RC 5

Cooper Landing Fish and Game Advisory Committee Meeting January 9, 2008

Members Present: RECEIVED Karl Romig **CLAC** JAN 1 3 2008 **Billy Coulliette CLAC** Robert Gibson **CLAC BOARDS** James Givens **CLAC** Andy Szczesny **CLAC** Robert Siter **CLAC** John Pearson **CLAC** Jeff Selinger ADF&G **Newly elected:** Colin Lowe **CLAC Bob Overman CLAC** Kyle Kolodziejski **CLAC**

Meeting Minutes

- 1. Call to order 6:20 pm
- 2. Sign in
- 3. Approval of minutes 12/4/07 and 12/12/07 meetings
- 4. Approval of agenda
- 5. Election of officers
 - Karl Romig unanimously voted as Chairman
 - Andy Szczesny unanimously voted as Vice Chair.
 - John Pearson unanimously voted as Secretary.
- 6. Board Member Elections:
 - Mike Adams re-elected for 3 year seat
 - Robert Gibson re-elected for 3 year seat
 - James Givens re-elected for 3 year seat
 - Karl Romig re-elected for 3 year seat
 - Robert Siter III re-elected for 3 year seat
 - Kyle Kolodziejski elected for 2 year seat
 - Ray Wilkes elected for 1 year seat(replace Bill Stockwell)
 - Colin Lowe elected for 2 year seat
 - Bob Overman elected for 1 year seat(replace Darwin Peterson)
 - Erik Route elected for 1 year alternate
 - Dominic Bauer elected for 1 year alternate

Cooper Landing Fish and Game Advisory Committee Meeting January 9, 2008

The Alaska Board Of Fisheries

.Board of Fisheries Upper Cook Inlet proposals, review and comments.

- 7. Continue review and comment of Upper Cook Inlet fish proposals
 - Andy moves to group 80-86 fish proposals, Billy seconds motion
 - Andy moves to vote on 80, Robert seconds motion
 - Vote on proposal 80: 1 in favor, 9 opposed-fine the way it is
 - No action taken on 81-86 based on 80. As an AC we support windows
 - Open discussion on 154- 10 opposed because "pink salmon" is a Trojan horse, no action taken on 155-159 because of 154
 - Open discussion on 187: all opposed because sockeye needs to be managed for sportfishing. No action taken on 188, 204, 118, 189, 190, 192, 193, 195, 200, 194, 196, 197, 198, 199, 201, 203, 205, 209 because of action on 187

Cooper Landing Fish and Game Advisory Committee Meeting January 9, 2008

Alaska Backcountry Hunters & Anglers

Box 47, Homer, AK 99603

RECEIVED

JAN 2 5 2008

BOARDS

Attn: BOF Comments
Alaska Department of Fish and Game
Boards Support Section
PO Box 115526
Juneau, AK 99811-5526

Comments to the Alaska Board of Fish Inre: February 2008 Statewide Proposals

Proposal 221 -5 AAC 77.540 Implement motor type restrictions for dip net fishing from vessels

SUPPORT

AK BHA believes it is necessary to address excessive hydrocarbon levels in Kenai river in the most direct and immediate way. This law is simple, straight forward, and easy for both the public and enforcement officials to understand. It will provide an incentive for boat owners to upgrade their outboard motors before using their vessel on the Kenai river, and achieve the desired effect of lowering hydrocarbon levels in a timely fashion. Vessel owners who cannot or will not upgrade their motors have the option of dip netting from the beach, on either bank of the river.

<u>Proposal 241</u> - 5 AAC 57.120(6) Prohibit removing rainbow trout from the water during spawning closures

SUPPORT

This proposal adds consistency to the management of spawning rainbow trout and steelhead. Prohibiting their removal from the water when the fish are spawning by regulation, rather than by EO, will increase public awareness of this management tool. Over time, with increased public awareness, proper catch and release fishing techniques will become habitual in the majority of anglers. This is a simple conservation issue, and this proposal succinctly addresses the problem of poor fish handling and excessive mortality in these valuable stocks.

SUPPORT

AK BHA supports the conservative management of sensitive species such as lake trout, in order to ensure that future generations of Alaskans will have a healthy abundance of fish and game to harvest. Reducing the take of lake trout by one fish will have an enormous effect on total numbers of fish taken, while continuing to allow anglers to pursue this desirable species. The reduced take will likely lead to greater fish productivity in the future, with larger, older and more numerous fish available to the public. This is a reasonable and effective proposal, and deserves to be added to the regulations.

<u>Proposal 268</u> - 5 AAC 57.121. Extend Funny River, Slikok Creek and Lower Killey River sanctuary closures through July 31

SUPPORT

The Funny River, Slikok Creek, and Lower Killey River described sanctuary areas are important holding grounds for main-stem first-run king salmon. Current regulations aren't providing enough protection for these important main-stem spawning phase kings because the fishing season (from a boat) opens in these holding areas right when the run is occurring. First run spawning extends until July 29. Extending the closure on fishing for king salmon from a boat in these sanctuary areas to July 31 is needed to protect these important main-stem spawners and in particular the size-integrity of the overall population.

ATE OF ALASI

Matanuska Vallev Fish & Game Advisory Committee

Sarah Palin, Governor

Dennis Hamann, Chairman 1200 Oat Street Wasilla, Alaska 99654

phone: 373-5938

email: 66mustang@mtaonline.net

January 21, 2008

Dear Governor Palin,

The Matanuska Valley Fish and Game Advisory Committee appreciates your policy of providing clear and transparent government for the people of Alaska. As members of the public we feel better when we know what government agencies are doing, planning, or talking about. With this thought in mind, the Advisory Committee offers the following suggestion for a more clear and understandable dialog between the Public, Alaska Department of Fish and Game, Alaska Board of Fisheries, and Alaska Board of Game.

The Committee proposes a definition and distinction between the terms, "regulation," "restriction," and "liberalization," so that the Public, Department, and Boards will gain a better understanding of what each other is talking about.

While we acknowledge that a regulation by its very nature can be restrictive, we believe current regulations and / or management plans are the established rules, and thus, should mostly be viewed as neutral in the context of inseason restrictions and / or liberalizations made for conservation purposes. For example: when a management plan lists a specific action that SHALL be taken under a specific situation, we believe as part of current rules, that would be a neutral inseason adjustment.

When a management plan grants the Department discretionary authority to adjust regulations in season, however, the Committee believes such changes would best be characterized as a restriction or a liberalization. For example: when a management plan lists an action that MAY be taken under a specific situation we believe such a change should be considered a restriction if it subtracts harvest opportunity provided from the established regulations OR as a liberalization if it increases harvest opportunity from the established regulations.

Specific problems in comprehension that the Committee is experiencing include: 1. when the Department talks about following an Upper Cook Inlet salmon management plan as an inseason restriction rather than as current regulation. 2. when the Department calls an emergency order to increase harvest under its discretionary management authority a "restriction" (presumably because the Department did not use its discretionary management authority to the full extent allowable). The Matanuska Valley Fish and Game Advisory Committee believes these current practices are both confusing and misleading to the Public and the Board of Fisheries and thus requests this defining of terms used by the Alaska Department of Fish and Game prior to the February 2008 Upper Cook Inlet Board of Fisheries Meeting.

Please let us know if we can expect this change to be made in time for the above mentioned Board of Fisheries meeting.

Sincerely,

Dennis Hamann, Chairman

cc: Commissioner Denby Lloyd, Board of Fisheries members , Mat-Su Valley legislators

RC 8

STATE OF ALASKA

DEPARTMENT OF FISH AND GAME DIVISION OF COMMERCIAL FISHERIES DIVISION OF SPORT FISH

SARAH PALIN, GOVERNOR

333 Raspberry Road Anchorage, AK 99518 PHONE: (907) 267-2100 FAX: (907) 267-2442

MEMORANDUM

TO:

Mel Morris, Chairman - Alaska Board of Fisheries

FROM:

John Hilsinger

Director

Division of Commercial Fisheries

And

Charles O. Swanton

Director

Division of Sport Fish

DATE:

January 24, 2008

SUBJECT: Upper Cook Inlet potential management options

At the Alaska Board of Fisheries (BOF) work session in October 2006, the board received numerous Agenda Change Requests (ACRs) that asked the board to re-evaluate many aspects of the Upper Cook Inlet (UCI) salmon fishery management plans. While the board declined to accept the ACR's, they created a committee of three board members to begin a comprehensive review of the management plans in preparation for the regular, in-cycle meeting for UCI during the winter of 2007/2008. With input from the Alaska Department of Fish and Game, the committee prepared an initial "issues paper" on the UCI management plans. This initial draft was made available to the public for written comment and was intended to stimulate discussion and to solicit additional comments from the public (i.e., various users). The committee received 12 written comments from the public which were incorporated into the issues paper. This paper was presented to the full Board by the committee during the March 2007 BOF meeting.

Based on comments from the public, the committee worked toward including as many issues as possible, not wanting to necessarily "screen" anything at the time. The committee also stated that an inclusion of any issue into the document did not necessarily imply an endorsement by the committee or the full BOF. This document was not intended to be an all-encompassing issues paper, and it was assumed that other issues would be brought forward through the BOF proposal process.

Although numerous issues concerning UCI management were identified, possible options addressing these issues were not listed. This memo outlines potential options from the department addressing some of the major issues.

5 AAC 21.363. Upper Cook Inlet Salmon Management Plan

<u>Issue 1:</u> In the various management plans, the BOF has adopted optimal escapement goals (OEG), inriver run goals, and established fishing time restrictions or other management actions that are often in conflict with each other. In general, this management plan does not provide direction to or describe management actions to the department.

Option: Eliminate this umbrella management plan.

5 AAC 21.353. Central District Drift Gillnet Fishery Management Plan

Issue 1: In medium to larger sockeye salmon runs (over 3 million to the Kenai River), the drift gillnet fishery is a necessary tool to harvest salmon in excess of the various goals (inriver run goals and biological, sustainable, or optimal escapement goals) in the Kenai and Kasilof rivers. However, in recent years, restrictions to the drift gillnet fishery have been implemented in an attempt to achieve the Yentna River sustainable escapement goal. This goal has been exceeded once, within the range twice, and below the range 6 times since 1999. During that time the Kenai River inriver run goal has been exceeded 5 of 9 years and the Kasilof River biological escapement goal (BEG) has been exceeded 8 of 9 years, and since the Kasilof River OEG (150,000–300,000) was adopted prior to the 2002 season, that goal has been met once and exceeded 5 of 6 years.

At run strengths greater than 2 million sockeye salmon to the Kenai River, one additional 12-hour fishing period in the Kenai and Kasilof Sections of the Upper Subdistrict and in Drift Gillnet Area I may be allowed by emergency order (EO) between July 9 and July 15. This additional time is likely never to be used because it is allowed prior to an inseason assessment of run strength to the Kenai or Yentna rivers. Implementing this additional time could be harmful if used in years with low runs to the Susitna River based on the forecast alone because it is generally not accurate for Susitna River sockeye salmon stocks.

Since 1999, the department's forecast of Kenai River run strength has been in the correct tier when compared to postseason total run assessment only in 2007. In early to mid July the department is required to put restrictions in place for the drift fishing fleet that are based on this forecast and the tiers within these management plans. The current regulations read as follows:

Weekly fishing periods are Monday and Thursday from 7:00 am to 7:00 pm, except that these fishing periods may be modified by emergency order.

The fishing season will open the third Monday in June or June 19, whichever is later, and from July 9 through July 15. (i) fishing during the two regular fishing periods is restricted to the Kenai and Kasilof Sections and Drift Gillnet Area 1; (ii) at run strengths greater than 2 million sockeye salmon to the Kenai River, the commissioner may, by emergency order, open one additional 12-hour fishing period in the Kenai and Kasilof Sections of the Upper Subdistrict and Drift Gillnet Area 1.

From July 16 through July 31, (i) at run strengths of less than 2 million sockeye salmon to the Kenai River, fishing during the two regular 12-hour fishing periods is restricted to the Kenai and Kasilof Sections of the Upper Subdistrict and Drift Gillnet Area 1; (ii) at run strengths of 2 million to 4 million sockeye salmon to the Kenai River, fishing during the two regular 12-hour fishing

periods is restricted to the Kenai and Kasilof Sections of the Upper Subdistrict and Drift Gillnet Areas 1 and 2; (iii) at run strengths greater than 4 million sockeye salmon to the Kenai River, there will be no mandatory restrictions during regular fishing periods.

Option: Reconsider the current regulated fishing time/area such that a more flexible management scenario is in place to harvest stocks based on run strength. Since many of these restrictions and other limitations were put in regulation, the number of EOs issued has doubled. Reducing or eliminating the mandatory drift restrictions prior to and after July 16, and eliminating the additional third period between July 9 and 15 in Drift Area Number 1, could provide flexibility and greatly simplify these plans. The department could then use EO authority to manage for escapement goals. Management actions taken in the drift gillnet fishery would remain dependent on meeting the Yentna River sockeye salmon sustainable escapement goal, as measured by the Yentna River sonar project.

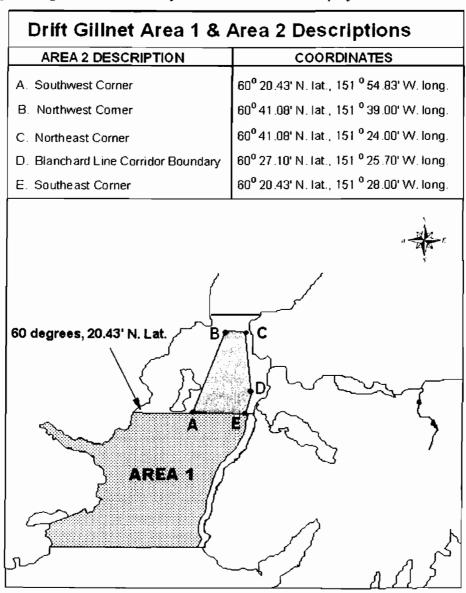


Figure 1.—Drift gillnet boundaries for fishing areas 1 and 2.

5 AAC 21.358. Northern District Salmon Management Plan

For the last 17 seasons, the Northern District set gillnet fishery has been closed for one or more periods, and the drift gillnet fishery has been restricted each year for one or more periods in an attempt to meet the Yentna River sustainable escapement goal. While these restrictions have taken place in an effort to meet the Yentna River sustainable escapement goal, the Kenai River inriver run goal has been exceeded 5 out of 9 years and the Kasilof River BEG has been exceeded 8 out of 9 years, and since the OEG (150,000–300,000) was adopted prior to the 2002 season, that goal has been met once and exceeded 5 of 6 years. The Yentna River sonar appears to be undercounting, by possibly a significant amount, and may be a poor indicator of abundance. The department needs to develop an alternative assessment to manage Northern District sockeye salmon fisheries and gain a better understanding of production and exploitation of Susitna River sockeye salmon stocks.

Since 1999		Kenai R.	Kenai R.	Kasilof R.	Kasilof R.
(8 years)	Yentna R.	(OEG)	(IRG)	(BEG)	(OEG Est. 2002)
Below	6	2	0	0	0
Within	2	4	4	1	l
Exceeded	1	3	5	8	5

<u>Issue 1:</u> 5 AAC 21.358(b) states "Achievement of the lower end of the Yentna River OEG shall take priority over not exceeding the upper end of the Kenai River escapement goal. When the sockeye salmon returns to the Kenai River are 4 million or greater, the OEG is 75,000 to 180,000 sockeye salmon in the Yentna River". It is unclear as to which goal in the Kenai River the plan is referencing.

Option: The BOF should provide the department clarity as to which Kenai goal (inriver run goal or OEG) should be referenced.

5 AAC 21.360. Kenai River Late-Run Sockeye Salmon Management Plan

Issue 1: The amount of fishing time currently allowed by regulation and the inriver run goal (at river mile 19) is determined by the preseason run projection to the Kenai River until approximately July 25, when an inseason run assessment occurs. However since 1999, the end of season total run has matched the preseason projection only once in 11 years using the current three tier system. Given that, the amount of allowable hours by regulation has not matched the amount of hours necessary to stay within the inriver run goal. There are also windows of closure in place depending on the run strength. The combination of specified EO time and mandatory window closures are two of the primary conflicts with achieving the various goals within the plans.

Current UCI Mgmt. Plan (3 Tiers)					
	Kenai R	iver	Actual Run in Same Tier as Forecast?		
Year	Forecast	Actual			
1999	1.60	2.60	No		
2000	2.50	1.50	No		
2001	2.40	1.90	No		
2002	1.70	3.10	No		
2003	1.96	3.80	No		
2004	3.20	5.00	No		
2005	3.30	5.60	No		
2006	1.85	2.53	No		
2007	2.41	2.77	Yes		
		Correct	11%		

Run < 2 million	Run 2–4 million	Run > 4 million
Inriver run goal:	Inriver run goal:	Inriver run goal:
650.000-850,000	750,000–950,000	850,000-1,100,000
24 hours of emergency order	51 hours of emergency order	84 hours of emergency order
authority beyond the two	authority beyond the two regular	authority beyond the two regular
regular periods	periods	periods
NA	24 hour floating window closure	NA
	36 hour window closure that has	36 hour window closure that has
	to start between 7pm Thursday	to start between 7pm Thursday
NA	and 7am Friday.	and 7am Friday.

Option: Based on the difficulty of accurately projecting the Kenai River sockeye salmon run, a possible solution would be to replace the current three tier system with a two tier system. Below is a plan outlining what a possible two-tiered system might resemble. Changing to a two-tier system may require modification of the inriver run goal in order to provide an allocation of fish to the inriver user. Kenai River late-run sockeye salmon sport fish harvests from 1997–2006 have averaged 224,758 fish. An inriver run goal set too low may result in restrictions or closures to the sport and personal use fisheries.

	Kenai River Run		Actual Run in Same Tier as Forecast?
Year	Forecast	Actual	<u>-</u>
1999	1.60	2.60	Yes
2000	2.50	1.50	Yes
2001	2.40	1.90	Yes
2002	1.70	3.10	No
2003	1.96	3.80	No
2004	3.20	5.00	Yes
2005	3.30	5.60	Yes
2006	1.85	2.53	Yes
2007	2.41	2.77	Yes
		Correct	78%

Run less than 3 million	Run greater than 3 million
Option 1: Inriver run goal: 650–850	Option 1: Inriver run goal: 850–1.100
Option 2: Inriver run goal: 750–950	
51 hours of emergency order authority	84 hours of emergency order authority
-	24 hour floating window deleted (as it is
24 hour floating window	in runs greater than 4 million sockeye)
	36 hour window that can be fished into
	if needed to control escapement into
36 hour fixed window	the Kenai River

Issue 2: Specify which management objective in the plan is the priority when considering escapement goals (inriver run goal or OEG), window closures, or regulated fishing time via EO.

<u>Option 1:</u> Specify that the Kenai River inriver run goal found in the various tiers is the inseason target and priority for the department. The prescribed window closures and EO hours will be used to achieve the inriver run goal but the inriver run goal will not be compromised by a window closure or a set number of EO hours. It is the inriver run goal for which the department has inseason information and uses that information to make management decisions.

Option 2: Specify that the prescribed window closures found in the various tiers are the priority and that achieving the inriver run goals and potentially exceeding EO fishing hours will not compromise a window closure.

Issue 3: The sport fishing bag and possession limit is set in the management plan at 3 sockeye salmon. When bag and possession limits are set in management plans, the department cannot use EO authority to increase or decease limits unless allowed by the management plan. This plan only allows a bag and possession limit increase to 6 sockeye salmon. Adding the flexibility of reducing the bag limit and possession limit by EO rather than total closure may reduce disruption to the sport fishery during years when the department projects that the inriver run goal will not be met but the OEG could be met if the sport fishing sockeye salmon bag and possession limit is lowered. In addition, when escapement goals are being exceeded, the bag and possession limit is confined to 6 fish. Increasing harvest limits beyond 6 fish may increase the opportunity to harvest fish in excess of the escapement goal.

Option: Provide the department EO authority to decrease limits rather than close the fishery and increase the bag and possession limit to increase harvest. Decreasing limits to 1 fish or 2 fish may allow the sport fishery to remain open at a very low level of harvest and effort while still achieving the OEG.

Issue: The language under 5 AAC 21.360 (b) relating to the sport and personal use fisheries is inconsistent with the language in (g) and (h). Under (b) of the management plan, it states that the Kenai River late-run sockeye salmon commercial, sport, and person use fisheries shall be managed to (1) meet an OEG of 500,000–1,000,000 sockeye salmon; (2) achieve inriver run goals; and (3) distribute the escapement of sockeye salmon evenly within the OEG range, in proportion to the size of the run. The plan further states under (g) and (h) which requirements are necessary in order to provide for sport and personal use fisheries. These two subsections essentially limit restrictions on these fisheries to those needed to ensure the lower end of the OEG is met.

Option 1: Delete the reference to sport and personal use fisheries under (b) of this section. This would be consistent with how the sport and personal use fishery have been previously managed.

Option 2: Modify (g) and (h) of this section to subject the sport and personal use fisheries to the requirement of meeting the inriver run goal instead of the OEG. This may require the personal use fishery and the sport fishery below the sonar site to be restricted or closed depending on how many fish pass the commercial fisheries and enter the river.

5 AAC 21.365. Kasilof River Salmon Management Plan

Issue 1: The Kasilof River BEG has been exceeded 8 of 9 years since 1999 while the OEG has been exceeded 5 of 6 years (OEG established in spring of 2002). Fishing time allotted in the current management plan prior to July 9 is not sufficient to harvest excess fish (two regular scheduled periods plus up to 48 hours of additional EO time). The 48 hour window closure has also been problematic because during that period of time large passage rates have occurred. These two factors have kept the department from being able to manage for the escapement goal. In order to meet the Kasilof River escapement goal, the above limitations also make it necessary

to use the Kasilof River Special Harvest Area (KRSHA) much more aggressively. This is also in conflict with the BOF intent to harvest salmon in fisheries that have historically harvested them including the methods, means, times, and locations of those fisheries.

Option: Reduce the 48 hour window closed to commercial fishing to a minimum of 24 hours and increase the amount of allowable EO fishing time from 48 hours to 63 hours (by 15 hours a week). This would provide the department the ability to manage for the Kasilof River sockeye salmon OEG prior to Kenai River sockeye salmon stocks entering the fishery. This change would make use of the KRSHA less likely.

<u>Issue 2:</u> Beginning July 9, the set gillnet fishery in the Kasilof Section is managed in concert with the Kenai and East Forelands sections. The date of July 9 may be too early to manage the Kasilof River sockeye salmon stock based on Kenai River sockeye salmon run strength.

Option: Begin managing the Kasilof River in concert with the Kenai and East Forelands sections July 15 instead of July 9. This would provide additional time to harvest Kasilof River sockeye salmon prior to the arrival of the majority of the Kenai River sockeye salmon entering the fishery. Additional Kenai River sockeye and king salmon could be harvested in the Kasilof section during this time frame. The regulations in place on June 25 in the Kasilof section would remain in effect until July 15. At that time, the Kasilof and Kenai areas would be managed in concert.

<u>Issue 3</u>: After July 15, if the department determines that the Kenai River late-run sockeye salmon run strength is projected to be less than 2 million fish and the 300,000 upper OEG bound for the Kasilof River sockeye salmon may be exceeded, an additional 24-hours of fishing per week in the Kasilof Section within one-half mile of shore is allowed by regulation. This date and the additional time may not be sufficient to harvest surplus Kasilof sockeye.

Option: Provide an additional 24 hours of fishing within one-half mile in the Kasilof Section after July 8.

RC 9

STATE OF ALASKA

DEPT. OF ENVIRONMENTAL CONSERVATION DIVISION OF WATER DIRECTOR'S OFFICE

SARAH PALIN, GOVERNOR

555 Cordova Street
Anchorage, AK 99501-2617
PHONE: (907) 269-7599
FAX: (907) 334-2415

http://www.state.ak.us/dec/

January 28, 2008

Mel Morris, Chair Board of Fisheries 917 Mill Bay Road Kodiak, AK 99615

Dear Mr. Morris:

Thank you for the opportunity to provide comments on the proposals being considered by the Board of Fisheries.

