But for trend information, the 1993 survey by Lindell (2005) has many desirable 

elements. The coverage is extensive (290 km of transect), proportionately covering all 

motorized waters of the Bay. There is no “off survey” travel time between transects. The 

survey can be completed in 2 days, and therefore, is easily repeated. The transects are 

straight lines, and can be precisely replicated. The 1993 effort was replicated 2 times 

within a breeding season, and because it was done 15 years ago, it represents one of the 

earliest snapshots of Brachyramphus populations in the Park. 
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Tables 
 

Table 1. Methodological differences in surveys conducted in Glacier Bay, 1991-2003. 

 

Surveya Survey 
Year 

Survey Date Sampling Design % effort on 
shoreline 

Transect Width 
(m) 

Vessel Size 
(m) 

Density 
birds/km2 

Piatt 1991 1991 June & July Systematic 90 200 4-6  58.6 

Lindell 2005 1993 24 June Zig-zag 0 300 20  36.2 

Lindell 2005 1993 18 August Zig-zag 0 300 20  31.1 

Agler 1998 1994 June July? Random 13b 200 & 300 7.6  22.9 

Piatt et al. 2007 1999 11-23 June Systematic 65 200 & 300 8-22 18.8 

Piatt et al. 2007 2000 11-23 June Systematic 65 200 & 300 8-22 14.4 

Piatt et al. 2007 2001 11-23 June Systematic 65 200 & 300 8-22 16.5 

Piatt et al. 2007 2002 11-23 June Systematic 65 200 & 300 8-22 12.8 

Piatt et al. 2007 2003 11-23 June Systematic 65 200 & 300 8-22 12.5 

a Date refers to when report was published.  
b The proportion of sampling effort along shoreline for all Southeast Alaska 
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Table 2. Sampling effort in 2008 relative to sub-region area, based on randomized 

transect placement.  

Subregion % of Water Area % of Survey Effort (transect length) 

Lower Bay 9.0 9.6 

Beardslee Islands 4.4 0.0 

Mid Bay 34.0 18.4 

East Arm 36.9 24.8 

West Arm 15.7 47.2 

Total 100.0 100.0 

 

Table 3. Relative availability, sample intensity, and murrelet use in shoreline and 

offshore strata. 

Stratum % of Study Area % of Sample  
(this study) 

% of Population 
(this study) 

Shoreline (< 200 m) 14.2a 10.3 12.3 

Offshore (> 200 m)  85.8 89.7 87.7 

  Total 100.0 100.0 100.0 

a  The proportion of the study area in this stratum is calculated from 906 km of shoreline in the Bay proper (exclusive 
of islands), equating with a stratum area of 181.2 km2. 



 47
 

Table 4. Percentage of murrelets in flight, measured on 17 areas in Southeast Alaska 

(Lindell 2005). 

 

Study Area Area 
sampled (km2)

birds on 
 water/km2

birds on water 
 and flying/km2 

Percentage 
 flying 

Icy Strait 71.6 20.5 33.4 38.6 

Glacier Bay 87.0 22.0 33.7 34.8 

Frederick Sound 79.7 3.2 5.6 41.9 

Chatham Strait 50.4 2.9 3.5 19.2 

Thomas Bay 2.0 34.0 140.6 75.8 

Sumner Sound 110.5 13.0 19.6 33.4 

Excursion Inlet 4.1 33.9 37.4 9.3 

Lisianski-Portlock 24.7 8.7 14.0 37.7 

Ogden- Kukkan 5.9 51.9 80.2 35.3 

Olga-Peril 23.4 4.1 6.2 33.4 

Freshwater-Gastineau 22.2 9.7 15.6 38.0 

Taku 10.5 2.7 2.9 7.6 

Stephens-Icy 25.4 26.4 30.4 13.4 

Icy Strait 18.0 5.1 7.2 28.5 

Gastineau-Snettisham 12.1 11.2 17.9 37.3 

Snow Pass A 1.6 6.9 8.1 15.4 

Snow Pass B 0.9 45.8 48.1 4.9 

Total 549.9   x = 33.0a 

aMean weighted by study area size 
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Table 5. Percentage of Kittlitz’s Murrelets and Marbled Murrelets in flight in Glacier 

Bay, 1999-2003.  (G. Drew, USGS, unpublished data). 

 

Percent of Birds In Flight 

Year Kimu Mamu  Unid  all Brachyramphus  

1999 8.7 4.6 19.7 9.4 

2000 5.3 10.1 26.9 20.1 

2001 6.9 7.4 23.7 12.5 

2002 8.2 6.6 24.1 11.4 

2003 11.9 7.0 32.6 13.0 

Mean 8.1 6.6 24.8 13.0 
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Table 6. Census results for 14 small bays/inlets in Glacier Bay, July 2007.  