Multi-year studies conducted by the Department of Environmental Conservation (DEC) and other organizations indicate that each July, the lower 19 miles of the Kenai River exceed Alaska's water quality standards for petroleum hydrocarbons. The water quality standards are established to protect fish and other aquatic life, especially the sensitive life stages such as the spawning. Consequently, DEC has included the lower Kenai River on its list of "impaired" waters under Section 303(d) of the Clean Water Act.

Water quality studies indicate the source of the petroleum hydrocarbon is motorboats, with the overwhelming majority of the pollution coming from gas and oil released from older, 2-stroke boat motors. DEC supports a move to cleaner, more fuel efficient, 4-stroke or direct fuel injection 2-stroke technology.

DEC has been working with the Departments of Natural Resources (DNR) and Fish and Game (F&G), and the Kenai River Special Management Area (KRSMA) Advisory Board to reduce the petroleum hydrocarbon contamination. Based on KRSMA Advisory Board recommendations, DNR has proposed regulations that when approved, would eliminate the use of conventional 2-stroke motors during the month of July, beginning in 2008. However, the DNR regulations only apply to the KRSMA portion of the Kenai River and do not address the last 5 miles of the river where the personal use fishery (PUF) is located. Data on the number and types of motors used in the PUF show a higher percentage of 2-stroke motors operating in this fishery compared to the sport fishery within the KRSMA.

DEC generally supports the proposals before the Board of Fisheries that would prohibit or reduce the use of conventional 2-stroke motors in the PUF. Such a change in the regulations for the PUF can be an important element of the Kenai River recovery. Board of Fisheries actions that coincide with the 2008 timetable established under DNR's pending regulations may be timely, effective, and easily understood by the public. However, DEC recognizes the Board may need to consider phasing the reduction in conventional 2-stroke motors over a number of years as a matter of fairness to current participants

in the PUF. Neither DEC nor federal rules require a specific deadline for action on impaired waters and allow the phasing in of plans to make improvements to water quality over time.

If you have questions, please contact me or Nancy Sonafrank at 451-2726.

Sincerely,

Lynn J. Tomich Kent

Director

United States Department of the Interior

U.S. FISH AND WILDLIFE SERVICE Office of Subsistence Management 3601 C Street, Suite 1030 Anchorage, Alaska 99503

JAN 11 2008

FWS/OSM/Regulatory Proposals

RC 10

Mr. Mel Morris, Chairman Alaska Department of Fish and Game Board of Fisheries 1255 West 8th Street P.O. Box 25526 Juneau, Alaska 99802-5526

Dear Chairman Morris:

At it's upcoming meeting scheduled to begin February 1, 2008, the Alaska Board of Fisheries will deliberate 2007/2008 regulatory proposals that address Upper Cook Inlet commercial, sport, and personal use finfish fisheries. We understand that the Board will be considering approximately 285 proposals at this meeting.

The U.S. Fish and Wildlife Service, Office of Subsistence Management, working with other Federal agencies, has reviewed these proposals and developed preliminary comments on proposals which may have an impact on Federally qualified subsistence users and Federal subsistence fisheries in this area. Our comments are enclosed.

Currently, Federal regulations for subsistence fishing with rod and reel in Federal public waters in the Cook Inlet area, unless otherwise specified by harvest permit or specifically addressed by Federal subsistence regulations are the same as State regulations for sport fishing. So long as the relevant Federal regulations are the same as Alaska sport fishing regulations, by reference, changes to the sport fishing regulations would have the same effect on Federal subsistence opportunity. Your Board will address several sport fishing proposals requesting changes to area, bag/slot limits and methods and means, which if adopted could limit Federal subsistence fishing opportunities. We may wish to comment further on specific proposals if issues arise during the meeting which may have an impact on Federal subsistence users and fisheries.

We appreciate the opportunity to comment on these important regulatory matters and look forward to working with your Board and the Alaska Department of Fish and Game on these issues.

Sincerely,

Peter J. Probasco

Assistant Regional Director

Denby S. Lloyd, ADF&G cc Michael Fleagle, Chair FSB John Hilsinger, ADF&G, Anchorage Charles Swanton, ADF&G, Juneau Elizabeth Andrews, ADF&G, Juneau Rob Bentz, ADF&G, Juneau James Hasbrouck ADF&G Anchorage Patti Nelson, ADF&G, Juneau Jeff Regnart, ADF&G, Anchorage Tina Cunning, ADF&G, Anchorage Jim Fall, ADF&G, Anchorage George Pappas, ADF&G, Anchorage Jim Marcotte, ADF&G, Juneau **Interagency Staff Committee** Federal Subsistence Board

Conflicts Outline for Howard Delo

- The four areas initially identified as potential conflicts:
 - 1. Outdoor columns written about Cook Inlet fisheries for the local newspaper;
 - 2. Membership and having held the Chair position on the Matanuska Valley Fish and Game Advisory committee, which submitted proposals for this meeting;
 - 3. Being a certified recreational boating safety instructor who charges for the instruction and classes offered; and
 - 4. My mother-in-law owns a Cook Inlet set-net permit.
 - There are two facets involved in the set-net permit conflict:
 - 1. Deriving an income from fishing the permit; and
 - 2. The value of the permit itself.

Outdoor newspaper column

The first area of potential conflict arises from my outdoor newspaper column in the Mat-Su Valley Frontiersman. The opinions I have written are based on my personal observations and thoughts regarding fishing in the Cook Inlet area. These columns were written before my March 2007 appointment to the Board of Fisheries and none take a position on any of the regulatory proposals before this board.

I have been very careful not to write about fisheries related topics since my appointment unless the item is an explanation "after the fact" of an action by the board or is a comment or idea someone else has told me – those situations were clearly identified in the respective newspaper columns. Data presented in the newspaper columns in question were obtained from Department of Fish and Game sources. I have taken a prudent approach to my writing since my appointment to the board.

After review of this topic and a discussion with the Department of Law, the Board of Fisheries Executive Director and the BOF Chairman, this potential conflict area was determined to have no real basis.

Matanuska Valley AC membership

Previous to my service on the Board of Fisheries I was a member of the Matanuska Valley Fish and Game Advisory Committee and held the position of Chair. I resigned my seat on the advisory committee upon my appointment to the board in March 2007. The advisory committee submitted 10 proposals for this meeting on a variety of topics. I do not have a personal or financial interest in these proposals and consider that I am able to act objectively on them and act independent of any positions taken by the Matanuska Valley Advisory Committee.

After review of this topic and a discussion with the Department of Law, the Board of Fisheries Executive Director and the BOF Chairman, this potential conflict area was determined to have no real basis.

Boater safety program instructor position

The third area of potential conflict deals directly with Proposal 300, which would require a powerboat operator's course before being able to operate powerboats on the Kenai. I am a certified recreational boating safety instructor under the state's Alaska Water Wise boating safety program. I and a partner teach the certified course with a riverboat addition to riverboaters in the Mat-Su Valley. We are allowed to charge for the course and we do. However, the Alaska Water Wise program, minus our riverboat addition, is available from other providers at no cost. In the years my partner and I have been teaching the course, we have, to our knowledge, never certified anybody whose primary recreational boating operation occurred on the Kenai River.

US Coast Guard Auxiliary boating courses are also available on the Kenai Peninsula and elsewhere statewide. If this proposal were to pass, ample opportunity for recreational boating safety classes besides the ones I am involved with exists for those operators potentially impacted by the proposal.

After review of this topic and a discussion with the Department of Law, the Board of Fisheries Executive Director and the BOF Chairman, this potential conflict area was determined to have no real basis.

Latent set-net permit for Cook Inlet waters:

Income derived from fishing the permit

My 86-year old mother-in-law has owned her permit since it was originally issued by the state back in the 70's when the state started the limited entry on commercial salmon fishing in Cook Inlet. She has not fished the permit in over thirteen (13) years and her health is such that she will never fish the permit again. She can barely walk around her house, but she wants to "keep going." She does not live with my wife and I — we are in Big Lake and my mother-in-law lives in Homer.

I spoke with her about this situation during the November, 2007 BOF meeting in Homer. My impressions are that the only reasons she is keeping the permit are: 1) she has always had it – no one else has ever owned THAT permit; and 2) it is a reminder to her of earlier times in her life and a lifestyle which she wants to remember – the nostalgia factor, if you will.

Since she has not fished her permit in over 13 years and is physically unable to do so again, the issue of income derived from fishing the permit is a moot point and was no longer considered an area of conflict in the discussions referenced for the first three points.

• Actions which may affect the value of the permit

On this aspect, the Department of Law determined that I had potential conflicts on a total of 58 proposals. These proposals were considered to be conflicts for me because action

on them could influence the value of a Cook Inlet set-net permit either positively or negatively. The proposals break down into several categories: Allocation of fishery resources between respective commercial gear types or between commercial and other user groups (37 proposals); Closure of areas to commercial fishing (1); Escapement goals modification (2); Fishing time extensions or reductions (2); Gear modifications, reductions or additions (4); and Season extensions or reductions for commercial fishing (12 proposals).

I do not dispute that actions taken by the BOF could have some influence on the value of a commercial fishing permit. However, my understanding is that for a conflict to exist, there must be SIGNIFICANT financial or personal gain or loss involved. I submit that other factors beyond the Board's control have a much greater bearing on the value of a commercial fishing permit, specifically, these other factors are market conditions and the price being paid for fish.

Compare the graph taken from page 214 of *THE GREAT SALMON RUN: Competition Between Wild and Farmed Salmon*, by Gunnar Knapp, et.al. 2007, with the graph of the value of a Cook Inlet set-net permit. I got the values for this graph from the Commercial Fisheries Entry Commission website.

Two things jumped out at me when I compared this graph with Knapp's ex-vessel fish price graph: first, how closely the value of a set-net permit seemed to track the price paid for fish; and the fact that the BOF has made numerous and important changes to the Cook Inlet commercial/sport fishery since 1996, yet the value of a set-net permit has actually declined until the last few years. According to Fishery Management Report (FMR) No. 07-64, Upper Cook Inlet Commercial Fisheries Annual Management Report, 2007, given to us as reference material for this meeting, on page 4, "The average price per pound paid for UCI salmon has slowly been increasing over the past few years (Appendix A11)." Again on page 20 of the same report, "The average price per pound paid to fisherman for their catch in 2007 was very similar to what they received in 2006 (Appendix A11), with both years reflecting significant increases from the average prices paid during 2000-2005."

I think that last sentence is directly reflected in the slight jump in the value of Cook Inlet set-net permits noted on the tail-end of the graph of permit values.

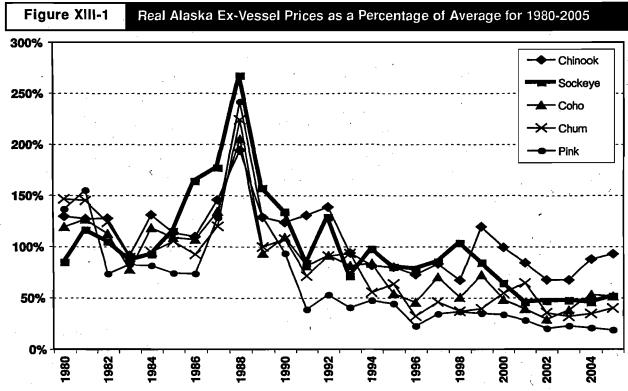
Another point I would like to make is that in our recent Chignik and Kodiak BOF meetings, we heard repeatedly that both of those areas held large numbers of latent commercial permits and that these permits were not being fished because of market conditions and fish prices. Not once did I hear anyone say the permits were latent because of BOF actions. We are seeing a similar situation in Cook Inlet. Again, quoting from FMR No. 07-64, on page 21, "CFEC also shows that there are 738 active set gillnet permits in Cook Inlet, with 83% being issued to Alaskan residents. From this total, 468 reported fishing in UCI in 2007."

A total of 270 set gillnet permits were not fished. There must be a reason why more than a third (36%) of the permits are not being fished. I submit that it is because of market conditions and fish prices, not BOF actions. If market conditions and fish prices are not seen as attractive enough to fish a permit, I would expect those same factors would bear significantly on the actual value of the permit itself.

While action on the contested proposals could have a general benefit to one gear group or another, because of the large number of permits, any benefit that would accrue to me or my family members as a result of my participation on those proposals would be insignificant and negligible.

My final points involve the fact that the permit belongs to my mother-in-law, not me. As long as she lives, that permit will sit latent. If she survives beyond my tenure on this board, I will have gained nothing and will have lost the ability to have participated in a large amount of work currently before this board.

According to Bob Tkacz in his *Laws for the SEA* weekly report Volume 14 Bulletin – A, dated January 22, 2008 and published in Juneau, "Fish Board conflict of interest rules are among the most strict of any state regulators, including the legislature, and (Representative Paul) Seaton said the "immediate family" definition creates "a huge problem" for the board. In 2005 there were only "one or two" cases among eight other boards and commissions in which members were not allowed to participate in debates because of family member conflicts. In the same year Fish Board members were recused from deliberations due to family conflicts 103 times."


My last comment, honest! If the current bill Mr. Tkacz referenced in his statements above and recently passed by the House (HB 15) and which currently resides in Senate Resources were law today, we would not even be having this discussion about my situation.

Conclusion

Based on these points, I do not see a conflict with my participation and deliberation on any of the UCI proposals.

and the effects of farmed salmon, vary for different wild salmon species. It is difficult to quantify the

specific effects of farmed salmon on wild salmon prices, as many other factors have also affected prices.

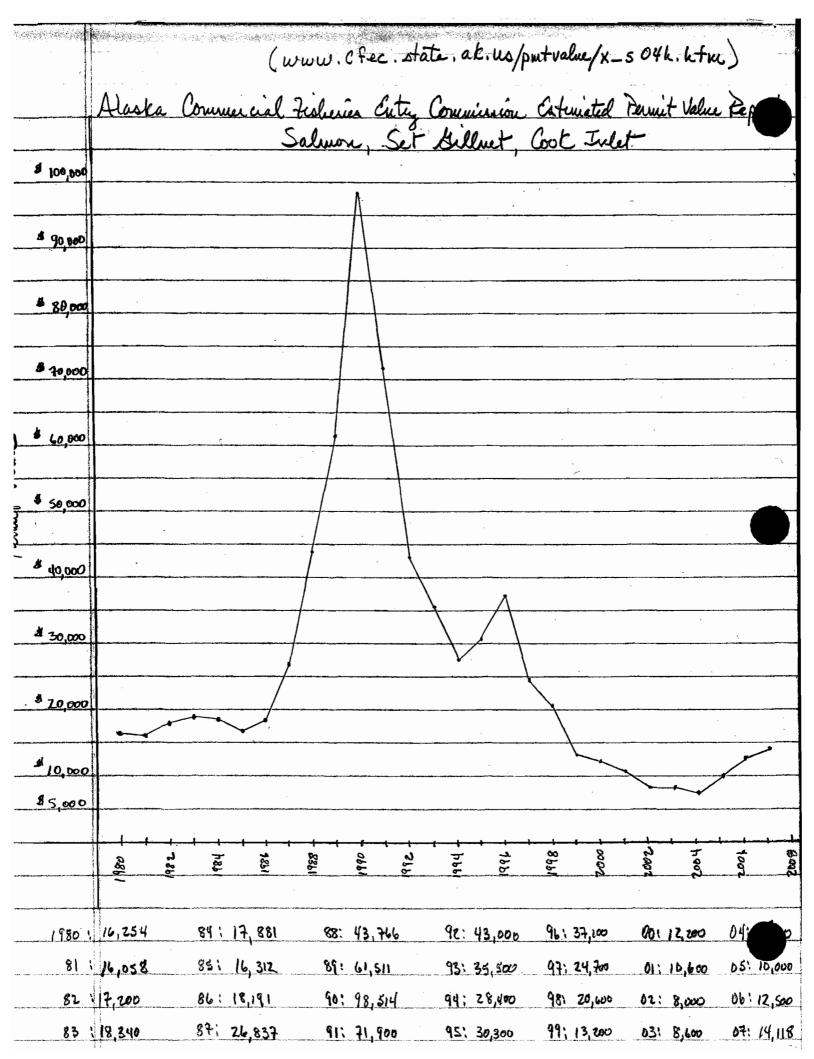
Source: CFEC Alaska Salmon Summary Data 1980-2005. Adjusted for inflation based on Anchorage CPI.

Overview—Economic Theory of Effects of Farmed Salmon on Wild Salmon Prices

Salmon markets are complex. To introduce this complex topic we begin by discussing price formation in a market with only wild salmon—before the introduction of farmed salmon.

Figure XIII-2 is a simplified representation of price formation in a market with only wild salmon. Numerous different factors together simultaneously determine prices at different market levels—ex-vessel, wholesale, and retail. Ultimately, prices at all levels of the market chain are driven by factors affecting both supply (shown in *italics* on the left side of the diagram) and demand (shown in *italics* at the top of the diagram).

Raw product supply is driven by fishing costs, environmental factors such as decadal ocean changes and effects of drought on spawning streams, hatchery production, natural wild salmon stocks, fisheries management programs and fishermen's preseason expectations about ex-vessel prices.


Final product demand is driven by consumer tastes,

consumer incomes, prices of salmon and prices of substitute species of fish and meat. Media and advertising, such as positive media reporting on the healthful benefits of eating salmon or negative media on endangered salmon, influence consumer tastes and preferences.

Costs and the relative market power of different players in the market determine the relationships between prices at the ex-vessel, wholesale and retail level.

At any given time, many different factors are affecting prices and there are many different potential reasons why prices may change. For example, all of the following could contribute to a decrease in wild salmon prices:

- An increase in catches due to favorable environmental factors, such as favorable ocean conditions (by increasing supply)
- An increase in hatchery production (by increasing supply)
- A decrease in the price of beef (by lowering demand for salmon)
- An increase in retail labor costs (by increasing the margin between retail prices and wholesale prices)

• STATE OF ALASKA

DEPARTMENT OF FISH AND GAME

DIVISION OF COMMERCIAL FISHERIES DIVISION OF SPORT FISH

SARAH PALIN, GOVERNOR

January 30, 2008

PHONE: (907) 267-2376 (LFF)

PHONE: (907) 267-2124 (JJH)

FAX: (907) 267-2442 (LFF)

FAX: (907) 267-2401 (JJH)

P.O. BOX 115526 Juneau, AK 99811-5526 PHONE: (907) 465-4210 (CF) PHONE: (907) 465-4180 (SF)

DATE:

MEMORANDUM

TO:

John Hilsinger

Director

Division of Commercial Fisheries

Headquarters - Anchorage

and

Charlie Swanton

Director

Sport Fish Division Headquarters – Juneau

THRU:

Jeff Regnart

Regional Supervisor

Division of Commercial Fisheries

Region II - Anchorage

FROM:

Lowell F. Fair

Regional Research Coordinator Division of Commercial Fisheries

Region II – Anchorage

and

James J. Hasbrouck Regional Supervisor Sport Fish Division Region II – Anchorage

SUBJECT: Upper Cook Inlet stocks of concern follow-up on Yentna River sockeye salmon

The Sustainable Salmon Fisheries Policy (SSFP; 5 AAC 39.222) directs the department to provide the Alaska Board of Fisheries (BOF), at regular meetings, with reports on the status of salmon stocks to identify any salmon stocks that present a concern related to yield, management, or conservation. For example, a "yield concern" means a concern arising from a chronic inability, despite the use of specific management measures, to maintain expected yields, or harvestable surpluses, above a stock's escapement needs. In the Upper Cook Inlet (UCI) Management Area no stock has been identified as a stock of concern. However, with the approaching UCI Alaska Board of Fisheries meeting in February and as a follow up to the September 2007 memorandum, we reviewed the department's stock of concern assessment of the Yentna River sockeye salmon run.

Escapement Assessment and Trends

Initial efforts to estimate the number of sockeye salmon spawning and rearing in the Susitna watershed were limited in scope and duration. Various lakes within the drainage were visited sporadically in the 1950s and 1960s by United States Fish and Wildlife Service and Alaska Department of Fish and Game (ADF&G) personnel to collect salmonid juvenile and adult data. Adult spawner counts were primarily the product of aerial surveys (King and Walker 1997). At various times since the early 1970s, weirs monitored sockeye salmon entering selected tributaries (Chelatna Lake, Fish Lakes, Judd Lake, Larson Lake, Shell Creek, and Talachulitna River) to spawn (King and Walker 1997).

Mark-recapture projects were conducted on the Susitna River in 1974 and 1975 as part of an effort to estimate juvenile and adult anadromous fish populations in the upper Susitna River between Devil's Canyon and the confluence of the Susitna and Chulitna rivers. These studies were part of the pre-authorization investigation for the proposed Susitna Hydroelectric Project (Barrett 1974; Friese 1975). The results of these studies indicated that the majority of sockeye salmon in the Susitna River basin were produced in the Yentna and Skwentna river drainages (Namtvedt et al. 1978). Mark-recapture projects were again conducted on the Susitna River during 1982–1985 to estimate the inriver run of sockeye salmon (Barrett et al. 1985; Thompson et al. 1986).

Adult salmon escapements into the Susitna River were monitored with sonar at Susitna Station (river kilometer [rkm] 52) from 1976 to 1980. However, changes in bottom characteristics at that sonar location precluded continuation of the project after 1980. Because no other site suitable for the existing sonar equipment was found in the mainstem of the Susitna River, the project was moved to the Yentna River, the largest tributary in the drainage. From 1981 to the present, the Yentna River daily sonar estimates have been used as an indicator of the sockeye salmon escapement into the Susitna River drainage. The sockeye salmon escapement bound for the Yentna River has been thought to be approximately one half of the total Susitna River sockeye salmon escapement based on a combination of 1981–1985 capture-recapture abundance estimates passing Sunshine (Susitna River rkm 116), and sonar abundance estimates passing Yentna (Yentna River; rkm 7) and Susitna Station (Westerman and Willette 2006).

Currently, the Yentna River sockeye salmon escapement goal, 90,000 to 160,000 fish, is a sustainable escapement goal (SEG) adopted in 2002 (Bue and Hasbrouck *Unpublished*). In 2007, an interdivisional salmon escapement goal team reviewed salmon escapement goals in the UCI Management Area based on the SSFP and the Policy for Statewide Salmon Escapement Goals (5 AAC 39.223). The team recommended that the current Yentna River sockeye salmon escapement goal remain unchanged (Fair et al. 2007).

Based on Bendix sonar estimates since 1981, the number of Yentna River spawners has ranged from approximately 37,000 to 181,000 sockeye salmon. The sonar estimate of sockeye salmon escapement into the Yentna River has not met the goal in 5 of the past 8 years (Table 1). Unfortunately, the accuracy of escapement enumeration based on sonar in the Yentna River has not been verified. The Yentna River is a large, dynamic glacial river that poses difficulties in assessing salmon escapement using sonar, and significant runs of other salmon species occur, requiring fish wheels to be used to apportion the total sonar count by species. Any one of these issues will create biases in the estimation of species-specific escapement. Whether any of these biases are significant, or if they vary seasonally or annually, is unknown. Additionally, a comparison of historical sockeye salmon escapements in the Yentna River and in four major rearing lakes (Chelatna, Shell, Judd, and Larson) suggests that production may have recently declined in the smaller rearing lakes in the watershed.

Yield Assessment

The sustained-yield principal requires an understanding of the relationship between the abundance of spawning fish and the abundance of their offspring that survive to adulthood (known as a brood table) by stock. The number of offspring that survive to adulthood is calculated by adding the number of spawning fish and the number of fish harvested for each parent generation.

Accurately estimating the composition of mixed-stock catch is critical to determining the total run of each stock. Age composition has historically been used to facilitate estimation of stock composition. Stock and age specific catch and escapement data have been the basis for development of long-term brood tables used for both pre-season forecasting and for scientific estimation of escapement goals.