 

Area Mamu Mamu/km2 Kimu Kimu/km2 Brach Brach/km2 

  Berg Bay 123 11.6 2 0.2 125 11.8 

  Fingers Bay 166 30.7 0 0.0 166 30.7 

  N. Sandy Cove 16 7.6 3 1.4 19 9.1 

  S. Sandy Cove 14 7.8 0 0.0 14 7.8 

  Shag Cove 10 4.4 0 0.0 10 4.4 

  Tyndall Cove 48 20.9 0 0.0 48 20.9 

  Tidal Inlet 214 29.7 2 0.3 216 30.0 

  Russell Island 62 22.1 0 0.0 63 22.5 

  JohnsHopkins 0 0 56 6.2 57 6.3 

  Reid Inlet 21 5.1 14 3.4 35 8.5 

  Blue Mouse 43 16.5 0 0.0 43 16.5 

  Wachusett 306 43.7 15 2.1 321 45.9 

Totals and 
Grand Means1 

1023 15.1 92 1.41 1117 19.51 

 

1 Grand means are weighted by census area size. 
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Table 7. Populations of murrelets on the water as measured by strip transects in Glacier Bay, 

July 2007. 

Marbled Murrelets 

 Water Area1  (km2) Density Population CV 

Small Areas (censused) 57.3 17.85 1,023 na 

Large Areas (sampled) 1,218.5 18.06 22,006 0.39 

  Total 1,275.8 18.01 23,029  

 

Kittlitz’s Murrelets 

 Water Area1  (km2) Density Population CV 

Small Areas (censused) 57.3 1.61 92 na 

Large Areas (sampled) 1,218.5 2.95 3,600 0.37 

  Total 1,275.8 3.05 3,692  

 

Unidentified Murrelets 

 Water Area1  (km2) Density Population CV 

Small Areas (censused) 57.3 0.03 2 na 

Large Areas (sampled) 1,218.5 0.67 816 0.35 

  Total 1,275.8 0.64 818  

 

All Brachyramphus murrelets 

 Water Area1  (km2) Density Population CV 

Small Areas (censused) 57.3 19.49 1,117 Na 

Large Areas (sampled) 1,218.5 21.70 26,421 0.32 

  Total 1,275.8 21.60 27,538  

1 John’s Hopkin’s Inlet is classified as motorized, but two random transects at the head could not be reached due to ice.  
Instead, a 9.0 km2 area east of Jaw Point was censused, and included in the motorized-censused category, leaving the 
balance of the area in the motorized-sampled category. 
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Table 8. Populations of murrelets on the water as measured by line transects in Glacier 

Bay, July 2007. 

Marbled Murrelets 

 Water Area1  (km2) Density Population 95% CI CV 

Small Areas  57.3 17.89 1,025 na  

Large Areas 1,218.5 24.85 30,293 21,208-43,270 0.18 

  Total 1,275.8 24.55 31,318 22,233 – 44,295  

 

Kittlitz’s Murrelets 

 Water Area1  (km2) Density Population 95% CI CV 

Small Areas  57.3 1.61 92 na  

Large Areas  1,218.5 3.45 4,207a 2,000-8,851 0.38 

  Total 1,275.8 3.37 4,299 2,092 – 8,943  

 

Unidentified Murrelets 
 

 Water Area1  (km2) Density Population 95% CI CV 

Small Areas  57.3 0.03 2 na  

Large Areas  1,218.5 0.83 1,010 367-2,775 0.54 

  Total 1,275.8 0.79 1,012 369 – 2,777  

 

All Brachyramphus murrelets 

 Water Area1  (km2) Density Population 95% CI CV 

Small Areas  57.3 19.49 1,117 na  

Large Areas  1,218.5 29.13 35,510 25,561-49,333 0.17 

  Total 1,275.8 28.71 36,627 26,678 – 50,450  
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Table 9. Daily variation in Brachyramphus populations in Icy Strait, 1993, 1995, and 

1998. 

Year Survey 1 Survey 2 Percent Differencea 

1995 July 9th July 11th 25% 

1998 June 22nd June 24th 37% 

1998 August 17 August 19 27% 

1999 June 14th June 15th 97% 

Mean   47% 
a Percent difference is computed as: {2 x |S1-S2| / |S1+S2|} x 100, where S1 is the population estimate for 
survey 1, and S2 is the population estimate for survey 2.  
 
 
 
Table 10. Coefficients of Variation (CV) by study area, year, and month in Glacier Bay. Data 

from Upper Bay represent Murrelet densities for Upper West Arm and Muir Inlet Entrance 

combined (from Romano et al. 2004). Data from Beardslee Islands are counts (from Duncan and 

Climo 1991). 

 

Area Year Month N Surveys Mean SE CV 

Upper Bay 2003 June1 4 24.6 2.43 0.10 

Upper Bay 2003 July 3 27.9 1.99 0.07 

Upper Bay 2003 August 1 27.7 --  

Beardslees 1987 June 5 248.6 90.60 0.36 

Beardslees 1987 July 4 318.0 23.51 0.07 

Beardslees 1987 August 3 590.0 205.73 0.35 

Beardslees 1989 June 3 161.7 30.22 0.19 

Beardslees 1989 July 5 558.2 107.30 0.19 

Beardslees 1989 August 3 335.3 180.98 0.54 

Beardslees 1991 June 3 160.0 78.14 0.49 

Beardslees 1991 July 1 667.0 --  

Beardslees 1991 August 3 392.7 274.44 0.70 

1 In 2003, Upper West Arm was surveyed on July 1, and the Muir Inlet Entrance was surveyed on June 30. 
When these surveys were combined, I assigned the result to the June category. 
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Figures 

 
 

                            Figure 1. Population estimates and survey designs in 1991, 1993, and 1999-2003 in Glacier Bay  
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Figure 2. Glacier Bay study area on the mainland of northern Southeast Alaska. 
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Figure 3. Glacier Bay showing approximate boundaries between 5 sub-regions: Lower 

Bay (1), Beardslees (2), Middle Bay (3), West Arm (4) and East Arm (5). 
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Figure 4.  Sampling design for surveying Brachyramphus murrelets, July 2007. Blue areas are non-motorized, and were not sampled. 

Red Areas were censused (complete count). The remaining area was sampled by line and strip transects. Transect locations were 

established with random starting points along mid channel lines, and end points on nearest alternating shore. 
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Figure 5. Angle indicator used on the line transect surveys. 
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Figure 6. Flyway count location adjacent to Sitakaday Narrows. The inset image shows 

the bathymetry of this area, including numerous iceberg gauges in the ocean floor. The 

red line signifies point at which birds flying North (into the Bay) and South (out of the 

Bay) were counted. The blue circle marks a zone of major upwelling and heavy murrelet 

feeding activity, especially pronounced on ebbing tides. 
Inset image from: http://soundwaves.usgs.gov/2001/07/fieldwork2.html 
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Figure 7. Radar survey locations in Geikie Inlet and Berg Bay. Red dot shows boat-based 

radar location. Forested nesting habitat for Marbled Murrelets in each area is 

approximated by the yellow ovals.  
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Figure 8. Relative abundance of Brachyramphus murrelets by sub-region in Glacier Bay, 

July 2007. 
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Figure 9. Brachyramphus murrelet distribution relative to shore. (n=100 m segments. Bars =1 SE).  
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Figure 10. An example of a shoreline segment in Glacier Bay, with high- and low-tide lines 

in red (From Sharman et al. 2007). In a boat running “parallel to shore”, the coastline is 

smoothed, resulting in a track that is a varying distance to shore (in yellow), and difficult 

to replicate.
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Figure 11. Density of Brachyramphus murrelets in Glacier Bay by water depth, July 

2007. Whiskers are 1 SE, N = number of 100 m segments 
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Figure 12. Change in murrelet density in Glacier Bay from 14 June through 7 August, 

2003.  Weekly survey data collected by Romano et al (2004) in the Upper West Arm and 

Muir Inlet Entrance of Glacier Bay (combined). Lines are drawn using a normal smoother 

function in SPSS (bandwidth multiplier = 3). Median date of surveys in 2007 is shown 

for reference. 
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Figure 13. Detection probability for Brachyramphus murrelets on line transects in Glacier Bay, July 2007.
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Figure 14. Temporal pattern of Brachyramphus murrelets flying in and out of Glacier 

Bay. Counts are averaged over all survey days, July 2007. 
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Figure 15. Relationship between flyway counts and tidal flow in Glacier Bay, July, 2007. 

Error bars show 95% confidence intervals 
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Figure 16. Allocation of survey effort by subregion in Glacier Bay surveys, 1993.  
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Figure 17. Coefficient of Variation (CV) by month in Glacier Bay. Data are from the Upper 

Bay  in 2003 (Romano et al. 2004) and in the Beardslee Islands in 1987, 1989, and 1991 

(Duncan and Climo 1991). CV’s by study area, month and year are given in Table 10. N is the 

then number of area-years of data for each monthly mean. 
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Appendices 
Appendix A. Radar settings for optimal detectability of Brachyramphus murrelets. These are for 
a Furuno FR-8122 12 KW radar with 1.2 m rotating antenna or equivalent. Important: For these 
settings to over-ride default automatic settings, the receiver must be set for manual tuning1.  