Unfortunately, the allocation methodology used to apportion sockeye salmon catches to component stocks in UCI represents a coarse approximation of the actual catch by stock. Historically, a series of largely untested assumptions have been used to allocate stock composition. ADF&G currently uses age composition estimates from the harvest and escapement, and run timing to allocate the harvest to each stock (Bernard 1983). The current method assumes that the stocks present in a district are equally exploited. This untested assumption could greatly affect the estimated stock compositions. The current method probably underestimates the productivity of some stocks and overestimates the productivity of other stocks. As such, the less abundant stocks such as the Susitna River are prone to the greatest percentage error from the true stock composition of the mixture. To be accurate, the age composition method also requires a representative sampling of the harvest, and accurate estimates of escapement numbers and age composition.

In recent years (2005 to present), ADF&G has developed a genetics program for sockeye salmon in UCI. The primary goal of the program is to develop and apply genetic methods to identify stock composition of mixtures. The first comprehensive baseline using genetic markers in UCI employed microsatellites (Habicht et al. 2007). The need to differentiate among all the stocks led to the development of methods to screen single nucleotide polymorphism (SNP) loci under selection. In a recent study of UCI sockeye salmon genetic diversity, simulations indicated that seven regional groups (Kenai River, Susitna River, Yentna River, West Cook Inlet, Kasilof River, Northeast Cook Inlet, and Knik Arm) could be identified in mixtures at high levels of precision and accuracy (Habicht et al. 2007).

Given the potential errors outlined above for estimating the harvest of Susitna stocks in UCI using catch and escapement age composition information, we are hesitant to estimate the historical yield for Yentna stocks. There are many unsubstantiated assumptions involved in the estimation procedure. Nonetheless, in the context of "stock of concern" we have examined the historical estimates of Yentna River sockeye salmon yield in both the Central and Northern districts.

Conclusions and Recommendations

As explained in the September 2007 memorandum, the recent pattern of low sockeye salmon escapements to the Susitna River drainage has prompted the department to better understand stock productivity, errors in escapement estimation, and harvest in the mixed stock fishery of UCI using genetic markers (Habicht et al. 2007). Sockeye salmon rearing lake investigations are being conducted to estimate embryo-to-smolt survivals in the major lakes in the watershed. Additionally, we are assessing the sockeye salmon escapement into the Susitna River using new and improved methodology. ADF&G, with participation from Cook Inlet Aquaculture Association, is estimating the adult sockeye salmon abundance in the entire Susitna River in 2006, 2007, and 2008 with a mark-recapture and radio telemetry study. Such abundance estimates will allow: (1) estimation of the total annual run of Susitna River sockeye salmon, when abundance estimates and genetics-based harvest allocation estimates are combined, (2) evaluation of the accuracy of the Yentna River sonar estimate, and (3) the proportion of Yentna River sockeye salmon in the entire Susitna River sockeye salmon escapement. Additionally, the department is evaluating the current sockeye salmon escapement assessment tool, a Bendix single beam sonar system, with a more advanced and proven hydroacoustic system known as DIDSON (Dual frequency IDentification SONar). Preliminary spawning abundance estimates based on mark-recapture and DIDSON studies suggest that traditional Bendix estimates are much lower than the actual escapements. As shown in the table below, the high variability that we have observed between the various methods has added considerably greater uncertainty to our previous assessments.

Various sockeye salmon escapement estimates for the Susitna River drainage, 2006 and 2007.

2006		-		
System	Mark–Recapture	Weirsa	Bendix	DIDSON
Yentna	Unknown	126,000	93,000	160,000
Susitna	107,000 (95% CI 59-165)	60,000		
Sum		186,000	<u>.</u>	_

2007 ^b				
System	Mark-Recapture	Weirs	Bendix	DIDSON
Yentna	250,000	97,000	80,000	130,000
Susitna	85,000	60,000		
Sum		157,000		

^a Weirs monitored escapement at a few select lakes and do not represent total river escapement.

Similar to escapement, an accurate assessment of Susitna/Yentna River catch has been problematic given the available methodology (age composition method) and limited resources for catch sampling. The sources of error in estimating the stock-specific catch in UCI are many, and this is especially true for the less abundant stocks such as Yentna River sockeye salmon, which are susceptible to the greatest relative errors (Bernard 1983). Although genetic markers have given us

^b The 2007 estimates are preliminary.

Upper Cook Inlet stocks of concern recommendation

the ability to accurately determine stock composition for portions of the past 3 years, this data will not be applied to historical harvests of UCI until the full season analyses have been completed, and we have gained a better understanding of stock vulnerability through time and space.

In the Central District drift fishery, the estimated Yentna River commercial harvest for the most recent 5-year average (2003–2007) is 59% of the previous 10-year (1993–2002) average and 49% of the previous 20-year (1983–2002) average (Table 1). In the Northern District, the most recent 5-year average is 31% of the previous 10-year average and 22% of the previous 20-year average. Since the total UCI commercial harvest averages 2.9 million sockeye salmon and our age composition allocation model estimate of the Yentna sockeye salmon harvest is only 8.4% of the total, we have low confidence in the accuracy of our estimate of the Yentna sockeye salmon harvest. The difference (53,309 fish) between the 5-year (2003–2007) average yield and the 10-year (1993–2002) average yield for the Yentna stock is only 2% of the average UCI commercial harvest. The errors in our stock composition estimates are likely greater than 2%, since we know from comparisons to partial weir counts that the error in our Yentna sonar estimate is at least 28%.

The department continues to treat the persistently low escapements of sockeye salmon to the Yentna River as a serious issue. At this juncture, we are hesitant to make a stock of concern recommendation for Yentna River sockeye salmon given the assumptions and unknowns outlined above, in the memo of September 2007, and in various scientific reports prepared for the BOF meeting in February. With the ongoing studies of escapement assessment and improved stock composition in the catch, we will better understand the productivity and sustainability of the stock. Partial and preliminary information from the DIDSON, mark-recapture, and lake productivity studies will be available to the Board at the Upper Cook Inlet meeting this February.

Literature Cited

- Barrett, B. M. 1974. An assessment study of the anadromous fish populations in the Upper Susitna River watershed between Devil Canyon and the Chulitna River. Alaska Department of Fish and Game, Division of Commercial Fisheries, Cook Inlet Data Report No. 74-2, Anchorage.
- Barrett, B. M., F. M. Thompson, and S. N. Wick. 1985. Adult Salmon Investigations: May-October 1984. Susitna Aquatic Studies Program, Report No. 6. Draft. Alaska Department of Fish and Game, Alaska Power Authority Document #2748, Anchorage.
- Bernard, D. R. 1983. Variance and bias of catch allocations that use the age composition of escapements. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet No. 227, Anchorage.
- Bue, B. G., and J. J. Hasbrouck. *Unpublished*. Escapement goal review of salmon stocks of Upper Cook Inlet. Alaska Department of Fish and Game, Report to the Alaska Board of Fisheries, November 2001 (and February 2002), Anchorage.
- Fair, L. F., R. A. Clark, and J. J. Hasbrouck. 2007. Review of salmon escapement goals in Upper Cook Inlet, Alaska, 2007. Alaska Department of Fish and Game, Fishery Manuscript No. 07-06, Anchorage.
- Friese, N. 1975. Preauthorization assessment of anadromous fish populations of the Upper Susitna River watershed in the vicinity of the proposed Devil Canyon hydroelectric project. Alaska Department of Fish and Game, Division of Commercial Fisheries, Cook Inlet Data Report No. 75-2, Anchorage.
- Habicht, C., W. D. Templin, T. M. Willette, L. F. Fair, S. W. Raborn, L. W. Seeb. 2007. Post-season stock composition analysis of Upper Cook Inlet sockeye salmon harvest, 2005-2007. Alaska Department of Fish and Game, Fishery Manuscript No. 07-07, Anchorage.
- King, B. E., and S. C. Walker. 1997. Susitna River sockeye salmon fry studies, 1994 and 1995. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2A97-26, Anchorage.
- Namtvedt, T., D. Waltemeyer, and K. Webster. 1978. Investigations of Cook Inlet sockeye salmon. Project No. AFC-53 Anadromous Fish Conservation Act, Completion Report for Period July 1, 1974 to June 30, 1977. Alaska Department of Fish and Game, Juneau.
- Thompson, F. M., S. N. Wick, and B. L. Stratton. 1986. Adult salmon investigations: May-October 1985. Susitna Aquatic Studies Program, Technical Data Report No.13. Alaska Department of Fish and Game, Alaska Power Authority Document #3412, Anchorage.
- Westerman, D. L., and T. M. Willette. 2006. Upper Cook Inlet salmon escapement studies, 2004. Alaska Department of Fish and Game, Fishery Data Series No. 06-49, Anchorage.

Table 1. Yentna River sockeye salmon catch and escapement, 1983-2007.

				<u> </u>
	Commercia	l Catch a		
_			'	Lower
	Central	Northern		Escapement
Year	District	District	Escapement b	Goal
1983	153,417	34,486	104,414	100,000
1984	149,776	49,254	149,375	100,000
1985	150,827	38,473	107,124	100,000
1986	240,686	34,333	92,076	100,000
1987	142,040	18,828	66,054	100,000
1988	120,069	11,545	52,330	100,000
1989	3,343	40,549	96,269	100,000
1990	234,378	19,011	140,290	100,000
1991	107,291	25,193	109,632	100,000
1992	170,969	8,507	66,074	100,000
1993	193,450	20,689	141,694	100,000
1994	131,844	24,349	128,032	100,000
1995	160,320	21,447	121,220	100,000
1996	117,337	13,124	90,660	100,000
1997	136,803	20,814	157,822	100,000
1998	48,113	14,299	119,623	100,000
1999	83,812	12,951	99,029	100,000
2000	66,782	12,144	133,094	100,000
2001	46,431	10,774	83,532	100,000
2002	58,383	5,548	78,591	90,000
2003	116,154	11,535	180,813	90,000
2004	68,546	3,918	71,281	90,000
2005	32,197	3,572	36,921	75,000
2006 °	11,610	1,985	92,045	90,000
2007 °	80,306	3,333	79,901	90,000
2003-2007 Avg.	61,763	4,869	92,192	
1993-2002 Avg.	104,327	15,614	115,330	
1983-2002 Avg.	125,804	21,816	106,847	

Catch estimates are based on age composition methodology that (1) assumes equal exploitation of stocks in the fishery, (2) requires representative sampling of the harvest, and (3) accurate estimates of escapement numbers and age composition.

^b Sonar estimates of escapement are based on Bendix.

^c Preliminary estimates.

A RC13

United Cook Inlet Drift Association

43961 K-Beach Road, Suite E

Soldotna, Alaska 99669

Committee "A"

Principals for Regulations

1. Escapement Goal Management MSY

2. Adaptive Abundance Based Management Plans

3. Legal and Enforceable

- 4. Change for Cause
- 5. Ensure Economic Success of Fishing Communities
- 6. Loss of Habitat Eliminate Destructive Fishing Practices
- 7. Science Based
- 8. Safety for Fishermen

Upper Cook Inlet - General

- 73. Central District Herring Management Plan
- 74. Aircraft

neutral

• 75. Aircraft

neutral

- 76. Blanchard Line Less .2 NM
- (Safety)

oppose

- 77. Kenai / Kasilof section redefined
- (No need) KRSA

oppose

- 78. Open South side Chinitna Bay
- (Allocative)

oppose

Coho - General

79. Later dates – Kasilof section – Aug 10-15
 Earlier dates – Kenai E. Forelands
 - changed to July 1-Aug 15

support

- 87. Sockeye Coho mgt
- 1% to 5%
- (KRSA)

oppose

Seasons - Sockeye

Kenai E. Forelands

• 80. Kenai E. Forelands – July 1 [8] → Aug 15 [10]

support

• 81. Kenai E. Forelands – July 1 [8] → Aug 15 [10]

support

• 82. Kenai E. Forelands – July 1 [8] → Aug 15 [10]

support

• 83. Kenai E. Forelands – July 1 [8] → Aug 15 [10]

support

Kenai E. Forelands

•	84.	Kenai E. Forelands – July 1 [8] → Aug 15 [10]	support			
•	85.	Kenai E. Forelands – July 1 [8] → Aug 15 [10]	support			
•	86.	Set Net Fisheries close by EO	support			
•	87.	Clarify transition between sockeye & coho mgmt	oppose			
•	88.	Kenai E. Forelands – July 1 [8] → Aug 15 [10]	support			
	<u>Drift</u>	Fishery				
•	89.	Close Drift Fishery by E.O.	support			
•	93.	Kasilof opening – 50,000-25,000 for Set Net	support			
•	94.	Set Net opening – June 15 open drift	support			
Dates	s – Sea	asons – Drift				
•	90.	Mon-Thurs to Mon-Wed-Fri (Escapement Goal Mgt.)	support			
•	95.	Mon-Thurs to Mon-Wed-Fri (Escapement Goal Mgt.)	support			
•	96.	Mon-Thurs to Mon-Wed-Fri (Escapement Goal Mgt.)	support			
•	97.	Mon-Thurs to Mon-Wed-Fri (Escapement Goal Mgt.) two day a week unrestricted	support			
•	98.	1.5 miles to 2 miles E. shore (KPFA) expands corridor	oppose			
•	99.	1.5 miles to 2 miles E. shore (KPFA) expands corridor	oppose			
Gear – Drift/Set						
	Monofilament					
•	102.	50 fathom monofilament to 150 fathoms	support			
•	103.	50 fathom monofilament to 150 fathoms	support			

Monofilament

•	104.	Outlaw monofilament	oppose
•	105.	150 fathoms to 200 fathoms – drift	support
•	106.	45 mesh to 60 mesh deep – drift only	support
•	107.	Drift – 2 permit holders – 150 to 200 fathoms	support
•	108.	Set Net – 105 fathoms to 140 fathoms 3 to 4 nets per permit	oppose
•	109.	Set Net – 3 strand gillnet webbing	oppose
•	**110.	Live fish harvester	no action
•	111.	Set Nets – 600 ft from high tide	oppose
•	112.	Set Net – 48 hour notice to change location	no action
•	113.	UCI & Kodiak – one registration	no action

Northern District - Yentna - Susitna

•	119.	Conservation Corridor	op	ppose
•	120.	Chum stock of concern	oţ	ppose

Points

- 1. Coho are not a conservation issue
- 2. Coho total exploitation rate is $\sim 30\%$
- 3. Additional Coho harvests can occur up to 70%
- 4. Additional allocations in proportion to current harvests
 both Sport and Commercial
- 5. Extending the season late in fall when water levels are low the boat wakes will increase bank erosion.
- 6. Earlier opening are warranted
- 7. Economic necessity
- 8. Crew & gear training and testing
- 9. Close all commercial fishing by E.O. (guidelines acceptable)
- 10. Adaptive management abundance based
- 11. Escapement goal MSY management
- 12. Allow greater use of monofilament economic issues

Committee "B"

Principals for Regulations

1. Escapement Goal Management MSY

2. Adaptive Abundance Based Management Plans

3. Legal and Enforceable

4. Change for Cause

5. Ensure Economic Success of Fishing Communities

6. Loss of Habitat – Eliminate Destructive Fishing Practices

7. Science Based

8. Safety for Fishermen

<u>Upper Cook Inlet – General</u>

• 114. Reorder plans – umbrella plan first

neutral

United Cook Inlet Drift Association

43961 K-Beach Road, Suite E

Soldotna, Alaska 99669

• 115. Return to 1995 plans

(1990 Regs)

support

• 116. Personal use / Sport – Priority

(KSRA)

oppose

- not legal

- should be a restructuring proposal

- cause serious harm to Alaska

Revise mgt plans by species

oppose

• 125. +/- 3 million – in-river allocations – 2 permits 2 permits / drift boat

support

Coho – General

124.

• 165. Repeal West Side Coho mgt plan

Sunset Clause

(KRSA)

oppose

<u>Seasons – Sockeye</u>

Drift Fishery

• 91. Repeal July 17 & 26 restrictions appeal to 353 A-B-C get rid of

support

<u>Date</u>	s – Sea	asons – Drift	
•	162.	Delete CD Drift Fishery mgt plan (Esc. goals – adaptive)	support
•	163.	Restrict Drift areas – buffer areas (ND Set Net)	oppose
•,	164.	Clarify August periods, with restrictions (July 16 to Aug 10 – Drift – No Comm. EO restriction)	oppose
King	s – Se	t Net	
•	100.	Tuxedni – 1000 kings – 35 fathoms (area added)	support
•	101.	Tuxedni – 2000 kings – 35 fathoms (area added)	support
Esca	pemer	nt Goals – UCI	
•	117.	Escapement Goal mgt do not count hatchery fish	oppose
•	126.	Commissioner's E.O. authority	support
•	127.	Commissioner's E.O. – escapement goals	support
•	128.	Commissioner's E.O. – escapement goals	support
•	129.	Commissioner's E.O. – escapement goals	support
•	130.	Escapement goals priority	support
•	131.	Escapement goals priority	support
•	132.	Exceed escapement goals (Compounds escapement goal management)	oppose
•	133.	Commercial priority (Quality, economic issues)	support
•	160.	CD Plan – Manage for escapement goals	support
Nort	<u>hern I</u>	<u> District – Yentna – Susitna</u>	
•	121.	OEG - Yentna - 105 to 195,000	oppose
•	122.	OEG - Yentna - 105 to 195,000	oppose
•	123.	Eliminate Fish Creek stocking	support

Northern District - Yentna - Susitna

Earlier sockeye fishing

152.

•	134.	Amend NDSM plan	support
•	135.	Eliminate Coho discussion / restrictions	support
•	136.	Manage for commercial users	support
•	137.	Repeal Coho language	support
•	138.	Reinstate pre-2005 Coho restrictions	oppose
•	139.	Close commercial fishing – Alexander Creek	oppose
•	140.	Clarify - reinstate Yentna/Kenai escapement goals	oppose
•	141.	Larger sockeye escapements to ND	oppose
•	142.	Additional Coho fishing – ND	support
•	143.	Yentna/Kenai - limit ND commercial users	oppose
•	144.	ND Comfish vs. CD Drift	oppose
•	145.	ND Comfish vs. CD Drift	oppose
•	146.	ND king commercial expansion – for Drifters	support
•	147.	ND king commercial expansion – for Drifters	support
•	148.	6 to 8 inch gillnet – kings – ND	support
•	149.	ND king commercial expansion	support
•	150.	ND king commercial expansion	support
•	151.	ND – king drift gillnetting	support
Big River sockeye management			

support

Points	\mathbf{r}	• .	
1 0000	ν	α int	C
	1	OHIL	.o

- 1. Return to traditional fishery
- 2. Provides for M-W-F patterns economic benefit for Southcentral
- 3. Keep corridor as currently described
- 4. Provide for in-season adaptive abundance-based management
- 5. Drift fleet should be allowed to participate in fishery
- 6. Manage for escapement goals and economic returns

Priority: BEG's SEG's

- 7. Describe the sport / PU allocations directly
- 8. Avoid in-river and OEG escapement goals
- 9. Don't regulate as to interfere with commissioner's E.O. authority
- 10. Kings May/June additional harvests inside current allocation of 12,000 kings
- 11. Additional coho harvests by ND and CD, current exploitation at $\sim 30\%$ can go up to 70% harvests
- 12. ND stocks abundant, more than escapement goals
- 13. ND sockeye escapement goals need formal review
- 14. Additional harvest on chums and pinks economic benefit to Southcentral
- 15. No conservation corridor economic issues, economic hardship
- 16. No conservation corridor not needed to meet escapement goals

Committee "C"

United Cook Inlet Drift Association 43961 K-Beach Road, Suite E Soldotna, Alaska 99669

Principals for Regulations

- **Escapement Goal Management MSY**
- **Adaptive Abundance Based Management Plans** 2.
- 3. Legal and Enforceable
- 4. **Change for Cause**
- **Ensure Economic Success of Fishing Communities** 5.
- Loss of Habitat Eliminate Destructive Fishing Practices 6.
- 7. **Science Based**
- Safety for Fishermen 8.

Escapemen	t Goals -	- HCI
Locapoinci	i Ovais –	- 001

Esca	pemer	nt Goals – UCI	
•	118.	Return to 1995 escapement goals (1990)	support
<u>Pink</u>	Salmo	on Plan	
•	153.	Reinstate pink plan area	oppose
•	154.	Additional pink days	support
•	155.	Allow Set Nets to harvest pinks	support
•	156.	Allow Set Nets to harvest pinks	support
•	157.	Make pinks economically viable	support
•	158.	Set Net pink harvest	support
•	159.	Delete pink management plan	support
Kasi	<u>lof Riv</u>	ver	
•	166.	Achieve in-river goals – eliminate windows (Confounds Escapement Goal Management)	support
•	167.	Remove most of plan-windows-SHA (Special Harvest Area)	support
•	168.	Delete most of Kasilof River management plan (Not adaptive in-season management)	support
•	169.	Increase OEG – move Blanchard Line	oppose

(Historic – confounds escapement goal management)

Ka	ail	Λf	\mathbf{D}	iva	
ĸя	SH	OT.	к	ive	r

•	170.	KSHA – open Kasilof section with SHA	support
•	171.	Move sport regulations to SF regs.	support
•	172.	KSHA – rarely used wording	support
•	173.	Limit use of KRSHA	support
•	174.	Eliminate KRSHA	support
•	175.	King window / corridor (Confounds esc. goal mgt.)	oppose
•	176.	King window / corridor (Confounds esc. goal mgt.)	oppose
•	177.	Manage for escapement goals	support
•	178.	New OEG – 175,000 to 350,000 (Not Biologically or Scientifically warranted)	oppose
•	179.	New OEG – 200,000 to 350,000 (Not Biologically or Scientifically warranted)	oppose
•	180.	Repeal management plan (Keep Escapement Goals – rest of plan unnecessary)	support
	Spec	ial Harvest Area	
•	181.	Set / Drift - 1200 / 1200	oppose
•	182.	Additional time – 600 ft	oppose
•	183.	Limit Difters5 mile	oppose
•	184.	Set / Drift - 3,000 / 3,000	oppose
•	185.	Expand – redefine SHA	oppose
•	186.	Set / Drift - 1,200 / 1,200	oppose

Kenai Sockeyes

Kenai Sockeyes

•	187.	OEG – 400-700,000, +/- 3 million	support
•	188.	OEG – 400-700,000, +/- 3 million	support
•	189.	SEG – 500-800,000, below RM 19 – 600-900,000	support
•	190.	SEG – 500-800,000, below RM 19 – 600-900,000	support
•	191.	EG – 500-800,000, below RM 19 – 600-900,000	support
•	192.	OEG – 500-1,000,000, delete 3 tiers	support
•	193.	Increase sport harvest	oppose
•	194.	Spawn EG 400-700,000	support
•	195.	Remove restrictions, use Commissioner E.O.'s In-season, adaptive based management	support
•	196.	Spawn EG – 400-700,000	support
•	197.	Spawn EG – 400-700,000 – delete tiers	support
•	198.	Spawn EG – 400-700,000 – delete minimize coho	support
•	199.	Manage for 500-800,000 SEG - In-river goal 600,000-900,000 – RM 19	support
•	200.	Remove windows	support
•	201.	Escapement 450-750,000	support
•	202.	KRSA windows – bad for esc goal mgt	oppose
•	203.	KRSA 1-12 hour fishing period – Monday only	oppose
•	204.	Delete king, coho mitigations Restricts in-season, Comm. EO authority	support
•	205.	Equal sport / commercial - Not in keeping with M/S Act	oppose

Kenai Sockeyes

•	206.	In-river below 650,000 – reduce bag limits to 1 fish - Not needed, sportfishing never closes	oppose
•	207.	> 4 million bag / possession – 12 sockeyes	oppose
•	208.	KRSA - > 4 million bag / possession - 18 sockeyes	oppose
•	209.	Kenai Special Harvest area open	oppose