Button Controls Menu  Sub Menu Setting 
Range    0.75 - 1.5 km 
Mode    RM (Head Up) 
Off Center Manual  Move cursor 
Trails (push/hold to clear)  15 sec 
Gain Control Knob (push for man) Manual  100% 
A/C Sea Control Knob (push) Manual  0% 
Rain Control Knob (push) Manual  50-80% 
 Brill/Color Range Rings Brill Low 
  Echo Color Blue 
  Display Color Night 
  Background Color Black/Red 
 Display Shape Square 
  (get…) Off 
  North marker Off 
  Heading True 
 Menu:Echo Auto Gain (disabled) Calm 
  Auto Sea (disabled) Calm 
  Auto Rain (disabled) Calm 
  Pulse Length Short 
  Echo Stretch 1 
  Echo Average Off 
  Noise Rejector Off 
  Interference Rejector Off 
  Auto Anti-Clutter Off 
  Display-Dynamic Narrow 
  Display-Curve 3 
  Antenna Speed 48 
  2nd Echo Rejector off 
 Target Trails Gradation Multiple 
  Color Blue 
  Mode Relative 
  Level 1 
  Length Normal 
  Time 15 s 
  Copy On 
  Restart On 
  Narrow On (if many targets) 
  Own Ship Off 
 Mark VRM Unit Km 
  Cursor Position Range and Bearing 
  Electronic Bearing 

Locator (EBL) 
Relative 

 Tuning Manual  max sensitivity1 
1 To enable manual tuning, press MENU,  use the track ball to select TUNING, press enter, select MANUAL, press 
enter, select MAUNAL TUNING, press enter, roll trackball up or down to point where TUNE MAN bar (displayed top 
tight on screen) swings to maximum. Press ENTER. Press MENU to close menu.  These settings can be saved as a 
“custom” setup (see manual, pp 1-36 to 1-38). 
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Appendix B. Estimating the area sampled when counting flying Brachyramphus murrelets. 

Assumptions: 
1) The length and width of the strip transect is known. 
2) The speed of the survey vessel is known. 
3) All birds crossing the transect within some “moving window” forward of the ship  are 

detected.  
4) Birds intersect the transect at a known angle, and do not change course to avoid the ship 
5) Birds are flying at a known (or assumed) speed 

 
Given those assumptions, the flyway “area” sampled by an at-sea transect can be calculated as: 

A = L x (W + Wf) 
 
Where, 

A = area 
L = transect length 
W = transect strip width, and 
Wf = added width beyond strip that contributes flying birds to the count.  

 
The added width for flyers (Wf ) varies with how far a bird can come from and still intersect the 
moving window.  That, in turn depends on the relative speed of approach towards the transect 
line, and how long it has to reach the line. These are functions of the flight angle towards the 
transect line, the length of the survey window, how far in front of the ship the murrelets pass, and 
the speed of the flying bird relative to boat speed.   
 
That relationship is described by the following equation: 
 

 Wf = sine(θ) * (M-Df ) * Sm/Ss 
 
Where,  

θ = Angle at which flying murrelets intersect the transect line. 
M = Length of survey window (m) 
Df = Distance of flying murrelets in front of the ship (m) 
Sm = Speed of murrelets (m/s) 
Ss =  Speed of survey ship (m/s) 

 
An example:  

A strip transect 2 kilometers long (L) and 300 m wide (W) is surveyed by a vessel 
traveling at a speed (Ss) of 3 meters per second (5.8 knots). On this 11 minute transect, an 
observer scanning a 500 x 300 m “moving window” ahead of the boat counts 2 flying 
murrelets. The mean angle of approach (θ) by the birds is 45 degrees, and the mean 
crossing distance in front of the vessel (Df ) is 150 m.  The murrelets fly at an estimated 
speed (Sm ) of 22.6 m/s (50 mph) (Elliot et al. 2004). 

 
Substituting, 

Wf = sine(θ) * (M-Df ) * Sm/Ss 
Wf = 0.707 * (500-150) * 22.6/3 
Wf = 1,856 m 
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Area = L x (W + Wf) 
A = 2000 x (300 + 1,856) 
A = 4.31 km2 
 

Thus, the density of flying birds on that transect would be 2/4.31, or 0.46 birds/km2. In 
comparison, if we assumed all the flying birds came from within the 300 x 2000 m area of the 
strip transect (0.6 km2), the density of flying birds would be 3.33 birds/km, or 7 times higher than 
true.  
 
Because flying birds are counted with less frequency than sitting birds in at-sea surveys, the 
positive bias contributed by simply tallying flying birds is buffered somewhat by the larger 
number of sitting birds. This exercise demonstrates that had Lindell (2005) accounted for the 
larger area his flying birds came from, the percentage of birds in the air at any point in time in 
Glacier Bay would much lower. This example suggests the true number of flying birds might be 7 
times lower than the 35 % he reported, or, about 5%. Until better empirical data are available, I 
will assume the proportion of birds in the air at any given moment in Glacier Bay is 5%. 
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Appendix C. Location of transects surveyed in Glacier Bay during June and August, 1993 

(Lindell 2005). 

 