Russian River Sockeye

• 210. 50% of return to commercial users support

Points

- 1. Pinks can and will be harvested need appropriate time and area opportunities economic benefit to Southcentral Alaska
- 2. Provide for meaningful pink harvests by both Drift and Set Net
- 3. Current plans do not provide for significant harvests.
- 4. Rarely use KRSHA, poor quality fish, poor economic return on fish
- 5. Retain current sockeye escapement goal of 150,000-250,000 in Kasilof River economic issue
- 6. Delete OEG very little harvest above sonar counter
- 7. Retain Blanchard Line location
- 8. Delete windows Not esc goal mgt or in-season adaptive mgt
- 9. Provide for adaptive abundance management
- 10. Escapement goal 400,000-700,000 past river mile 19 sonar
- 11. Apply adaptive abundance-based management remove windows
- 12. Establish PU harvests based on sockeye abundance and run size
- 13. Establish sport harvests below and above river mile 19 sonar site
- 14. Delete OEG unnecessary
- 15. Prefer biological escapement goals
- 16. PU fishery should target other than sockeyes

Committee "D"

United Cook Inlet Drift Association 43961 K-Beach Road, Suite E Soldotna, Ataska 99669

Principals for Regulations

- 1. Escapement Goal Management MSY
- 2. Adaptive Abundance Based Management Plans
- 3. Legal and Enforceable
- 4. Change for Cause
- 5. Ensure Economic Success of Fishing Communities
- 6. Loss of Habitat Eliminate Destructive Fishing Practices
- 7. Science Based
- 8. Safety for Fishermen

Personal Use - Kenai River Late-Run Sockeyes

•	211.	Open PU after 450,000 escapement past RM 19	support
•	212.	Close PU until lower escapement goal is met	support
•	213.	PU to share conservation burden	support
•	214.	Lost day added to end of PU fishery - Awkward and unnecessary – Comm. EO	oppose
•	215.	Above $850,000 \text{ ES} - 25 \text{ to } 50 - 10 \text{ to } 15$ - Annual limits increased	oppose
•	216.	If river exceeds EG increase – area and bag limits	oppose
•	217.	Reduce PU to 5 per person, up to 25 per household, max	support
•	218.	No more that 50% harvest PU from Kenai	support
•	219.	PU from 25 to 15 per h-o-h, 10 to 5 each additional	support
•	220.	PU mesh size max 2.5 inches - Gillnet causes mortality	support
•	221.	Prohibit 2-stroke motors in PU - Water pollution problem	support
•	222.	Prohibit 2-stroke motors in PU - Water pollution problem	support
•	223.	Prohibit 2-stroke motors in PU - Water pollution problem	support

Personal Use - Kenai River Late-Run Sockeyes

- In slack tide water areas

224. PU allow rod and reel oppose
 230. No PU from power vessels support

No Comment

- 236. Rainbows
- 237. Rainbows
- 238. Rainbows
- 239. Rainbows
- 240. Rainbows
- 241. Rainbows
- 242. Rainbows and Dolly Varden
- 243. Single Hook
- 244. Barbless hooks
- 245. Barbless hooks < #6 hooks
- 246. No anchoring below Skilak Lake
- 247. No size restrictions on Dolly Varden
- 248. Dolly Varden
- 249. Rainbow Hidden Lake
- 250. Increase Pike harvests
- 251. Increase Pike harvests
- 252. Increase Pike harvests

Points

- 1. PU fishery harvests must be abundance-based
- 2. Must reduce hydrocarbon levels in lower river, Kenai, Kasilof
- 3. PU Fishery "net and keep" or use smaller webbing to allow sorting of fish
- 4. Close until health and sanitation facilities are provided
- 5. PU fishery target other species coho, pinks

Committee "E"

228.

231.

United Cook Inlet Drift Association 43961 K-Beach Road, Suite E Soldotna, Alaska 99669

support

support

Prin	cinals	for Regulations		Soldotna, Alas	ka 9960
1. 2. 3. 4. 5. 6. 7.	Escapement Goal Management MSY Adaptive Abundance Based Management Plans Legal and Enforceable Change for Cause Ensure Economic Success of Fishing Communities Loss of Habitat – Eliminate Destructive Fishing Practices Science Based Safety for Fishermen				RC
<u>Upp</u>		ok Inlet – General	When I	saster	(
•	278.	Unintentional hooking			ppose
<u>Coh</u>	<u>o – Ge</u>	eneral			
•	92.	Repeal Kenai River Coho r	ngt plan	s	upport
•	279.	Increase Coho bag limits	(2 to 3 bag / possession) (ppose
•	280.	Increase Coho bag limits	(2 to 3 bag / possession) (ppose
•	281.	Increase Coho bag limits	(2 to 3 bag / possession) (ppose
•	282.	Extend Coho season to No	v. 30	s	support
<u>Kasi</u>	ilof Ri	<u>ver</u>			
•	229.	No power boats above Old	Kasilof Landing	s	support
Kasi	ilof Ki	ngs			
•	225.	Increase harvest of natural	kings – sport	(ppose
•	226.	Oppose harvest of hatchery	kings	C	ppose
•	227.	Prohibit Catch & Release		S	support

Sterling Hwy to Tustumena Lake Sanctuary

Closed area – Kasilof River

Sterling Hwy to Slackwater

Kasilof Kings

• 232.	Allow motorboats on Kasilof River	oppose
• 233.	Anchor boats in Kasilof River	oppose
• 234.	Bag possession – 3 to 6, 12, 24 sockeye	oppose
<u>Kenai Ki</u>	ngs	
• 255.	Increase Jack King harvest	support
• 256.	Increase Jack King harvest	support
• 257.	Increase Jack King harvest	support
• 258.	Increase Jack King harvest	support
• 259.	Retain hatchery kings in Kenai	oppose
• 260.	Retain hatchery kings in Kenai	support
• 261.	Eliminate slot limit – early run – Kenai kings	oppose
• 262.	Eliminate slot limit – early run – Kenai kings	oppose
• 263	Modify slot limit – kings – Jan 1 - July 31	support
• 264.	Extend slot limit – early run kings to July 14	support
• 265	No filleting of salmon – Jan.1 – July 14	support
• 266	No bait – Moose to Skilak – thru June 30 - Kenai Professional Guides	support
• 267	Earlier use of bait – May 1 or June 1 - Mel Erickson	oppose
• 268	Increase size of sanctuaries - on small returns	support
• 269	Increase size of sanctuaries - on small returns	support

Kenai Kings

•	270.	Jan 1 – Aug 7 season, escapement goal warranted - Run timing	oppose
•	271.	July 31 to Aug 10	oppose
•	272.	Escapement goal to 35,000	oppose
•	273.	Special provisions -> 17,500, Drift / Set Net - Provisions	support
•	274.	Deletions & time/area provisions - Adaptive in-season management	support
•	275.	Non-resident limit on kings – Illegal – M/S	support
•	276.	Limit non-residents – Illegal – M/S	support
•	277.	Limit non-residents – Illegal – M/S	support

No Comment

- 235. Rainbows
- 253. Cable crossing provisions
- 254. Youth fishing

Points

- 1. Large 50" kings rarely occur, selective harvesting by sport fishery
- 2. King fishery should be below Soldotna bridge for guides
- 3. No more catch and release fishing
- 4. Sport harvest should not result in commercial closures
- 5. Extend seasons Escapement goal related
- 6. Support 228 good idea no fishing from boats Sterling Hwy to Slackwater

Committee "F"

Mesler Humbs

Principals for Regulations

1. Escapement Goal Management MSY

2. Adaptive Abundance Based Management Plans

3. Legal and Enforceable

4. Change for Cause

5. Ensure Economic Success of Fishing Communities

6. Loss of Habitat – Eliminate Destructive Fishing Practices

7. Science Based

8. Safety for Fishermen

Kenai Kings

•	297.	48-hour king window – pulses of fish for spawning purposes	support
•	298.	Limit non-residents – Illegal – M/S	support
•	299.	Open Kenai River below Soldotna bridge	oppose
Kena	i Rive	r – General	
•	283.	Add Thursday as Drift day	support

•	283.	Add Thursday as Drift day	support
•	284.	Add one drift-only day	support
•	285.	Additional drift-only day	support
•	286.	One additional non-guide day	support
•	287.	Add one drift-only day	support
•	288.	Add additional drift-only days	support
•	289.	Add additional drift-only days	support
•	290.	Drift only	no action
•	291.	4-stroke or 2-stroke direct fuel injection motor	support
•	292.	4-stroke or 2-stroke direct fuel injection motor	support

<u>Kenai River – General</u>

	•	293.	4-stroke or 2-stroke direct fuel injection motor	support
	•	294.	Regulate motorized use	support
	•	295.	Reduce hydrocarbons	support
	•	296.	Reduce hydrocarbons	support
	•	300.	Require powerboat course	oppose
	•	301.	No motorized vessels on Upper Kenai	support
<u>K</u>	ena	i Rive	r Guiding	
	•	302.	Limited entry for guides	oppose-legal
	•	303.	Guides 6:00-6:00 to 7:00-7:00	no action
	•	304.	Guides 6:00-6:00, 7:00-7:00	support
	•	305.	Guides 6:00-6:00, 8:00-8:00	oppose
	•	306.	Guides 10-minute rule	oppose
	•	307.	Prohibit guides on river 1/2 hour prior to opening	no action
	•	308.	Day & time limits on guides	support
	•	309.	No guides on Thursdays in June and July	support
	•	310.	No guides on the River on Sundays - No registered guides or guide boats on the River on Sunday	support ays
	•	311.	No guides on the River on Sundays - No registered guides or guide boats on the River on Sunday	support ays
	•	312.	No guides on the River on non-guided hours/days	support
	•	313.	One client or group per day	support
	•	314.	One client or group per day	support
	•	315.	One trip on Kenai or Kasilof per day	support

Kenai River Guiding

•	316.	One trip anywhere in UCI per day	support
•	317.	Either Kenai or Kasilof River registration	support
•	318.	One trip on Kenai or Kasilof per day	support
•	319.	Can't fish Kasilof if Kenai is closed	support
•	320.	No guides on Kasilof River on Mondays	support
•	321.	Allow guiding on Mondays	oppose
•	322.	Allow guiding on Mondays	oppose
•	323.	Allow drift guiding on Mondays	oppose
•	324.	Guide boats – 5 to 6 clients max.	oppose
•	325.	One day guided only	oppose
•	326.	7 guided fishing days – 5 days only per guide	oppose
•	327.	Open Sundays on Kasilof to guiding	oppose
•	328.	No guide fishing with clients present	support
•	329.	Un-registering guide vessels	

Points

- 1. Reduce hydrocarbons in the Kenai River
- 2 Guides have and are pushing the Alaskan public off the river
- 3. Most guide clients are non-residents
- 4. One trip per day
- 5.
- No guide fishing with clients
 No guides or boats on the River on closed days 6.
- 7. Additional Drift-only day

Committee "G"

United Cook Inlet Drift Association 43961 K-Beach Road, Suite E

Soldotna, Alaska 99969

Principals for Regulations

Escapement Goal Management MSY 1.

Adaptive Abundance Based Management Plans 2.

3. Legal and Enforceable

Change for Cause 4.

Ensure Economic Success of Fishing Communities 5.

6. Loss of Habitat – Eliminate Destructive Fishing Practices

7. **Science Based**

Safety for Fishermen 8.

Northern District - Yentna - Susitna

•	342.	Increase Coho limits from 2 to 3	oppose

Delay use of bait until after Sept. 15 oppose • 343.

Mat-Su Guiding

	<u>Du Ou</u>		
•	330.	Reduce open periods - Alexander Creek	support
•	331.	Close Alexander Creek for 4 years - Science based – OK	support
•	332.	Close Alexander Creek for 3-4 years - Science based – OK	support
•	333.	Close Alexander Creek for a few years - Science based – OK	support
•	334.	Close Alexander Creek for a few years - Science based – OK	support
•	335.	24 hour fishing – Unit 1 – Susitna	oppose
•	336.	Bait in Unit 1 – Susitna	oppose
•	337.	King bag limit – 1 to 2 per day - Comm. EO, in-season abundance based	oppose
•	338.	24 hour in Deshka	oppose
•	339.	Extend king season downstream from weir	oppose

Mat-Su Guiding

•	340.	Unit 2 – Expand king season	oppose
•	341.	Unit 2 – Multiple hooks for kings	oppose
<u>Chui</u>	tna Ri	iver	
•	344.	Close sport fishing	support
Little	e Susit	<u>na</u>	
•	345.	Prohibit baits year-round	support
•	346.	Allow bait for kings July 1-13	oppose
•	347.	HP restrictions – Houston to Cook Inlet	support
<u>Eklu</u>	tna Tı	ail Race	
•	348.	Expand fishing area	no action
Big l	<u>Lake</u>		
•	349.	Use bait in Big Lake	no action
•	350.	Burbot closure & bag limits	no action
•	351.	Burbot bag limits	no action
Nort	hern F	<u>Pike</u>	
•	352.	Expand harvests of	support
•	353.	Expand harvest of pike in Shell Lake	support
•	354.	Allow up to 12 lines for northern pike in UCI	support
•	355.	Expand harvest of pike in UCI	support

PU in UCI

356. Establish PU in all UCI streams

 change bag / possession limit to sport fish

 357. Limit harvest of hooligan no action
 358. Open PU fishery near Beluga no action

Points

- 1. Mat-Su guiding is a new and developing fishery; control the growth of guiding in the Mat-Su as per policy
- 2. Oppose any expansion of the guiding industry at expense of Kenai Peninsula Commercial Fishing Community
- 3. Pike harvest -365 / 7 / 24, any means, no bag limit

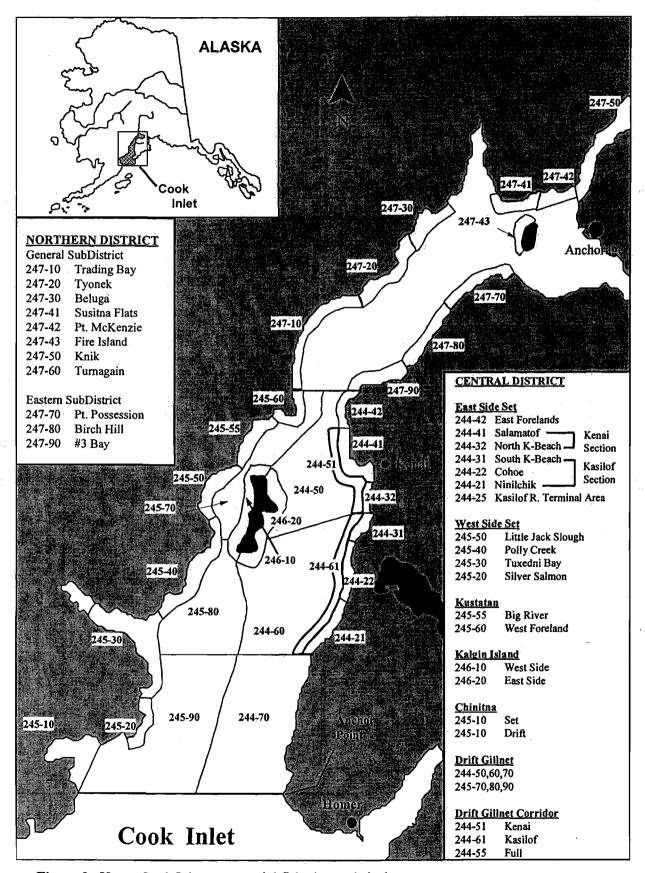
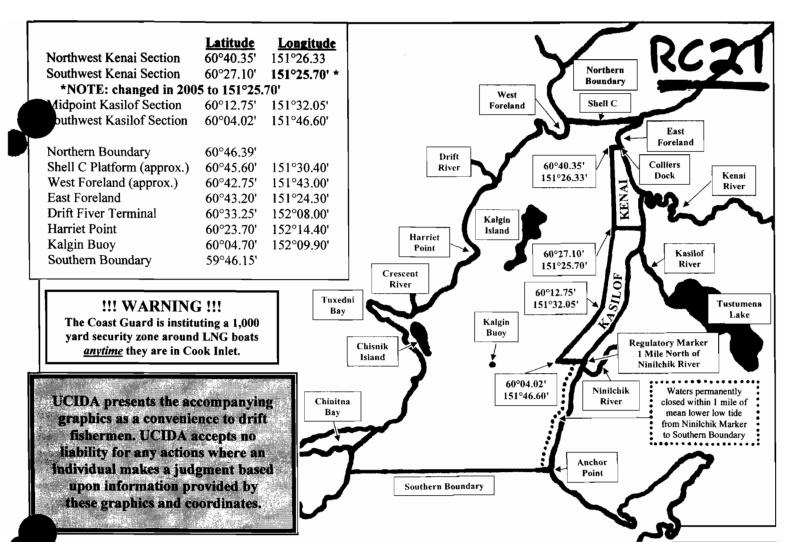
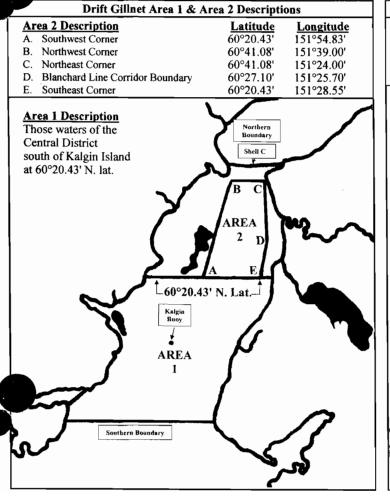
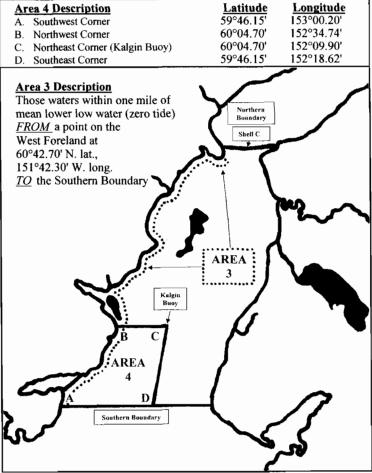





Figure 3.-Upper Cook Inlet commercial fisheries statistical areas.

Drift Gillnet Area 3 & Area 4 Descriptions

Latitude

UNITED COOK INLET DRIFT ASSOCIATION

- 205	l	Нідн Т	IDES	Low Tides				
<i>500.</i> 2	A.M.	FT.	P.M.	FT.	A.M.	FT.	P.M.	FT.

-05		High T	IDES		Low Tides				
5002	A.M.	FT.	P.M.	FT.	A.M.	FT.	P.M.	F	

JUNE	2005		SELDOVIA DISTRICT									
20	Mon	•	1:04	18.3	2:27	16.2	7:52	-2.0	7:55	3.9		
21	Tues	•	1:52	19.4	3:15	17.2	8:38	-3.5	8:44	3.2		
22	Wed	•	2:40	20.2	4:02	17.9	9:24	-4.6	9:32	2.7		
23	Thur	•	3:30	20.7	4:49	18.3	10:11	-5.1	10:22	2.2		
24	Fri	•	4:20	20.6	5:36	18.4	10:58	-5.0	11:13	2.1		
25	Sat	•	5:12	20.0	6:24	18.2	11:46	-4.2				
26	Sun	•	6:06	18.8	7:14	18.0	0:06	2.1	12:35	-2.9		
27	Mon	•	7:04	17.3	8:05	17.6	1:04	2.2	1:26	-1.2		
28	Tues		8:08	15.6	8:58	17.3	2:07	2.4	2:21	0.7		
29	Wed	•	9:20	14.3	9:52	17.0	3:16	2.3	3:19	2.5		
30	Thur	•	10:39	13.5	10:48	16.8	4:28	1.9	4:23	4.0		

JULY	2005		SELDOVIA DISTRICT							
16	Sat	•	10:58	12.2	10:33	16.0	4:30	3.4	4:23	6.4
17	Sun		12:18	13.1	11:37	16.8	5:39	2.0	5:36	6.4
18	Mon	•			1:23	14.4	6:41	0.3	6:42	5.7
19	Tues	•	0:39	17.9	2:17	15.9	7:36	-1.6	7:40	4.5
20	Wed	•	1:37	19.3	3:04	17.4	8:26	-3.3	8:32	3.2
21	Thur	•	2:32	20.5	3:48	18.6	9:13	-4.6	9:22	1.9
22	Fri	•	3:23	21.3	4:31	19.5	9:58	-5.2	10:11	0.9
23	Sat	•	4:14	21.5	5:14	20.0	10:42	-5.1	11:00	0.2
24	Sun	•	5:03	21.0	5:56	20.1	11:26	-4.2	11:49	0.1
25	Mon	•	5:54	19.7	6:38	19.7			12:09	-2.6
26	Tues	•	6:46	18.0	7:22	18.9	0:41	0.4	12:54	-0.5
27	Wed		7:44	16.0	8:08	17.9	1:36	1.0	1:41	1.9
28	Thur		8:49	14.2	8:58	16.8	2:37	1.8	2:34	4.2
29	Fri		10:09	13.0	9:57	15.9	3:48	2.4	3:38	6.0
30	Sat		11:43	12.8	11:05	15.3	5:06	2.4	4:55	. 7.1
31	Sun	•			1:03	13.4	6:18	2.0	6:12	7.2

ınur		10:39	13.5	10:48	16.8	4:28	1.9	4:23	4.0
2005				SEL	DOVIA	DISTRIC	T		
Fri		11:58	13.5	11:43	16.8	5:36	1.2	5:27	5.0
Sat				1:06	14.1	6:35	0.4	6:27	5.4
Sun	•	0:34	16.9	2:01	14.8	7:26	-0.4	7:20	5.4
Mon		1:22	17.1	2:47	15.5	8:10	-1.0	8:07	5.1
Tues	•	2:05	17.4	3:26	16.0	8:50	-1.4	8:49	4.7
Wed	•	2:45	17.7	4:01	16.4	9:27	-1.7	9:28	4.4
Thur	•	3:24	17.9	4:36	16.7	10:02	-1.7	10:06	4.2
Fri	•	4:02	17.9	5:10	16.7	10:36	-1.6	10:44	4.1
Sat	•	4:39	17.6	5:43	16.6	11:10	-1.1	11:22	4.1
Sun	•	5:17	17.0	6:16	16.4	11:43	-0.4		
Mon		5:56	16.1	6:50	16.2	0:00	4.3	12:17	0.5
Tues		6:37	15.1	7:24	15.9	0:41	4.5	12:52	1.7
Wed		7:25	13.9	8:01	15.7	1:26	4.6	1:30	3.1
Thur		8:22	12.9	8:43	15.5	2:18	4.6	2:15	4.4
Fri		9:34	12.2	9:34	15.6	3:20	4.2	3:13	5.6
	2005 Fri Sat Sun Mon Tues Wed Thur Fri Sat Sun Mon Tues Wed Thur	Z005 Fri Sat Sun Mon Tues Wed Thur Fri Sat Sun Mon Tues Wed Thur Fri Sat Sun Mon Tues Wed Thur Tues Wed Thur	2005 Fri	2005 Fri	2005 SEL Fri	ZOD5 SELDOVIA Fri 11:58 13.5 11:43 16.8 Sat	SELDOVIA DISTRIC Fri ■ 11:58 13.5 11:43 16.8 5:36 Sat ■	SELDOVIA DISTRICT Fri ■ 11:58 13.5 11:43 16.8 5:36 1.2 Sat ■ — — — — — — — 1:06 14.1 6:35 0.4 Sun ● 0:34 16.9 2:01 14.8 7:26 -0.4 Mon ■ 1:22 17.1 2:47 15.5 8:10 -1.0 Tues ● 2:05 17.4 3:26 16.0 8:50 -1.4 Wed ● 2:45 17.7 4:01 16.4 9:27 -1.7 Thur ■ 3:24 17.9 4:36 16.7 10:02 -1.7 Fri 4:02 17.9 5:10 16.7 10:36 -1.6 Sat 4:39 17.6 5:43 16.6 11:10 -1.1 Sun 5:17 17.0 6:16 16.4 11:43 -0.4 Mon 5:56 16.1 6:50 16.2 0:00 4.3 Tues 6:37 15.1 7:24	SELDOVIA DISTRICT Fri ● 11:58 13.5 11:43 16.8 5:36 1.2 5:27 Sat ● 1:06 14.1 6:35 0.4 6:27 Sun ● 0:34 16.9 2:01 14.8 7:26 -0.4 7:20 Mon ● 1:22 17.1 2:47 15.5 8:10 -1.0 8:07 Tues ● 2:05 17.4 3:26 16.0 8:50 -1.4 8:49 Wed ● 2:45 17.7 4:01 16.4 9:27 -1.7 9:28 Thur ● 3:24 17.9 4:36 16.7 10:02 -1.7 10:06 Fri ● 4:02 17.9 5:10 16.7 10:36 -1.6 10:44 Sat ● 4:39 17.6 5:43 16.6 11:10 -1.1 11:22 Sun ● 5:17 17.0 6:16 16.4 11:43 -0.4

AUGU	ST 2005		SELDOVIA DISTRICT									
1	Mon		0:13	15.4	1:58	14.4	7:16	1.2	7:13	6.0		
2	Tues		1:11	16.0	2:39	15.3	8:01	0.4	8:00	5.8		
3	Wed		1:57	16.8	3:12	16.2	8:39	-0.3	8:39	4.9		
4	Thur	•	2:37	17.6	3:42	16.9	9:12	-0.9	9:15	4.0		
5	Fri	•	3:13	18.3	4:11	17.5	9:43	-1.3	9:49	3.		
6	Sat	•	3:48	18.6	4:39	18.0	10:13	-1.4	10:23	2.		
7	Sun	•	4:23	18.6	5:07	18.1	10:42	-1.0	10:57	2.		
8	Mon	•	4:58	18.2	5:34	18.1	11:12	-0.3	11:31	2.		
9	Tues	•	5:33	17.3	6:02	17.9	11:42	0.7				
10	Wed	•	6:11	16.2	6:31	17.5	0:06	2.7	12:13	2		

August 1 -

August 10

(3 periods)

Regular

periods

 Season opens third
Monday of June or
June 19 (later date)
■ Regular periods
■ EOs in Corridor

June - July 8

(6 periods)

■ 2 periods in Area 1 & Kenai/Kasilof Corridor, & possibility of additional 12 hour EO in Area 1

July 9 – 15

(2 periods)

Yentna Sockeye

■ Yentna OEG 75.000 above 4 million return to the Kenai

Less than 2 million

- 2 periods in Area 1 and/or Kenai/Kasilof Corridor
- 2 or 3 periods district wide (except for 245-70)
- EOs in Corridor

July 16 - 31

(4 or 5 periods)

Kenai Sockeye

2-4 million

- 2 periods in Area 1 & 2
- 2 or 3 periods district wide (except for 245-70)
- Kenai/Kasilof Corridors as needed
- Additional district wide EOs possible

Over 4 million

- 4 or 5 periods district wide
- No mandatory restrictions
- Additional time as warranted

UCIDA works hard to protect YOUR fishing future!

We encourage your support and participation! Please join UCIDA, renew your dues, or make a donation to our Board of Fisheries (BoF)Fund so we can continue working hard to keep our fishery alive!

United Cook Inlet Drift Association (UCIDA)

43961 K-Beach Road, Suite E Soldotna, Alaska 99669 (907) 260-9436 • fax (907) 260-9438 1-800-770-7337 • ucida@acsalaska.net

Renew Your Dues!

August 11 - ?

(? periods) Areas 3 & 4

Unless closed by EO,

during regular periods

Areas 3 & 4 open

after August 10

■ Chinitna Bay may

open by EO

\$200/member dues \$25/associate dues

RCZZ

MARK-RECAPTURE POPULATION ESTIMATES OF COHO, PINK, AND CHUM SALMON RUNS TO UPPER COOK INLET IN 2002

United Cook Inlet Drift Association 43961 K-Beach Road, Suite E Soldotna, Alaska 99669

By T. Mark Willette Robert DeCino Nancy Gove

Rola (m

Regional Information Report No. 2A03-20

Alaska Department of Fish and Game Commercial Fisheries Division 333 Raspberry Rd. Anchorage, Alaska 99518-1599

June 2003

The Regional Information Report Series was established in 1987 to provide an information access system for all unpublished divisional reports. These reports frequently serve diverse ad hoc informational purposes or archive basic uninterpreted data. To accommodate timely reporting of recently collected information, reports in this series undergo only limited internal review and may contain preliminary data; this information may be subsequently finalized and published in the formal literature. Consequently, these reports should not be cited without prior approval of the author or of the Commercial Fisheries Division.

ABSTRACT

This project estimated the total population sizes, escapements, and exploitation rates for coho, pink, and chum salmon returning to Upper Cook Inlet (UCI) in 2002 as a first step toward determining escapement levels needed to achieve sustained yields for these species. Mark-recapture techniques were used to estimate the total population sizes for each species returning to UCI as a whole. Salmon were tagged along a transect running from Anchor Point to the Red River delta on the west side of Cook Inlet during July and early August. Total population sizes for each species were estimated from recoveries of passive integrated transponder (PIT) tags in commercial fishery harvests. Recoveries of radio telemetry tags were used to estimate the total escapement of coho salmon into all UCI streams for comparison to the estimate derived from PIT tags. Radio telemetry tag data were also used to estimate coho salmon escapements into 33 streams and 5 areas around UCI. Our best PIT tag estimate of the total population size of coho salmon returning to UCI was 2.52 million (95% CI: 2.16-2.87 million). Given a commercial harvest of 0.25 million, the total escapement of coho salmon into all UCI streams was 2.27 million (95% CI: 1.91-2.62 million), and the exploitation rate in the commercial fishery was about 10%. Our radio tag estimate of the total escapement of coho salmon into all UCI streams was 1.36 million (95% CI: 0.98-1.96 million). Thus, our PIT tagging experiment estimated a population size for coho salmon entering UCI streams that was higher than the estimate obtained from radio tagging. Although, the 95% confidence intervals around the two estimates overlapped slightly, the z-test statistic indicated the two estimates were significantly different. Of the total coho salmon escapement into all UCI streams, 56% (0.76 million) returned to the Susitna and Little Susitna River drainages, 19% (0.26 million) returned to streams along the west side of UCI, 17% (0.24 million) returned to streams along Knik Arm, 5% (0.07 million) returned to streams along Turnagain Arm, and 3% (0.04 million) returned to streams on the Kenai Peninsula. However, these estimates for Turnagain Arm and Kenai Peninsula streams do not include the entire escapement, because we stopped tagging before the runs to these areas were complete. Our PIT tag estimate of the total population size of pink salmon returning to UCI was 21.28 million (95% CI: 1.60-40.96 million). However, this estimate was of questionable value due to its very low precision resulting from problems with tag recovery. Therefore, we estimated a maximum exploitation rate on pink salmon in the commercial fishery by simply summing escapements that were actually enumerated in 3 streams. Given a commercial harvest of 0.45 million, the maximum exploitation rate in the commercial fishery was about 12%. However, the actual exploitation rate must have been much lower, because we did not include escapements into numerous other streams around UCI. Our PIT tag estimate of the total population size of chum salmon returning to UCI was 3.88 million (95% CI: 3.30-4.47 million). Given a commercial harvest of 0.24 million, the total escapement of chum salmon into all UCI streams was 3.64 million (95% CI: 3.06-4.23 million), and the exploitation rate in the commercial fishery was about 6%. Despite uncertainty in our salmon population estimates, it is reasonable to conclude that exploitation rates on coho, pink, and chum salmon in the UCI commercial fishery were substantially below optimal rates in 2002.

KEY WORDS: Coho salmon, Oncorhynchus kisutch, pink salmon, O. gorbuscha, chum salmon, O. keta, mark-recapture, passive integrated transponder tags, radio telemetry tags, total population size, escapement, exploitation rate.

Chum Run 3.88 million 6% exploitation Rate
Pink Run 21.28

Coho Run 252 million 10% exploitation Rate

Economic losses (ex-vessel) due to overescapement in UCI. Mul Sparlers

Lost yield and Harvest with n from report plus years that are over the goal but not in report

		Within	Above	Average	Total
<u>lak</u> e	n	within n	above	loss gain	Loss
Kasilof		12 847,581	11 518,26	-329,317	-3,622,487
Crescent		15 64,821	11 46,57	′3 -18,248	
Kenai		9 3,548,945	12 3,192,23	32 -356,713	-4,280,556

Lost	UCI
Yield	704,278
Per year	6
In UCI	\$4,225,668

Lost K	enai only
Harvest	299,859
Per year	6
Over Kena	\$1,799,154
In 12 years	\$21,589,848

Lost	UCI
Yield	-8,103,771
for all	6
Years	-\$48,622,626

Economic Losses due to yearly overescapements. in Kenai, Kasılof and Crescent Rivers

Sourcer ADF+G Reports ADF+G Per com.

United Cook Inlet Drift Association

43961 K-Beach Road, Suite E • Soldotna, Alaska 99669 • (907) 260-9436 • fax (907) 260-9438 • ucida@acsalaska.net

Date:

November 2, 2006

Addressee:

Kurt Fredriksson, Commissioner

Department of Environmental Conservation

410 Willoughby, Ste. 303 Juneau, AK 99901-1795

RE:

Kenai River Category 5 Impaired Designation

Dear Commissioner Fredriksson:

UCIDA represents the commercial salmon drift fleet in Cook Inlet comprised of 585 fishermen, deckhands and their families. We depend upon healthy and pollution-free returns of salmon to Cook Inlet. We are upset at the fact that 600 gallons of hydrocarbons per day are released into the Kenai River. The Kenai River is home to large returns of king, sockeye, coho and pink salmon. These salmon require clean, pollution-free environments. With a category 5 designation, we see that a recovery plan is required. We encourage the immediate development of the recovery plan.

We encourage you to look at these options:

- 1) Drift vessels only
- 2) No upstream motorized travel
- 3) Limiting the number of vessels on the river at one time
- 4) Lotteries for access to the river
- 5) Much higher fees for commercial operators
- 6) Total elimination of all commercial operators utilizing motorized vessels
- 7) Much stricter enforcement policies
- 8) Lowering the horsepower limits on outboards
- 9) Prohibiting "back trolling"

As a commercial salmon fishing industry, we have spent millions of dollars on advertising, promoting and marketing "Wild and Clean" Alaskan salmon. Having 600 gallons of hydrocarbons per day in the Kenai River that directly leads to the impaired (polluted) designation will economically harm our members, their families and crew members. We deserve and demand that the Kenai River waters be cleaned up and kept that way.

We also note that there are multiple state and federal agencies that will be involved. This is especially true of the lower five miles of the Kenai River that are not a part of the Kenai River Special Management Area.

Sincerely,

(Signed original copy)

Roland R. Maw, PhD UCIDA Executive Director ams

cc:

DNR ADF&G

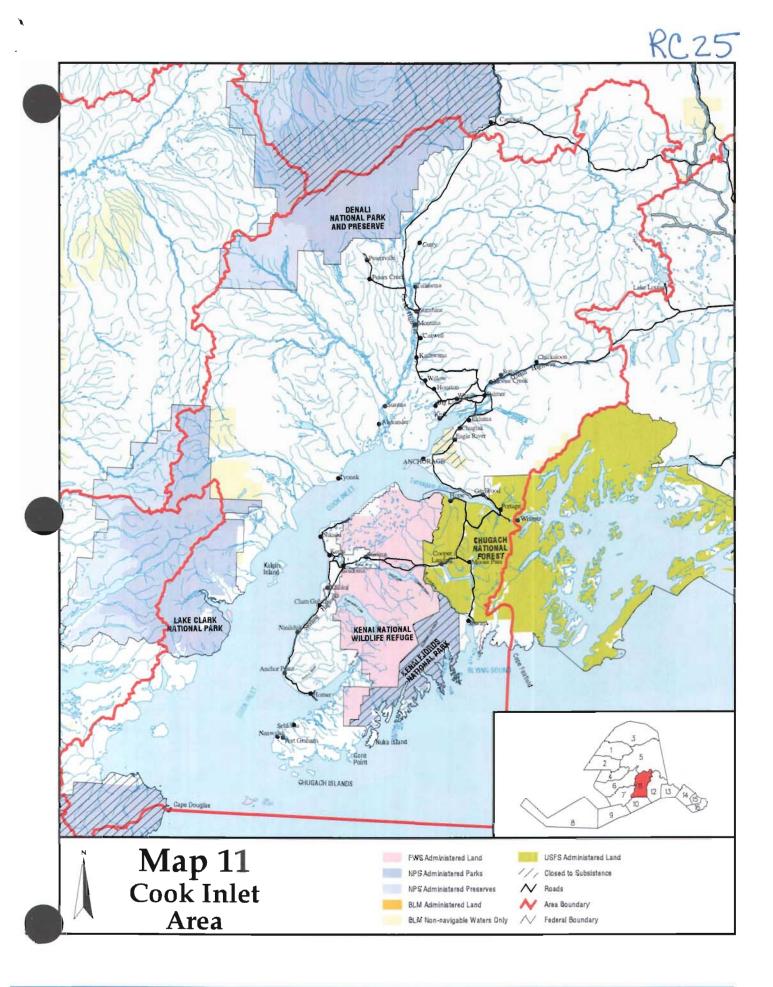
EPA

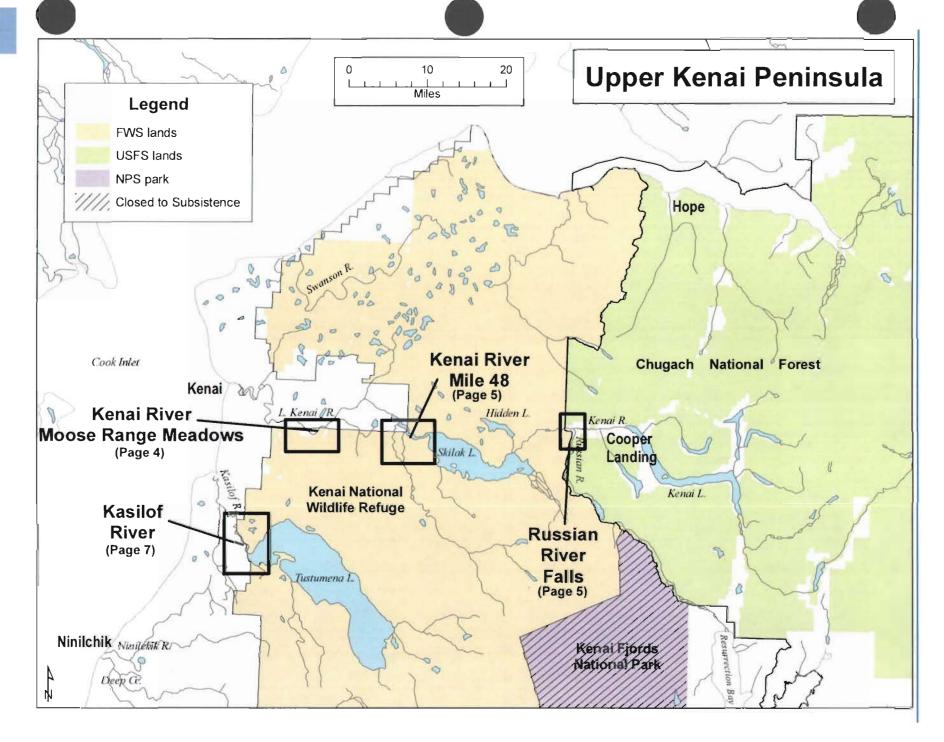
Governor's office Tom Wagoner Mike Chenault Kurt Olsen Paul Seaton

House Fisheries Committee

US Coast Guard Board of Fish

Alaska Department of Environmental Conservation Water Quality Assessment & Reporting 2006 Proposed Integrated Water Quality Monitoring and Assessment Report (Integrated Report) About the report:


Every 2 years DEC is required to report on the condition of Alaska's waters in accordance with the Clean Water


Act. The Integrated Report categorizes known waterbodies in Alaska and includes the federal Clean Water Act

(CWA) reporting requirements for the 305(b) report and 303(d) list of Category 5 polluted waters. The

Integrated Report also helps the State prioritize waters for data gathering, watershed protection and restoration

of impaired waters. This is the public comment period for the 2006 Proposed Integrated Report.

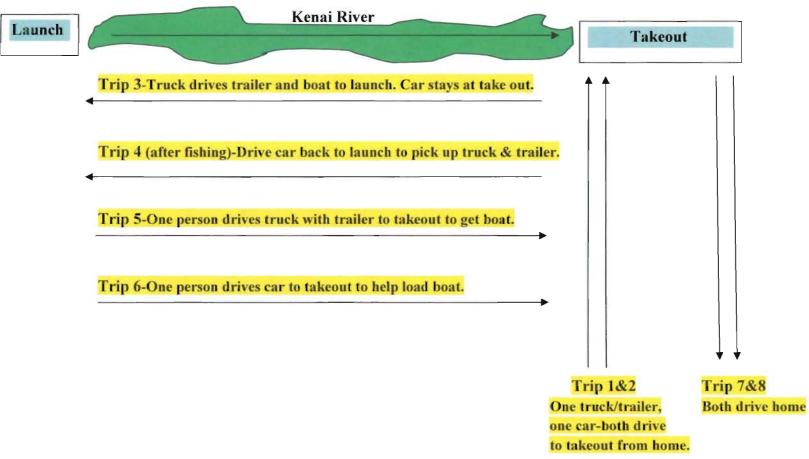
Matsu Valley Fish Stocks

The testimony received Wednesday in Wassila left me with a number of questions, about hatchery location, and about fish stocks in the Valley. I sent those questions to a fisheries biologist and received the following comments:

- The MatSu was the #1 location for the new "Anchorage" hatchery. Elmendorf was ranked #2. Elmendorf was selected over the MatSu site because that is where ADF&G decision makers wanted it. The MatSu site is near a UAF Agriculture station near Palmer (I think that is correct). The MatSu site came out on top based on a series of selection criteria.
- Rainbow trout are disappearing from the Valley because the northern pike like them for food. I have not heard of any other reasons why rainbow trout are vanishing. I've not heard about unusually thin Dolly Varden, either. Usually when fish look "snakey" it is a sign of environmental stress, disease, or inadequate food. There are lots of causes of environmental stress.
 - Rainbow trout eat aquatic insects, flying insects, flesh from salmon carcasses, other adult and juvenile insects, other miscellaneous small fish, snails.
- Northern pike are native to Alaska, especially the interior. But they are not native to the MatSu. They were stocked there many years ago and they have gradually expanded their range. Range expansion has accelerated recently and the pike are decimating the stocked and wild rainbow trout populations.
 - Northern pike eat anything that moves. They are especially fond of other fish such as rainbow trout, grayling, juvenile salmon. They also eat white fish, suckers, and other "trash" fish....etc.
- Dolly Varden's diet can be diverse and similar to a rainbow trout except Dollys (or ies) will target salmon smolts and other small fish. They are more of a fish eater compared to rainbow trout.

I don't have an obvious answer to why salmon are declining BUT I have a working hypothesis.

• IF the salmon harvest level has been too high for the last several years then we will see a death spiral. When salmon return to fresh water they bring back tons and tons of nutrients that are released as their bodies decompose. Their rotting bodies are likely the major nutrient input for freshwater systems. If fewer salmon return then the nutrient level declines. Then there is less food for resident freshwater species (rainbows, Dollys) and less food for rearing juvenile salmon. Fewer salmon means fewer salmon eggs are deposited, fewer juvenile salmon survive to go to the ocean, fewer adults return to spawn, etc. This would explain some of the observations in freshwater such as snakey Dollys and declining abundance of all species. The plant, insect, and fish communities will become stressed and abundance for everyone will decline as the nutrient input declines. If you want to rebuild the freshwater system and increase the abundance of salmon then you may have to reduce the salmon harvest and allow more salmon to escape to spawn. I'm not holding my breath for this to happen. I have a lot of research


information that supports this but the ComFish guys (department and fishers) are in denial mode. Either way they will loose their fishery for some time.

- Another hypothesis is that something is happening in the oceans temperature changes might be disrupting the food webs that salmon depend on.
- Other fishers are catching more Upper Cook Inlet fish.
- Something is degrading the freshwater habitat in the Valley.

I would probably place money on my first hypothesis.

Bonne Williams

Fuel Usage in wift Boat Fishery

Scenario

Two people go drift fishing; two vehicles must be used. Each trip, i.e., home to takeout, takeout to launch is 15 miles. Each vehicle gets 15 mpg. Eight trips in vehicles result in 120 miles driven=8 gallons of gas used. If power boat used, only one vehicle is needed to drive 30 miles (2 gals gas) and the boat uses 4 gals=6 gals total used for power boat fishing. Drift fishing vehicle travel results in 2 more gals gas used than power boat trip. If one more drift day is added each week and 100 additional drift boats participate each additional day, 200 more gallons of gas will be used weekly. Over a 10-week season (May 15-July 31), 2,000 more gallons of gas will be burned by these vehicles than had a power boat been used.

Bottom Line

Adding one or more additional drift boat days will significantly increase the amount of gas used, increase air pollution on the Kenai Peninsula and negatively impact climate change. Considering there is not one launch or takeout that could hold 100 more vehicles makes these proposals untenable.

To The Alaska Board Of Fisheries

RC28

Thank you for your time as you consider these extreamly important issues that affect all Alaskans.

As the wife of a fishing guide, in the Matanuska Susitna Valley, I make reservations for our guide service. Because of the modest run of Kings and Silvers during the 2007 season, I found myself many times, cancelling trips, refunding monies, and turning potential clients away due to lack of fish in the river.

Our season is relatively short, and every single trip counts. I'm not sure what all the facts are surrounding the problem, but from the guides first-hand experience, it looks like the greater number of fish for the commercial fisheries, results in much fewer fish in our rivers. This leads to economical hardship for us, and, all sport fishing related businesses in the Valley.

I'm asking you, The Board of Fisheries, to do what is right and fair for all Alaskans.

Thank You,

Sue Rilev

January 31, 2008

BOARD OF FISHERIES State of Alaska

To Members of the Board:

I am writing with regard to the decline of the abundance of fish in the Matanuska Valley during the preceding years. I was one of those colonists that came to the valley in 1935, actually at the age of 3, therefore I able to tell the whole fishing story of the surrounding area of the valley. Growing up here as a kid we as family and friends were able to catch a plentiful supply of fish in any stream and lake. We fished in the Wasilla Creek and Fingerlake area, and during the salmon fishing time went out to Fish Creek. Fish has been one of our main stays of food supply, which has continued as I have grown up, married and raised a family of our own. In the 50s we did go as far as Goose Bay and set nets for our family fish supply, and later dipped netted in creeks close to the inlet. As time went on there were more and more restrictions on fishing for food and sports as well, and also less and less fish. My husband use to like to go out and try his luck at King salmon fishing, but it got rather discouraging as we witnessed the decline of fish year by year. This passed year our son traveled down to the Kenai to catch us some fish, whereas before they could be caught in the valley.

Another aspect of the decline of fish that has been discouraging to me, besides the food supply, is the fact that I now have been trying to operate a B & B. The first year I had customers who came from others states to see Alaska and to mostly to fish. In 2006 the season seemed pretty good, but last year was a hard year as my customers were discouraged from not catching fish, and I fear and witness that we are now loosing the tourist trade which could have blossomed had we the lure of good fishing in the valley.

I have inquired into some of these situations and it seems that the public now is only allowed 2% of the available to fish, which makes the 98% available to the commercial fisherman who it seems are mostly from out of state. It just seems to me that because of the rules and regulations we are loosing what should belong to Alaskans, mainly a good food supply and as far as economics the tourist industry which should be a vitale part of our incomes. I do believe that the state laws instructs that the fisheries should be managed so that ALL Alaskans can benefit. Isn't it time to make some positive changes to make that happen and be more balanced between the commercial fisherman and the public and those working as fishing guides?

Respectfully,

Helen F. Riley, Owner and Operator-Alaska Lakeside Cabins 7851 Southshore Drive- PO Box 870127- Wasilla. Alaska 99687

Phone: 907-745-7122

To The Board of Fisheries Members

I first of all want to thank you for taking the time to serve on the board and taking the time to read my letter. I am a life time Alaskan I was born in Palmer and have lived here 48 years. I have been fishing in the Matanuska Valley since I was 5 years old.

My concerns are the lack of salmon Upper Cook Inlet streams I have been fishing these streams consistently for 43 years and have operated a Fish Guiding business for the last 2 years and we have had a lot of clients we operate mostly out of the Deshka Landing and some from the Little Susitna Landing. We operate 2 boats both boats take a morning and evening trip for a potential of 22 people per day. Most of the days our boats are full but last summer was tough during the king salmon season and very tough during the silver salmon season not for a lack of people wanting to go fishing but the lack of fish in the rivers. We called some of our previously booked clients and told them it was not good fishing and refunded their money and when people called to book trips we told them how poor the fishing was. Buy the end of the season we lost about \$52,000.00 dollars worth in lost or refunded trips not to include the trips we discounted or did for free because or a lack of fish in the rivers. This not only had a negative affected on our business but also many locally owned business that we support.

I am concerned not only for our business but for the potential of greater decline of fish runs and the loss of salmon to our streams. Also the high risk in the decline of tourism in our area. Because fishing is a big draw for people to come to Alaska, when they come and don't catch fish they won't want to come back. They will tell their friends that fishing in Alaska is not that good any more a bad word can go a long, long way all around the world.

I know that many commercial fishing groups are saying that the Upper Cook Inlet has plenty of fish and that Commercial nets are not affecting our Upper Cook Inlet fish but year after year I have witnessed the decline of fish in our valley streams. There is a pattern that is taking place when the commercial fleet is fishing we are not getting fish when the commercial fleet is not fishing we are getting fish in our valley streams.

The Solution is to change the way we are managing Alaskans resource it has been mismanaged for a lot of years. In fact they need to manage to meet the mid point escapement goals by reducing the amount of fish the commercial fisheries are allowed to take before the salmon get a chance to reach us. If they need to target fish to keep from having an over escapement in the Kenai Rivers, harvest the fish in the Kenai River or raise personal use bag limits and sport fish bag limits in the rivers that are in danger of over escapement. In fact it is mandated that our resources are to be managed to have the greatest benefit for all Alaskans!!! Right now the ratio is 2% for the greater number of Alaskans and 98% for the chosen few (The Commercial Fishing Industry) this is not right. I am not going to put up with this any more I have been silent up to this point in my life in Alaska but it time for every Alaskan to have there fair share.

In closing I ask you as a Member of The Board of Fisheries to listen to the people and do what is right for the whole. These are first our fish to harvest for personal consumption and then to be divided equally for all of us to benefit financially from, per pound the fish are worth way more than we are getting by harvesting them commercially.

Think of every local and tourist dollar that is spent in sport fishing and even for personal use. This could all be lost if we keep doing what we have been doing we need change.

Thank You Howard Riley

Seward Fish & Game Advisory Committee Meeting Minutes of November 8, 2007

RC 29

JAN 30 2008

Meeting was called to order at 7:04 pm.

Members Present: WC Casey, Robin Collman, Dianne Dubuc, John Flood, Matt Hall, Carl Locke, Jim McCracken, Bill Perdue

Members Absent Excused: Ezra Campbell, Mark Clemens, Arne Hatch, Jeff Hetrick, Jim Hubbard, Mitch McDevvitt, Doug McRae, Sr., Bill Miller

Public Present: Howard Ferren from AK Sea Life Center

ADF&G Present: Dan Bosch, Chuck Brazil, Sherry Wright

A quorum was present.

Minutes of the October 10, 2007 meeting were approved as written.

BOARDS
ANCHORAGE

Agenda was approved as modified.

Correspondence: Copy of the letter from Mark Cloward, AK State Troopers supporting Proposal 21.

ADF&G presented information regarding Lower Cook Inlet proposals. Dan will provide deliberation materials on the Seward AC proposals for Dianne's review prior to the BOF meeting. They had a discussion on the rock fish proposal. There is a guy from Fairbanks who has developed a release mechanism that the department is going to utilize this summer to do some research on mortality. The department has a lot of data, but lacks the time to really go over it. Department is not supporting the reduction of the rock fish bag limit, but they don't feel there is enough information at this time. This bag limit has been in place since 1989. They do intend to pay attention to the populations of these fish.

Halibut IFQ's are rumoured to go into effect in 2010.

Upper Cook Inlet – the five minute version of staff comments was given. Dan spoke with the Kenai and Mat Valley biologists for their input. There are tons of allocation oriented proposals and the department will be neutral on those.

Question on Prop 116 regarding authority to make sport fishing a priority use, similar to subsistence (and above commercial fishing).

Howard Ferren spoke on Pacific Coast Salmon recovery funding. It may be a challenge to bring some of that money to Seward, but Howard has proposals he will submit for that purpose. Addresses the three anadramous streams in the proposals, geared toward the assessment of use. Further proposals would then be recommendation for other action. The tie for the youth fishery may come into play by habitat protection measures and identifying priority use areas. If the area utilized is very visible, it could be good to educate children and families on salmon and habitat protection.

Seward Fish & Game Advisory Committee Meeting Minutes of November 8, 2007

Sustainable Salmon fund monies were earmarked for investigating bear lake – paleological data, salmon productivity. Implanted 60 adult sockeye with acoustic tagging in the lake. There is natural spawning occurring in the lake, based on fry studies. The naturally occurring fry appears to have a better survival rate. If they can learn more about the Bear Lake system, they may be able to improve or increase the natural production. Targetting for economic enhancement is not allowed, unless it has application to restoration to a wild stock. They have had some very preliminary discussion with ADF&G regarding Resurrection River.

AK Sea Life Center's mission is understanding ecosystems, which begin at the mountaintops. Salmon are nutured and grow in the marine environment, but have relationship back in fresh waters.

Net pens near Sea Life Center – no update. Without the arrangement with the docks, that plan is not going anywhere at this time.

Otolith marking on cohos were done at Trail Lakes Hatchery. Gary Fandrei is involved with treating these fish.

Arne Hatch and Alex Branson both fish in the Chignik area, but were not present. None of the proposals were of significant importance as a seiner and Arne didn't feel a need to attend the BOF meeting regarding Chignik. The committee discussed whether or not they would like to discuss any of these and it was determined that since those who were directly involved were not present, they could pass these. The members could still present written comments as individuals.

KODIAK AREA PROPOSALS

Proposal 72 Oppose 0 - 8

Create an exclusive use area in Kodiak for salt water sport fishing charter operators Discussion: The committee opposed creating an exclusive use area for any specific user group. These are a public resource and this could set a bad precedent.

UPPER COOK INLET PROPOSALS

Proposal 212 Oppose 0-8

Prohibit personal use dipnet fishery on Kenai River until escapement goals met Discussion: Fortunate on this side of the Kenai Peninsula that we don't have the allocative issues so heavily as the other side. Believes this proposal is back lash from the ongoing allocative issues. Understand the defensive feeling of need to put these type of proposals in. If there is a problem, we'd hear from the department in regards to that problem, or an advisory committee in the area could put forward a proposal to address this. Allowing fishing sequentially, it takes a portion of the population making a more steady fishery.

Proposal 217 Oppose 0-8

Seward Fish & Game Advisory Committee Meeting Minutes of November 8, 2007

Reduce personal use fishery limit to 5 salmon per person, 25 per household Discussion: The original estimate of red harvest was around 80,000, but has heard success rate is more like 200,000. Don't believe the limit is excessive as it stands. Personally eats more than 12 fish per year and believes the resource should be shared. Alaskans that are involved in the fishery do eat more fish.

Proposal 218 Oppose 0-8

Lower annual limits for personal use salmon harvest to 20 for head of household and 5 for each dependent and no more than 50% of limit may be taken from the Kenai River Discussion: Adamantly opposed to any change in the bag limits as they currently stand.

Proposal 219 Oppose 0-8

Lower annual limits for personal use salmon harvest to 20 for head of household and 5 for each dependent and no more than 50% of limit may be taken from the Kenai River Discussion: Same comments as 217 and 218.

Proposal 221 Oppose 0-8

Implement motor type restriction for dip net fishing from vessel

Discussion: While the committee supports the department's efforts to proactively look at water quality issues before there are bigger problems than are already present, this is discriminatory against dipnetters. The burden is not being shared equally with all fishers below the Warren Ames bridge.

Proposal 223 Oppose 0-8

Require motorized boats utilizing the personal use fishery to be anchored or without power while fishing

Discussion: This is discriminatory against specific user groups. If people don't get together on these issues, they may all live with a strategy that no one really wants. Committee is unclear what the proponents are trying to address. The issue may be the use of gas engines instead of diesel.

Proposal 224 Oppose 0-6-2

Allow rod and reel in personal use fishery/Identify consumptive users as a person fishing for winter supply

This idea is being floated as a separate class of anglers who fish for their food supply and use the sport fish license in order to do that. Using a rod and reel for consumptive use is not a viable option. It may create more tension between another fisherman from out of town who is limited to another bag limit. If the person was in a personal use area, it would be more feasible, but not throughout the watershed.

Proposal 238 Support 8-0

Expand rainbow trout spawning closure from the outlet of Skilak Lake to the Upper Killey River to include Dolly Varden

Discussion: The area below Kenai Lake is closed for rainbow, but open for Dollies year around. This proposals offers some protection for the natural stocks of rainbows. The Dollies spawn in the fall and rainbows spawn in the spring. People go there because they

Seward Fish & Game Advisory Committee Meeting Minutes of November 8, 2007

can't fish other places due to closures. This aligns areas and members have personally observed fishermen are not fishing for Dollies. Question was raised how this would impact king fishing in that area and it was decided it wouldn't impact that issue.

Proposal 239 Oppose 0-8

Expand rainbow trout spawning closure from the outlet of Skilak Lake to the Upper Killey River to include Dolly Varden

Discussion: The closures were set for the purpose of protecting stocks. Prefer leaving the closure of May 1.

Proposal 241 Support 8-0

Prohibit removing rainbow trout from the water during spawning closure Discussion: If you're already in a restricted time frame, to discourage people from removing the fish (for photos, etc) and protecting those spawning fish, there is support. Reference comments on Prop 238. If 238 is not adopted, they support 241.

Proposal 249 Support 8-0

Decrease the daily bag limit for lake trout in Hidden Lake

Discussion: Lake trout are pretty low productivity and need protection. Prefer the one fish limit for the reasons stated in the proposal. It is easy access when the road is plowed and gets hit pretty hard.

Proposal 250 Support 8-0

Allow up to five lines to fish for northern pike fishing in Arc Lake and Scout Lake Discussion: Support the reduction of Northern pike populations. These stocks decimate other fish populations.

Proposal 252 Support 7-1

Prohibit releasing any northern pike while fishing in the Kenai Peninsula Discussion: The committee had concern about wanton waste, if someone caught a pike but didn't want to keep it. Same reasoning as prop 250. Any reduction of the Northern pike helps.

Proposal 254 No action

Increase size of designated youth fishing area on the Kenai River

Discussion: While the committee generally supports efforts to encourage youth fishing, there is a handicap area, ferry crossing, and youth fishery currently in this area. Unless the closed area is expanded, this could cause crowding. The proposal is not clear enough.

Proposal 265 Support 8-0

Restrict altering harvested king salmon to allow for length assessment Discussion: This is a housekeeping proposal support department efforts to clean up regulations. As long as the slot limits are in place, this is a good idea. This gives enforcement a tool.

Proposal 275 – 276 No action

Limit non-resident permits or establish annual limits for king salmon on Kenai River

Seward Fish & Game Advisory Committee Meeting Minutes of November 8, 2007

Discussion: Unfairly targets one user group.

Proposal 277

Oppose 0-8

Prohibit non-residents from exporting more than 125 pounds of fish

Discussion: Prohibiting one user group over another is detrimental to harmonious fishing overall. People should be under the same umbrella. What about people buying from a commercial fisherman? In Bristol Bay, some people buy commercial licenses and take fish caught home.

Proposal 300

Oppose 0-8

Require course for powerboat operation on Kenai River

Discussion: This is another level of paperwork and bureaucracy that is not needed. Just because you sit through a course doesn't guarantee you will be a better operator. If there was a practical, pehaps it would be useful, but without that it is potentially dangerous.

Proposal 301

Oppose 0-7-1

Restrict use of motorized vessel for fishing on the Upper Kenai River near Kenai Lake Discussion: This addresses clean up on the upper Kenai. That is also an airplane landing area and was set aside for that purpose. The issue the Cooper Landing AC is trying to address is fishing from a vessel, not flying. Other uses should not be impacted by this proposal. There are many guides that launch there, without use of the motor.

Proposal 307

No action

Prohibit guides with clients from being on the river prior to ½ hour before start time Discussion: Interesting that there is so much competition on the river that people are actually clogging up fishing holes until the start time. This is another proposal that targets a specific user group. It wouldn't prohibit another user from doing the same activity. There are numerous proposals restricting guide times on the river.

Proposal 328

Support 6-0-2

Modify regulation prohibiting fishing by sport fishing guides when clients are present on the Kenai River

Discussion: This aligns the remainder of the river with the current regulation.

Proposal 329

Support 8-0

Align vessel registration regulations with DNR requirements that allow for un-registering guide vessels

Discussion: This would give a person who wanted to personally fish the ability to using their guide boat.

Proposal 356

Oppose 0-8

Establish personal use fisheries in selected Upper Cook Inlet drainages

Discussion: It's unrealistic to believe these populations could sustain a personal use fishery. It could make things more interesting.

Seward Fish & Game Advisory Committee Meeting Minutes of November 8, 2007

There needs to be something done at Sheffler Creek culverts where the snagging is being done. If there is any special area or accommodations the AC would like to include in that project (like stabilizing banks, picnic tables, handicap access, etc) please let WC know by February 15th. An assessment is being done as to the scope of work, potential solutions, bridge, culverts (how many). The permitting process is taking longer than anticipated. Several agencies have offered resources. There is nowhere in Seward for wheel chair access to fishing. May 15 – July 15th window of construction. March or April will be timeline for finalizing the plans. Request for volunteers from the Seward AC to work on a letter to the city.

Motion to approve Dianne Dubuc to attend the BOF meetings in Homer for the Lower Cook Inlet and Anchorage for the Upper Cook Inlet. She will report back at the next regularly scheduled meeting. Approved unanimous.

Elections were postponed until the next meeting, which will be held January 10th at 7 pm at the Seward City Hall to hold elections, comment on statewide game proposals and review culvert drawing, discuss drafting PWS BOF proposals.

Meeting adjourned at 10:15 pm.

Matanuska Valley Fish and Game Advisory Committee Testimony

RC 30

February 1, 2008

Hello Members of the Alaska Board of Fisheries,

My name is Andy Couch and I am representing the Matanuska Valley Fish and Game Advisory Committee. The Advisory Committee is made up of 15 regular members and 2 alternate members. In the past we have had commercial fishermen and hunting guides on the Committee, but at present the Committee has one sport fishing guide, one trapper, and the balance of the Committee is made up of members who participate in subsistence fishing, personal use fishing, sport fishing, subsistence hunting, and sport hunting. The Committee worked on Upper Cook Inlet fisheries proposals at three meetings and the fisheries subcommittee met an additional 4 times preparing for this Board of Fisheries meeting. Rather than working through every proposal, the Committee prioritized developing specific positions we would like the Board of Fisheries to incorporate into the management of Upper Cook Inlet salmon fisheries.

The Matanuska Valley Fish and Game Advisory Committee respectfully requests the Board of Fisheries take action to address the long occurring and serious salmon conservation problems in Upper Cook Inlet. Specifically we request the Board address low escapements of all salmon species returning to Northern District drainages of Upper Cook Inlet during the month of July as measured by the Yentna River Sonar sockeye salmon escapement counts and the Fish Creek Weir sockeye salmon escapement counts.

According to past testimony before the Alaska Board of Fisheries, the Alaska Department of Fish and Game roughly figures the number of sockeye salmon going up the entire Susitna River drainage is roughly twice the number of sockeye salmon going up the Yentna River fork, and the sockeye salmon production from other Northern District drainages is roughly equal to the number of sockeye from the entire Susitna River drainage.

The significance of these numbers is that the sockeye salmon spawning escapement for Yentna River sockeye salmon represents a total Northern District sockeye salmon run that is historically 4 times larger than the Yentna River stock. Since the Commercial Fish Division no longer uses the Fish Creek sockeye count for management of the commercial fishery, the Yentna sockeye salmon goal is the only salmon escapement goal protecting spawning escapements of all stocks and species of salmon returning to the Northern District during the entire month of July. In the absence of another goal or conclusive inseason data, then, the management assumption must be made that if Yentna sockeye salmon spawning escapements are inadequate -- then spawning escapements for all other Northern District salmon species and salmon stocks returning during the month of July must also be inadequate.

The Department has failed to achieve even the minimum threshold of the Yentna River sockeye salmon escapement goal range of 90,000 - 160,000 sockeye salmon in 5 of the

Matanuska Valley A. C. page 2

past 7 years, and in the 3 years since the last Board of Fisheries meeting the minimum threshold of the goal was only achieved one time (2006), and in 2005 the Yentna River sonar recorded the lowest sockeye salmon spawning escapement count on record. In addition, since the last Board of Fisheries meetings the Department has closed sockeye salmon harvest by emergency order in both the Northern District set net fishery and the Susitna and / or Yentna drainage sport fishey on several occasions, and the only personal use fishery in the entire Northern District has never been opened for lack of sufficient sockeye salmon escapement.

After an Advisory Committee meeting specifically scheduled with the Alaska Department of Fish and Game commercial manager for Upper Cook Inlet, the Advisory Committee learned the Department: 1. currently considers maximizing commercial salmon harvests in the Central District of Upper Cook Inlet a higher priority than obtaining even adequate spawning escapements for streams in the Northern District of Upper Cook Inlet. 2. In addition, with out specific wording in any management plan directing it to do so, the Department's Commercial Fish Division, through its emergency order authority, has been making significant allocation decisions that likely greatly increase Central District commercial exploitation rates of depressed Northern bound salmon stocks, while closing Northern District commercial, sport, and personal use fisheries during the same year. These decisions have been made in spite of specific wording in Alaska's Sustainable Salmon Fisheries policy that calls for equal sharing of conservation burden according to each user group's percentage of harvest. 3. Furthermore, the Commercial Fish Division has developed a practice of describing emergency orders, specifically issued to harvest more salmon in the Central District of Upper Cook Inlet, as "RESTRICTIONS!" From our Advisory Committee's point of view, this last action is best described as an intentional effort to mislead the public and perhaps even the Board of Fisheries on how Upper Cook Inlet Fisheries are managed. 4. Despite a long history of poor escapements, Department documented declining yields in both the Northern District set net fishery, Susitna drainage sport fishery, Fish Creek personal use fishery, and Department issued harvest closures for Northern District commercial, sport, and personal use fisheries the Department continues to resist classification of troubled Northern salmon stocks with Stock of Concern status. To the Matanuska Valley Fish and Game Advisory Committee and owerwhelming majority of Matanuska and Susitna Valley resident, as represented at the January 30, 2008 Board of Fisheries hearing in Wasilla, these actions and management practices of the Commercial Fish Division of the Alaska Department of Fish and Game are unresponsible and unacceptable.

What can be done to correct this situation?

1. <u>Stocks of Concern</u> -- The Matanuska Valley Fish and Game Advisory Committee requests the Board of Fisheries declare Northern District sockeye salmon, and Upper Cook Inlet chum salmon as Stocks of Concern under the yield category based on the reduced harvests in the Northern District set net fishery -- further data could also be

used from declining Northern District drainage sport fishery catches and harvests, and the closed Fish Creek personal use fishery. A stock of concern status would require de-

Matanuska Valley A.C. page 3

veloping a plan to address the issue of loss of yield in the Northern District set net fishery, and would also prioritize the opportunity to obtain federal research money to find solutions.

- 2. Manage to Midpoint or above for all Upper Cook Inlet salmon escapement goals. The whole concept of using an escapement goal range is to manage for obtaining the midpoint of a goal range as identified in Alaska's Sustainable Salmon Fisheries Policy. ADF&G currently seems to be managing for less than the very minimum of the Yentna River sockeye salmon escapement goal in that the Department has failed to meet even the minimum threshold of the goal most of the time in the past two Board cycles. When the Department fails to meet the minimum threshold, then there is absolutely zero harvestable surplus sockeye salmon for in river subsistence and sport fisheries as the harvest of even one sockeye salmon only further erodes the unobtained spawning escapement. Managing to pass the midpoint of the escapement range past the sonar counter on an average annual basis is good science that would also allow some upstream harvest while still maintaining spawning escapements.
- 3. <u>Provide Clear Language</u> in management plans directing how the salmon resource shall be managed and how stocks shall be allocated. The Matanuska Vallely Advisory Committee would like to see clear language from the Board of Fisheries authorizing more conservative commercial fishing opportunities within the Central District on Northern bound salmon stocks until the midpoint of the Yentna sockeye salmon sonar goal can be assured. This is a Committee priority, as the Board should be allocating the salmon resource in clear understandable

language, and this responsibility should not be conducted, without direction, and exclusively by the commercial fish manager.

- 4. Manage Upper Cook Inlet salmon stocks to provide significant salmon harvest opportunities for all user groups during the month of July. More than 60% of the state's population lives in the Upper Cook Inlet area, and the present system of managing for a commercial salmon harvest priority during the month of July significantly limits most common users salmon harvest opportunities. We would like to see more conservative commercial harvest opportunities that would give subsistence, personal use, and sport fishery users better and more predictable harvest opportunities throughout the entire run timing of Upper Cook Inlet salmon stocks.
- 5. Refocus management of less abundant stocks in May, June, August, and September for subsistence, sport, and personal use fisheries. At the 2005 Board of Fisheries meeting changes were made that expanded commercial fishing opportunities onto these less

Matanuska Valley A. C. p. 9 4

abundant stocks whose value is much better maximized through subsistence, sport and personal use fisheries. We would like to see commercial harvest opportunities for coho and king salmon stocks return to where they were prior to the 2005 meeting. Numbers of these salmon are simply too small to provide significant income opportunity for very many commercial fishermen in Upper Cook Inlet.

- 6. Return to past successful Northern District management practices with a needed adjustment for conservation an allocation. The Advisory Committee supports use of the pre 2005 Northern District Salmon Management Plan which only allowed Central District drift netting within 3 miles of the eastside beach during specific time periods with an adjustment that would change the following paraphrased provision -- Achieving lower end of the Yentna River Sockeye salmon escapement goal takes priority over remaining below the upper bounds of the Kenai River sockeye salmon escapement goal -- we support changing to: Achieving midpoint of the Yentna River sockeye salmon escapement goal range takes priority over remaining below the upper bounds of the Kenai River sockeye salmon escapement goal.
- 7. Carefully Consider Ecomonic Values of Upper Cook Inlet Fisheries in your Decisions. Our Advisory Committee worked hard in an effort to see the ongoing sportfish economic survey completed before the Upper Cook Inlet meeting, but as Board members know it is still a work in progress. However, the Committee supports using the best the most recent and best data available. With that thought in mind, please use the results of past economic surveys and trends compiled in a January 2008 booklet by the Kenai River Sportfishing Association. Additional economic information should also be utilized as it becomes available.
- 8. Hopefully you have seen the Advisory Committee letter we sent to Governor Palin with carbon copies to Commissioner Lloyd, the Board of Fisheries, and Mat-Su Valley legislators requesting definitions for use of the words: restriction, liberalization, and regulation when used by the Department of Fish and Game in describing in season management practices. For a clear and understandable Upper Cook Inlett Board meeting we hope these definitions or distinctions can be used throughout this Upper Cook Inlet meeting.

Sincerely,

Andy Couch

Oudy Couch

Matanuska Valley Fish and Game Advisory Committee

Seldovia Fish & Game Advisory Committee Meeting Minutes of October 15, 2007

RC31

Members Present: Keith Gain, Tim Dillon, Robert Purpurra, Walt Sonen, Warren

Brown, Paul Chissus

Members Absent Excused: Mike Opheim

Members Absent Unexcused: Matthew Gallien, Keith Swick, Alvin Swick

Meeting began at 7:20 pm

It was noted by the chair that Eric Nordenson had moved from Seldovia and resigned from the committee.

Elections were held with the following results: Herman Moonin, Buck Brown and Tim Dillon for the three year seats; Mike Opheim for the one year seat; Alvin Swick and Matt Gallien for the one year alternate seats.

Officer elections were held with the following results: Chair; Vice Chair; Secretary

Board of Fisheries Proposals

6-1 Support

(and UCI

ACR 12 Amendment: Clams only

Allowing subsistence harvest of clams in Kachemak Bay.

People in Port Graham are being pushed out of their own traditional areas of harvest and are looking for opportunity to continue harvesting nearby. This was originally just for clams and only the east side of Kachemak Bay. Basically, the only change would be that a person wouldn't have to purchase a sport fishing license to harvest.

Minority opinion – The committee expressed concern of impacting other fisheries and hunting. There is a concern of a huge influx of Alaska residents, who all qualify for subsistence. This may target an area that is heavily congested. It would be better for a person to just buy a sport fishing license and harvest the clams under that. Members of the committee have observed people flying in and landing on sand strips digging clams out on Kasitsna Bay.

Prop 16 7 Support

There is a concern that people have been cleaning their fish and leaving debris near the net pens, creating a health hazard and risking the enhancement projects. People are misusing the facilities. This will make the public aware of the facility.

Prop 34 & 59 7 Support

Allow troll permits in Chignik area

Amendment: These fisheries would be open to current salmon troll permit holders statewide.

Seldovia Fish & Game Advisory Committee Meeting Minutes of October 15, 2007

Discussion: Members expressed interest in supporting. It is doubtful the proponents are looking for an expanded fishery, but area fishers could benefit from this type. There could be an increased pressure on that stock. Local fishermen switching gear would not cause additional harvest. They would be trying to utilize the most efficient gear and maximize harvest.

Upper Cook Inlet Salmon Management – 6-1 Support

The current management for the Cook Inlet drift fleet met escapement goals in all monitored salmon streams and prevented the massive over escapement in the Kenai River seen in so many previous years.

The committee agreed to send the above statement to the Board of Fisheries, rather than spend an inordinate amount of time going over the Upper Cook Inlet proposals. Although the Kenai River was managed well, there may be some problems associated with the current management plan. For the greater part of the fishery, people did well. The flow of fish were good. Members saw the processing end of the fishery. There will be areas that are flat and short and will consistently be that way. The overall management plan in place did work well.

Prop 74

7-0 Support

Amendment: Prohibit spotter planes in Cook Inlet

The proponent is a drift fisherman and a pilot. This creates an uneven playing field in an already over capitalized fishery. If the effectiveness of the drift fleet is an issue on conservation in the Northern district, this will be a way to address efficiency in time.

Prop 101

Tuxedni Bay kings proposal

This would open similar to the Copper River king opening. Our children will be smarter if this passes. Assuming these fish are going up the Russian River.

Prop 112 1-6 Oppose

People should follow current management plans, as opposed to mobile gear. One side effect of this, due to Northern District early opening for kings, would throw many Central District fishers off for the whole season. Prefer things are kept open.

Prop 113 No action

This proposal doesn't address the issue that many fishermen would like dealt with. This is an antiquated regulation, designed to keep boat builders busy. You can't take the same boat in Cook Inlet over to Prince William Sound. If a guy wanted to participate in both fisheries, they wouldn't have to buy two boats. This only pertains to Cook Inlet and Kodiak. Eliminate registration areas for vessels could open dialogue on this issue. This could create a major increase in the drift fleet effort. Will wait for the restructuring information.

Prop 359

7-0 Support

Seldovia Fish & Game Advisory Committee Meeting Minutes of October 15, 2007

Concern of putting a lot of pressure in this bay. Committee supports equity in closures for crab fisheries.

Keith Gain will attend the Lower Cook Inlet meeting. Robert Purpurra will attend the Upper Cook Inlet meeting

Board of Game Statewide

Drawing permit process for bison hunt – State of AK initiate a point preference system that if you apply for a bison hunt permit, you get a point for that application. The following year, you get another point for that application (of the same exact hunt). Unless you get drawn for a permit, your points continue to add up. This gives a hunter a better chance of obtaining a particular hunt of their interest. There were no less than six proposals that requested the board utilize this form of permitting in the past. This becomes an investment for the individual who continues to put in for the same drawing.

75% of available bison permits would go to preference point applicants. The others would be held as a draw. Bison are a highly prized species.

Committee agreed to submit this proposal on behalf of the AC.

Tim Dillon will attend the Statewide BOG.

Meeting adjourned at 9:30 pm.

Tyonek Fish & Game Advisory Committee

Sarah Palin, Governor

Cornell Constantine, Chair PO Box 82055 (C 32 Tyonek, AK 99682

Pall to order at 1214p

talked about who wanter to go to meeting Larry H+ al goomer well go

We should pay ath south of us & since 1970. What is formula we need

fain + equitable for us (5 spièces).

State (2) Know they take out big

Tours For Fishing that not the

way it should be for drifter gear Changes Nove do not accept We do not wont driffers of the west side

We should not take #'s from

Yetha River way smaller

Serving the Alaska Board of Fisheries and Alaska Board of Game Boards Support Section, 333 Raspberry Road, Anchorage, Alaska 99518-1599

STATE OF ALASKA?

Tyonek Fish & Game Advisory Committee

Sarah Palin, Governor

Cornell Constantine, Chair PO Box 82055 Tyonek, AK 99682

So sportsman can get our big Holkings)

need bigger mesh fish buyers don't

buy Small fish & need to have

A fishing opens 2 clays again.

Shouldwe Open a natural Hatchery Avestion asked how can we replenish our fish & Beliga Make Our Cook Intermanagement plan

Our own Stocking program

LINGSOM asked if Tyonek Fish& Game Contacted Mady Salmon & Al Kookesh and all what they can do.

Beaken to let us know When fish is cohoning When ever fish is about to hit Planes are seen flying around then all of a sudden we get

Shut down 100 101, 102-104, 105, 104, 107, 111

Oppose Res # 79 101, 102-104, 105, 104, 107, 111 2-193, 151-152 Dupport 4, 98, 123, 144, 145-150, 358, 344

Northern district management plan needs to be recline.

Our Reads get confused and go Towards Kinai but Turn to Churtna River and come over.

We should start over check out Highsaus, Kadlak, driffers, Kuskedan, middle river

Meeting Adjourned @ 3:00 p.m.

STATE OF ALASKA

Tyonek Fish & Game Advisory Committee

Sarah Palin, Governor

Cornell Constantine, Chair PO Box 82055 Tyonek, AK 99682

1-30-08

Sign In Sheet

1. Cornell Constantino

1. Larry Heilman

3. AL GOOZNER

4 April SONES

5. Lindsay J. BISMark

6. John Standifer

7 T. Chad Chickalusion

1. Contlettenthe 2. January Heilman 3 Al For 4. Parts 5 Lg Bismark

1. Mh & B fortudadera

Deliberation Materials

Committee D (Resident Spp.)

UCI BOF 2008

Soldotna SF Division

Committee D: Kenai River Resident Species

Proposals: 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252.

Category	Prop#	Proposal Intent/Effect	ADF&G Position	Background Information
Kenai River Resident Species	236	Modify rainbow trout bag limits for Kenai River drainage lakes and ponds	OPPOSE	See Staff Comments
Kenai River Resident Species	237	Modify rainbow trout bag limits for Kenai River drainage lakes and ponds	OPPOSE	See Staff Comments
Kenai River Resident Species	238	Expand rainbow trout spawning closure from the outlet of Skilak Lake to the Upper Killey River to include Dolly Varden	SUPPORT	Tables 1-9 (pp. 6-23) Figures 1-22 (pp. 6-23)
Kenai River Resident Species	239	Reduce spawning closure season for rainbow trout	OPPOSE	Tables I-9 (pp. 6-23) Figures 1-22 (pp. 6-23)
Kenai River Resident Species	240	Prohibit all sport fishing during the rainbow trout spawning closure	SUPPORT	Tables 1-9 (pp. 6-23) Figures 1-22 (pp. 6-23)
Kenai River Resident Species	241	Prohibit removing rainbow trout from the water during spawning closure	SUPPORT	See Staff Comments
Kenai River Resident Species	242	Prohibit removing rainbow trout or Dolly Varden from the water in catch and release fishing	NEUTRAL	See Staff Comments
Kenai River Resident Species	243	Require single, barbless hooks in Kenai River upstream of Lower Killey River from August 21 - June 10	OPPOSE	Tables 1-9 (pp. 6-23) Figures 1-22 (pp. 6-23)
Kenai River Resident Species	244	Require barbless hooks for rainbow trout or Dolly Varden in the Kenai River	OPPOSE	Tables 1-9 (pp. 6-23) . Figures 1-22 (pp. 6-23)
Kenai River Resident Species	245	Restrict gear for rainbow trout and Dolly Varden in portion of Kenai River	OPPOSE	Tables 1-9 (pp. 6-23) Figures 1-22 (pp. 6-23)
Kenai River Resident Species	246	No fishing from anchored vessel in the swan sanctuary area, Skilak Lake /Kenai River from June 15 – December 31	NEUTRAL	Figure 32 (p. 33)
Kenai River Resident Species	247	Eliminate size restriction on Dolly Varden for Kenai River	OPPOSE	Tables 10-11 (pp. 24 & 30) Figures 23-31 (pp. 25-32)
Kenai River Resident Species	248	Increase the bag limit for Arctic Char in the Cooper Lake to 5 per day / 5 in possession only one over 20 inch or longer	NEUTRAL	Table 12 (p. 34) Figure 33 (p. 34)
Kenai River Resident Species	249	Decrease the daily bag limit for lake trout in Hidden Lake	SUPPORT	Table 13 (p. 35) Figure 34 (p. 36)
Kenai River Resident Species	250	Allow up to five lines to fish for northern pike fishing in Arc Lake and Scout Lake	SUPPORT	Tables 14-16 (pp. 37-42) Figures 35-38 (pp. 37-42)
Kenai River Resident Species	251	Allow up to five lines to fish for northern pike fishing in Stormy Lake	SUPPORT	Tables 14-16 (pp. 37-42) Figures 35-38 (pp. 37-42)
Kenai River Resident Species	252	Prohibit releasing any northern pike while fishing in the Kenai Peninsula	SUPPORT?	Tables 14-16 (pp. 37-42) Figures 35-38 (pp. 37-42)

LIST OF TABLES

ab	<u>lle</u>	Page
1.	Kenai River rainbow trout, number caught and number retained by river section, 1984 - 2006	8
2.	Rainbow trout harvest, catch and effort for all species, Quartz Creek, Ptarmigan Creek, Kenai Lake, Russian River and Skilak Lake, 1984-2006	12
3.	Summary of female rainbow trout maturity data, Upper Kenai River, 1999 through 2001	14
4.	Summary of maturity of or spawning condition by date of sample for female rainbow trout, Upper Kenai River, 1998 through 2002	15
5.	Summary of rainbow trout population estimates by year and length group, Upper Kenai River, 1986 through 2001	17
6.	Summary of rainbow trout population estimates by year and length group, Middle Kenai River, 1987 and 1999.	18
7.	Summary of Kenai River rainbow trout hookiing injury by length group, 1998 through 2002	20
8.	Summary of Kenai River rainbow trout harvest by length class regulation, 1984 through 2003	21
9.	Summary of Upper Kenai River radio-tagged rainbow trout locations, 2000 and 2001	23
10	Kenai River Dolly Varden harvest and catch by river section as estimated from the Statewide Harvest Survey, 1984-2006	24
11	. Dolly Varden harvest and catch and effort for all species for Ptarmigan Creek, Quartz Creek, Kenai Lake, Russian River and Skilak Lake, 1984-2006	30
12	. Arctic Char catch, harvest and effort for Cooper Lake, 1997-2006	34
13	. Hidden Lake, fishing effort and lake trout catch and harvest as determined by Statewide Harvest Survey, 1977-2006	35
14	Northern pike catch and harvest for Arc, Scout and Stormy Lakes, 2000-2006	37
15	. Kenai Peninsula northern pike harvest, 1981-2006	40
16	Kenai Peninsula waterbodies with confirmed populations of northern pike. 2007	41

LIST OF FIGURES

<u>Figure</u>		Page
1.	Map of Kenai River by river section for rainbow trout and Dolly Varden catch and harvest reporting	6
2.	Map of Kenai River by river section for rainbow trout and Dolly Varden catch and harvest reporting	7
3.	Kenai River rainbow trout catch and harvest as determined by the Statewide Harvest Survey, Cook Inlet to Soldotna Bridge, 1984-2006	9
4.	Kenai River rainbow trout catch and harvest as determined by the Statewide Harvest Survey, Soldotna Bridge to Moose River, 1984-2006	9
5.	Kenai River rainbow trout catch and harvest as determined by the Statewide Harvest Survey, Moose River to Skilak Lake, 1984-2006	10
6.	Kenai River rainbow trout catch and harvest as determined by the Statewide Harvest Survey, Skilak Lake to Kenai Lake, 1984-2006	10
7.	Kenai River rainbow trout catch and harvest as determined by the Statewide Harvest Survey, Skilak Lake to Kenai Lake, 1984-2006	11
8.	Rainbow trout catch, harvest, and effort for all species as determined by the Statewide Harvest Survey, Quartz Creek, 1984-2006	13
9.	Rainbow trout catch and harvest as determined by the Statewide Harvest Survey, Russian River, 1984-2006	13
10.	Upper Kenai River female rainbow trout maturity by percent of length class	14
11.	Upper Kenai River female rainbow trout maturity by cumulative percent of length class	15
12.	Summary of Upper Kenai River female rainbow trout maturity and time of spawning by percent in sample	16
13.	Summary of Upper Kenai River female rainbow trout maturity and time of spawning by number in sample	16
14.	Summary of Upper Kenai River rainbow trout population estimates by number in length class, 1986-2001	17
15.	Summary of Upper Kenai River rainbow trout population estimates by percent in length class, 1986-2001	18
16.	Summary of Middle Kenai River rainbow trout population estmates by number in length class, 1987 and 1999	19
17.	Summary of Middle Kenai River rainbow trout population estmates by percent in length class, 1987 and 1999	19
18.	Summary of Kenai River rainbow trout mouth damage hooking injury by length class, 1998 through 2002	20

LIST OF FIGURES (continued)

<u>Figure</u>		Page
19.	Summary of Kenai River rainbow trout eye damage hooking injury by length class, 1998 through 2002	21
20.	Summary of Upper Kenai River rainbow trout harvest by length class regulation, 1984 through 1996	22
21.	Summary of Middle and Lower Kenai River rainbow trout harvest by length class regulation, 1984 through 2003	22
22.	Locations of radio-tagged Upper Kenai River rainbow trout 2000 and 2001, shaded area represents seasonal spawning closure	23
23.	Kenai River Dolly Varden catch and harvest as determined by the Statewide Harvest Survey, Cook Inlet to Soldotna Bridge, 1984-2006	25
24.	Kenai River Dolly Varden catch and harvest as determined by the Statewide Harvest Survey, Soldotna Bridge to Moose River, 1984-2006	25
25.	Kenai River Dolly Varden Catch and harvest as determined by the Statewide Harvest Survey, Moose River to Skilak Lake, 1984-2006	26
26.	Kenai River Dolly Varden catch and harvest as determined by the Statewide Harvest Survey, Skilak Lake to Kenai Lake, 1984-2006	26
27.	Length frequency distribution of Kenai River Dolly Varden (all years, all studies)	27
28.	Proportion of Kenai River female Dolly Varden spawners (all years, all studies)	28
29.	Percent of Kenai River Dolly Varden with mouth damage (all years, all studies were data is recorded)	29
30.	Russian River Dolly Varden catch and harvest, 1990-2006	31
31.	Map of Kenai River drainage showing locations of spawning Dolly Varden population aggregates	32
32.	Map of Skilak Lake Outlet showing seasonal drift only area, motor use prohibited March 15 through June 14	33
33.	Cooper Lake Arctic Char harvest, ctch and effort, 1997-2006	34
34.	Hidden Lake lake trout harvest, catch and effort, 1977-2006	36
35.	Map of Tote Road, Scout and Soldotna Creek drainage lakes with pike populations	37
36.	Map of Stormy Lake	38
37.	Map of Soldotna Creek drainage lakes with pike populations	39
38.	Kenai Peninsula northern pike harvest, 1981-2006	41

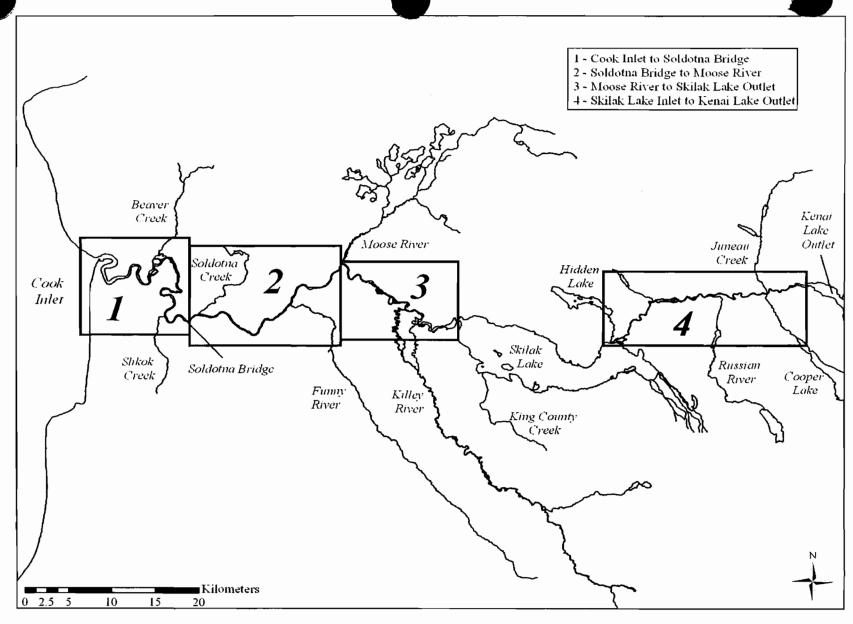


Figure 1.- Map of Kenai River by river by section for rainbow trout and Dolly Varden catch and harvest reporting.

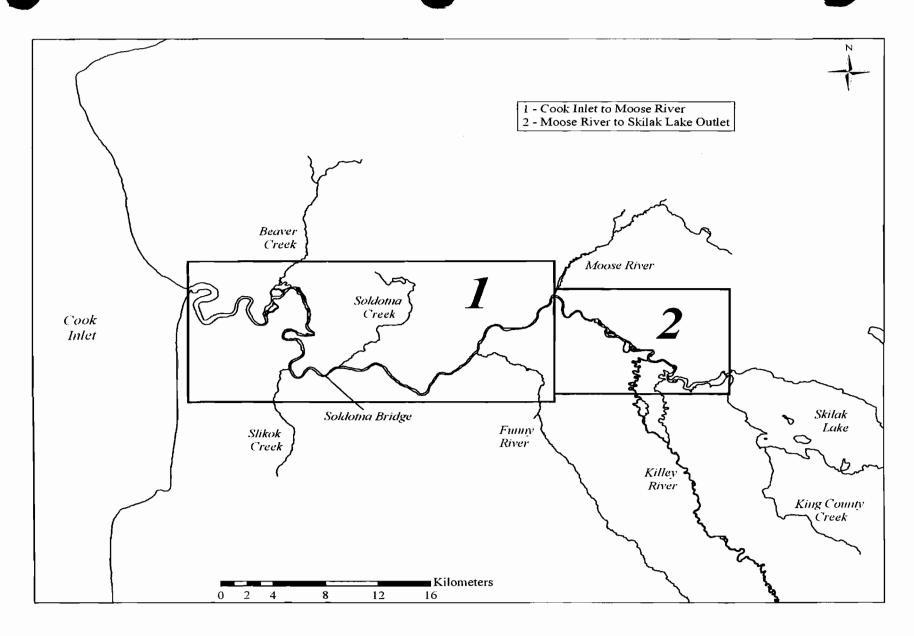


Figure 2.- Map of Kenai River by river by section for rainbow trout and Dolly Varden catch and harvest reporting.

Table 1 - Kenai River rainbow trout, number caught and number retained by river section, 1984-2006.

	Cook Ini	et to Soldot	na Bridge	Soldotna	Bridge to M	oose River	Moose F	River to Skil	ak Outlet	Skilak	Inlet to Ken	ai Lake	Kenai Riv	er Reach No	ot Specified	Ke	nai River To	otal
Year	Number Caught	Number Retained	Percent Retained	Number Caught	Number Retained	Percent Retained	Number Caught "	Number Retained	Percent Retained	Number Caught *	Number Retained	Percent Retained	Number Caught	Number Retained	Percent Retained	Number Caught *	Number Retained	Percent Retained
1984 ^b	3,464	710	20.5	2,911	1,250	42.9	5,112	580	11.3	4,200	930	22.1				15,687	3,470	22.1
1985 b	3,398	880	25.9	2,653	850	32.0	5,410	1,500	27.7	3,520	710	20.2				14,981	3,940	26.3
1986	2,570	623	24.2	2,380	168	7.1	1,750	901	51.5	2,020	733	36.3				8,720	2,425	27.8
1987	2,220	522	23.5	3,450	670	19.4	6,430	629	9.8	3,870	364	9.4				15,970	2,185	13.7
1988	2,780	295	10.6	1,560	216	13.8	5,880	1,063	18.1	7,580	559	7.4				17,800	2,133	12.0
1989	2,020	481	23.8	2,230	354	15.9	6,470	829	12.8	6,870	253	3.7				17,590	1,917	10.9
1990	2,624	510	19.4	3,571	943	26.4	5,366	937	17.5	11,995	1,145	9.5				23,556	3,535	15.0
1991	3,672	516	14.1	3,844	1,123	29.2	7,930	940	11.9	18,108	740	4.1				33,554	3,319	9.9
1992	4,448	427	9.6	3,879	411	10.6	15,127	736	4.9	28,702	403	1.4				52,160	1,980	3.8
1993	6,190	1,149	18.6	5,556	580	10.4	12,651	653	5.2	37,755	192	0.5				62,150	2,570	4.1
1994	3,796	506	13.3	3,980	364	9,1	10,968	543	5.0	35,089	163	0.5				53,833	1,576	2.9
1995	4,516	620	13.7	4,087	440	10.8	13,072	780	6.0	33,475	310	0.9				55,150	2,150	3.9
1996	5,513	304	5.5	4,777	646	13,5	8,650	373	4.3	45,471	237	0.5				64,411	1,560	2.4
1997	7,411	739	10.0	6,641	539	8.1	20,047	632	3.2	61,053	0	0.0				95,152	1,910	2.0
1998	5,502	608	11.1	5,380	670	12.5	12,158	737	6.1	42,224	0	0.0				65,264	2,015	3.1
1999	11,415	1,516	13.3	8,325	695	8.3	32,050	1,573	4.9	50,189	0	0.0				101,979	3,784	3.7
2000	16,477	1,292	7.8	9,428	1,083	11.5	18,990	1,084	5.7	78,836	0	0.0				123,731	3,459	2.8
2001	11,216	987	8.8	7,473	868	11.6	22,392	567	2.5	51,130	0	0.0				92,211	2,422	2.6
2002	12,641	995	7.9	8,157	944	11.6	19,355	864	4.5	71,753	0	0.0	2,269	216	9.5	114,175	3,019	2.6
2003	12,844	1,026	8.0	10,913	700	6.4	41,204	372	0.9	54,552	0	0.0	3,536	180	5.1	123,049	2,278	1.9
2004	15,080	1,452	9.6	13,310	978	7.3	34,026	831	2.4	91,443	0	0.0	5,651	50	0.9	159,510	3,311	2.1
2005	14,119	953	6.7	11,585	647	5.6	34,675	607	1.8	57,936	267	0.5	7,949	43	0.5	126,264	2,517	2.0
2006	13,168	588	4.5	13,683	1,109	8.1	33,222	472	1.4	67,741	289	0.4	4,005	41	1.0	131,819	2,499	1.9
Mean	7,260	770	13.5	6,080	710	14.4	16,210	790	9.5	37,630	320	5.1	4,680	110	3.4	68,210	2,610	7.8

Source: Statewide Harvest Survey (Mills 1985-1994; Howe et al. 1995, 1996, 2001 a-d; Walker et al. 2003; Jennings et al. 2004, 2006 a-b, 2007, in prep.)

a Catch estimates for 1984-1989 are unpublished estimates from the Statewide Harvest Survey (M Mills, Alaska Department of Fish and Game, Division of Sport Fish, Research and Technical Services, Anchorage.

b in 1984 and 1985, catch estimates were mistakenly reported as harvest in Mills 1985 and 1986. Numbers for harvest presented here are correct.

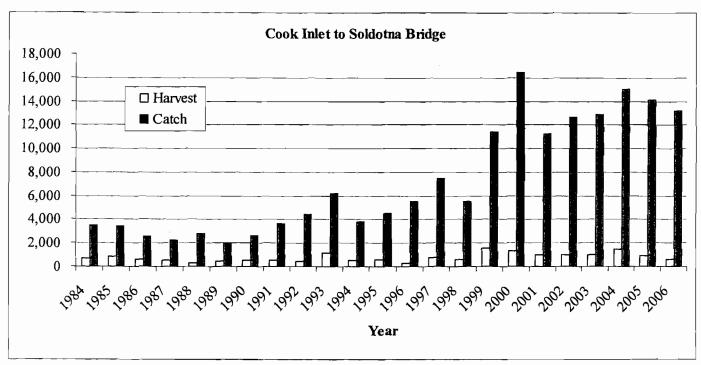


Figure 3.-. Kenai River rainbow trout catch and harvest as determined by the Statewide Harvest Survey, Cook Inlet to Soldotna Bridge, 1984-2006.

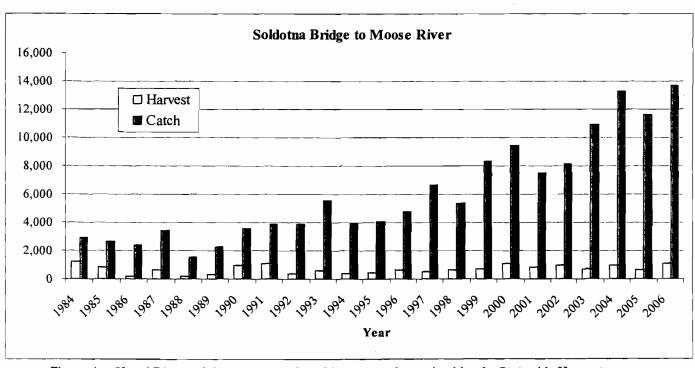


Figure 4.-. Kenai River rainbow trout catch and harvest as determined by the Statewide Harvest Survey, Soldotna Bridge to Moose River, 1984-2006.

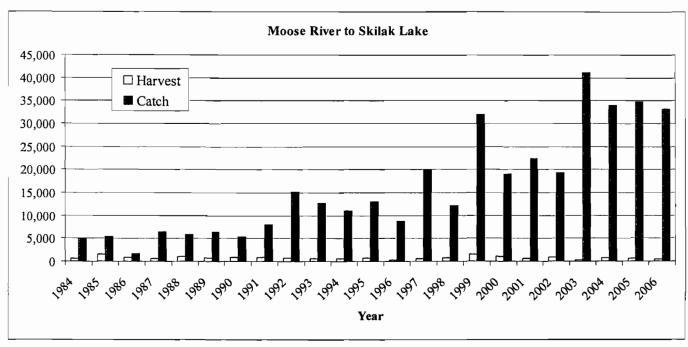


Figure 5.- Kenai River rainbow trout catch and harvest as determined by the Statewide Harvest Survey, Cook Inlet to Moose River, 1984-2006.

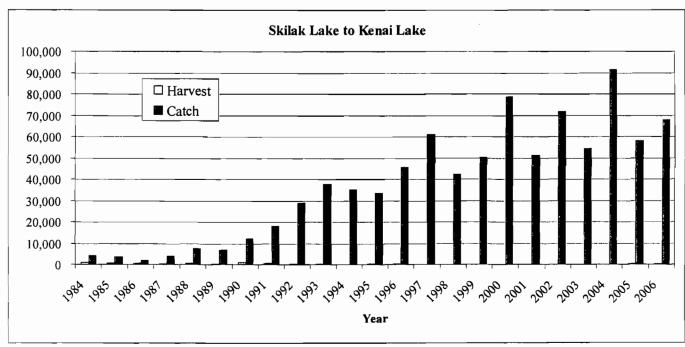
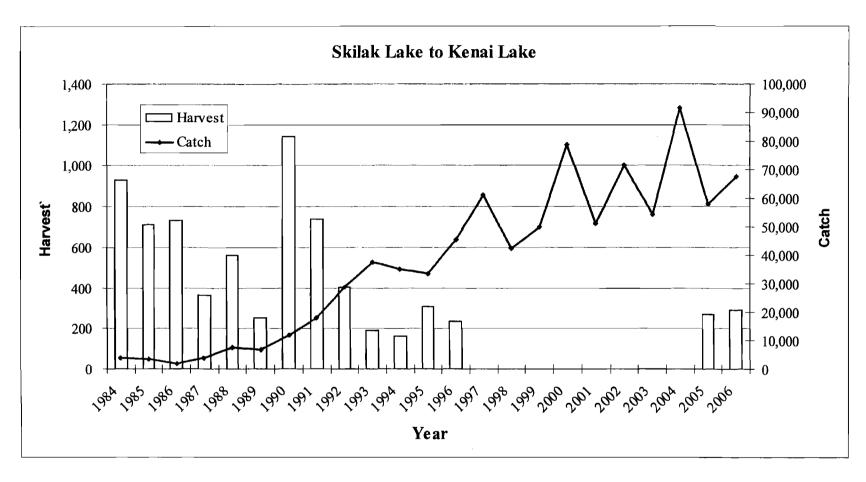


Figure 6.- Kenai River rainbow trout catch and harvest as determined by the Statewide Harvest Survey, Moose River to Skilak Lake, 1984-2006.



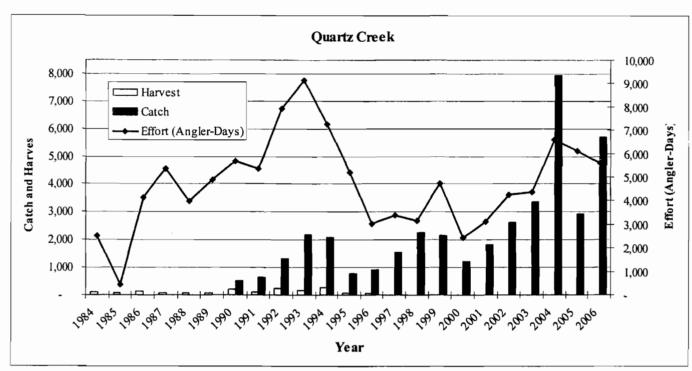

Figure 7.- Kenai River rainbow trout catch and harvest as determined by the Statewide Harvest Survey, Skilak Lake to Kenai Lake, 1984-2006.

Table 2 - Rainbow Trout harvest and catch and effort for all species, Quartz Creek, Ptarmigan Creek, Kenai Lake, Russian River and Skilak Lake, 1984-2006.

_	Pta	migan Cree	ek	Q	uartz Creek			Kenai Lake		Ri	ussian Rive		S	kilak Lake	
Year	Efforta	Harvest	Catch	Efforta	Harvest	Catch	Efforta	Harvest	Catch	Efforta	Harvest	Catch	Efforta	Harvest	Catch
1984	1,857	237		2,530	87		502	25			324			12	
1985	988	295		451	69		607				0			0	
1986	1,483	474		4,146	122		NA ^b	15			0			0	
1987	942	18		5,361	54		580	36			91			145	
1988	1,946	18		3,965	54		855	36			91			72	
1989	790	29		4,893	67		377	20			96			67	
1990	2,041	260	906	5,655	198	500	1,042	42	73		198	4,789		115	458
1991	1,200	115	700	5,354	94	648	1,064	115	1,400		230	7,221		125	637
1992	1,750	24	499	7,906	237	1,314	1,536	87	135		253	8,312		95	522
1993	1,742	415	1,709	9,152	174	2,182	2,586	615	1,306		284	12,377		68	857
1994	1,425	311	912	7,241	268	2,088	2,524	356	1,189		134	11,744		35	614
1995	1,914	131	574	5,179	66	780	3,240	233	654		151	15,381		56	1,335
1996	336	40	464	3,018	53	914	878	90	90		127	23,041		21	1,536
1997	758		1,461	3,401		1,539	1,734	152	504		130	30,852		14	3,042
1998	701		2,053	3,166		2,252	520	43	183		351	20,088		209	625
1999	883		3,382	4,708		2,132	1,462	93	1,753		83	37,764		119	1,904
2000	732		1,026	2,423		1,212	1,033	117	327		44	34,948		181	2,578
2001	430		625	3,105		1,814	2,509	153	762		215	16,007		65	568
2002	888		3,268	4,245		2,617	2,502	58	1,312		16	29,484		63	939
2003	899		424	4,357		3,359	1,097	0	386		182	21,204		0	1,009
2004	687		3,027	6,589		7,939	497	93	140		49	42,875		436	911
2005	599		1,253	6,106		2,897	2,072	55	252		232	20,026		32	851
2006	1,061		3,612	5,582		5,698	619	52	52		256	28,059		. 0	1,045
Mean	1,133	182	1,523	4,719	119	2,346	1,356	113	619		154	21,422		84	1,143

From: Mills 1985-1994; Howe et al. 1995,1996, 2001a-d; Walker et al. 2003; Jennings et al 2004, 2006 a-b, 2007 In prep; except Kenai Lake 1984-1988, M. Mills, , Alaska Department of Fish and GameDivision of Sport Fish, Research and Technical Services, Anchorage, personal communication.

^a Effort directed toward all species.

Effort directed toward all species.

Figure 8.- Rainbow trout catch, harvest and effort (angler-days) for all species, as determined by the Statewide Harvest Survey, Quartz Creek, 1984-2006.

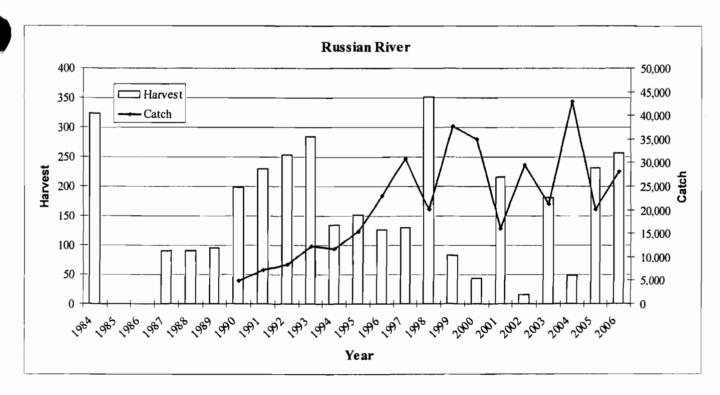


Figure 9.- Rainbow trout catch and harvest as determined by the Statewide Harvest Survey, Russian River, 1984-2006.

Table 3. Summary of female rainbow trout maturity data, Upper Kenai River, 1999 through 2001.

Length			Total			Cumulative	Cumulative
Group	Number	Number	Number	Percent	Percent	Percent	Percent
by Inches	Mature	Immature_	Sampled	Mature	Immature	Mature	Immature
10 –11.99	1	3	4	25%	75%	25%	75%
12 -13.99	0	8	8	0%	100%	8%	92%
14-15.99	9	17	26	35%	65%	26%	74%
16-17.99	104	47	151	69%	31%	60%	40%
18-19.99	258	38	296	87%	13%	77%	23%
20-21.99	280	10	290	97%	3%	84%	16%
22-23.99	164	9	173	95%	5%	86%	14%
24-25.99	34	1	35	97%	3%	86%	14%
26 >	2	0	2	100%	0%	86%	14%
Total	852	133	985	-			

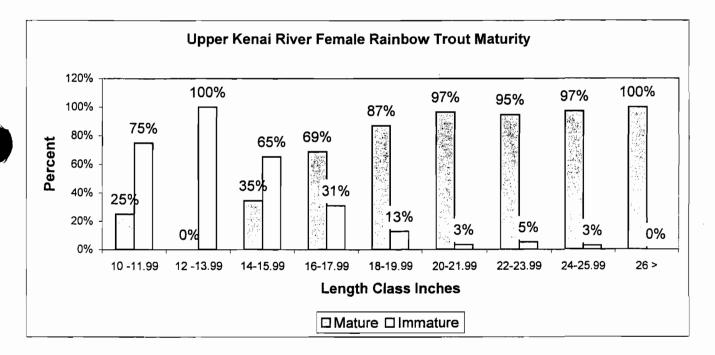


Figure 10.- Upper Kenai River female rainbow trout maturity by percent of length class.

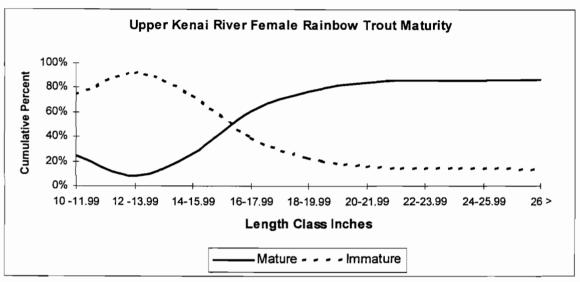


Figure 11.- Upper Kenai River female rainbow trout maturity by cumulative percent of length class.

Table 4. Summary of maturity or spawning condition by date of sample for female rainbow trout, Upper Kenai River, 1998 through 2002.

Sample	Number	Percent of	Number	Percent of	Number	Percent of	Total Number
Date	Pre-spawners	Pre-spawners	Spawners	Spawners	Post-spawners	Sample	Sampled
April 1 - 15	10	100%	0	0%	0	0%	10
April 16 - 30	55	98%	0	0%	1	2%	56
Total	65	98%	0	0%	1	2%	66
May 1 - 15	62	78%	7	9%	11	14%	80
May 16 - 31	87	40%	29	13%	104	47%	220
Total	149	50%	36	12%	115	38%	300
June 1 -15	50	22%	25	11%	156	68%	231
June 16 - 30	0	0%	1	33%	2	67%	3
Total	50	21%	26	11%	158	68%	234
All Dates	264	44%	62	10%	274	46%	600
	Cumulative	Cumulative	Cumulative	Cumulative	Cumulative	Cumulative	Cumulative
	Number	Percent of	Number	Percent of	Number	Percent of	Total Number
	Pre-spawners	Pre-spawners	Spawners	Spawners	Post-spawners	Post-spawners	Sampled
April 1 - 15	10	4%	0	0%	0	0%	10
April 16 ~ 30	65	25%	0	0%	1	0%	66
May 1 - 15	127	48%	7	11%	12	4%	146
May 16 - 31	214	81%	36	58%	116	42%	366
June 1 −15	264	100%	61	98%	272	99%	597
June 16 - 30	264	100%	62	100%	274	100%	600
Total	264	100%	62	100%	274	100%	600

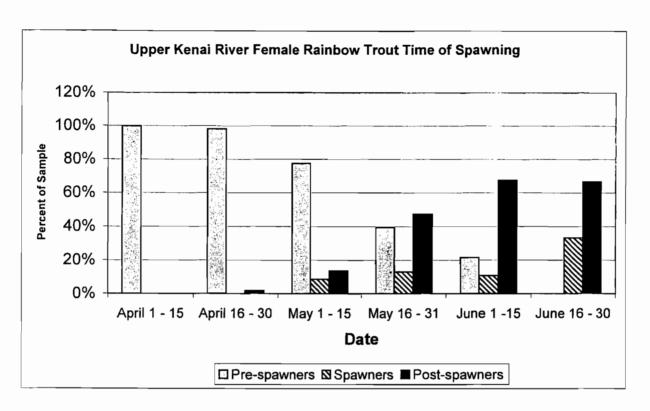


Figure 12.- Summary of Upper Kenai River female rainbow maturity and time of spawning by percent of sample.

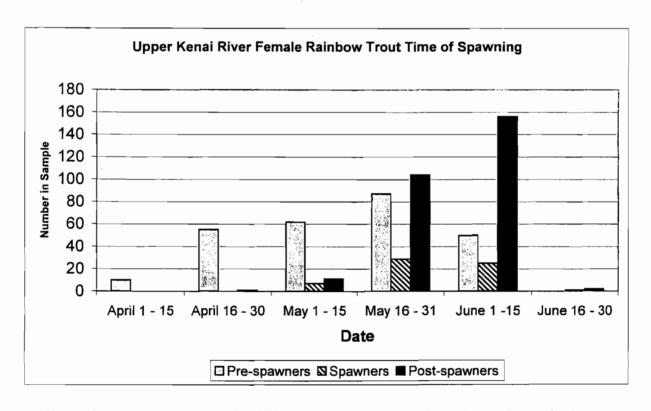


Figure 13.- Summary of Upper Kenai River female rainbow maturity and time of spawning by number in sample.

Table 5. Summary of rainbow trout population estimates by year and length group, Upper Kenai River, 1986 - 2001.

Length			Estimated	Population S	ize by Year			
Group	1986		19	1987		95	2001	
by Inches	Number	Percent	Number	Percent	Number	Percent	Number	Percent
12 -13.99	821	33%	697	20%	1,449	26%	1,729	26%
14-15.99	801	32%	1,009	29%	1,277	23%	1,771	26%
16-17.99	444	18%	1,009	29%	1,070	19%	1,609	24%
18-19.99	158	6%	368	11%	1,050	19%	1,032	15%
20-21.99	143	6%	212	6%	539	10%	462	7%
22-23.99	112	4%	117	3%	146	3%	96	1%
24 >	41	2%	61	2%	66	1%	0	0%
Estimated								
Population								
Size	2,520		3,473		5,597		6,698	



Figure 14.- Summary of Upper Kenai River rainbow trout population estimates by number in length class 1986-2001.

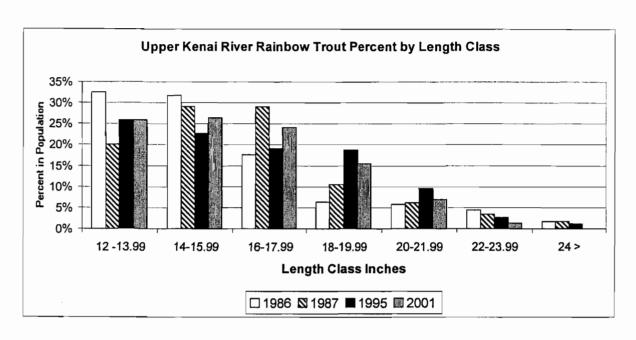


Figure 15.- Summary of Upper Kenai River rainbow trout population estimates by percent of length class 1986-2001.

Table 6. Summary of rainbow trout population estimates by year and length group, Middle Kenai River, 1987 and 1999.

Length		Estimated Popu	lation Size by Yea	r
Group	1	1987	1	999
by Inches	Number	Proportion	Number	Proportion
8-11.99	361	21%	2,437	31%
12 -13.99	167	10%	2,015	26%
14-15.99	361	21%	1,115	14%
16-17.99	306	17%	1,125	14%
18-19.99	194	11%	703	9%
20-21.99	167	10%	309	4%
22-23.99	83	5%	131	2%
24 >	111	6%	47	1%
Estimated				
Population				
Size	1,750		7,882	

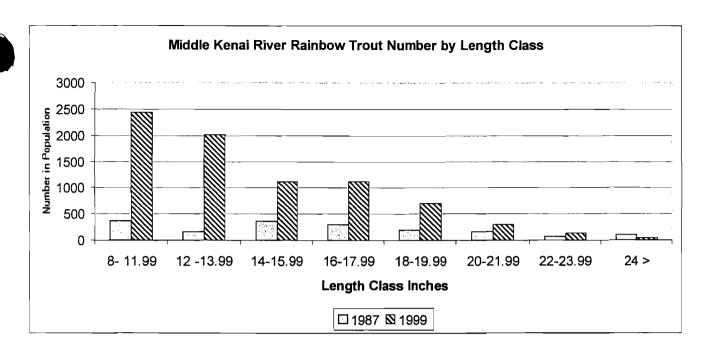


Figure 16.- Summary of Middle Kenai River rainbow trout population estimates by number in length class 1987 and 1999.

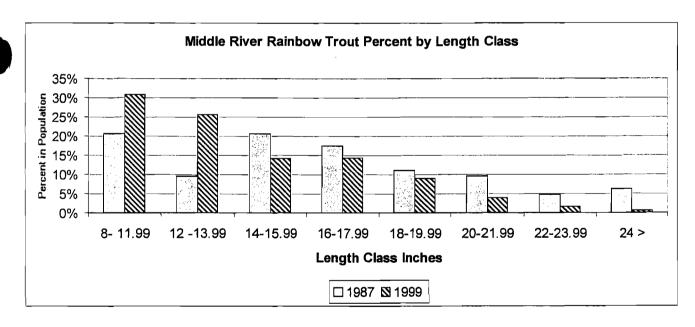


Figure 17.- Summary of Middle Kenai River rainbow trout population estimates by percent of length class, 1987 and 1999.

Table 7. Summary of Kenai River rainbow trout hooking injury by length group,

1998 through 2002.

Length	Total	Number	Percent	Total	Number	Percent
Group	Number	Mouth	Mouth	Number	Eye	Eye
by Inches	Sampled	Damage	Damage	Sampled	Damage	Damage
8-10.99	152	31	20%	102	7	7%
10 11.99	49 1	165	34%	332	16	5%
12 -13.99	852	473	56%	626	57	9%
14-15.99	882	581	66%	751	47	6%
16-17.99	955	701	73%	832	48	6%
18-19.99	866	731	84%	767	39	5%
20-21.99	621	540	87%	581	22	4%
22-23.99	305	261	86%	285	7	2%
24-25.99	67	54	81%	56	0	0%
26 >	11	8	73%	11	0	0%
Total	5,202	3,545	68%	4,343	243	6%

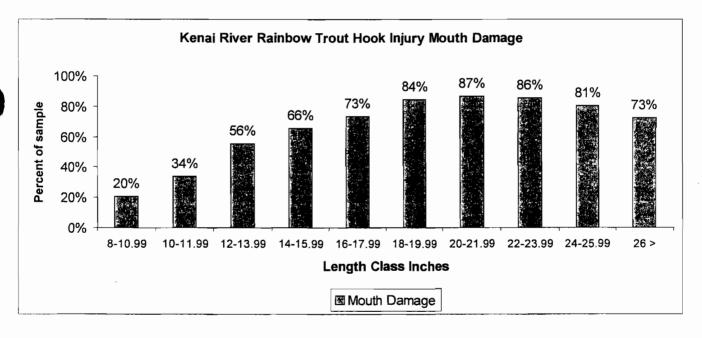


Figure 18.- Summary of Kenai River rainbow trout mouth damage hooking injury by length class, 1998-2002

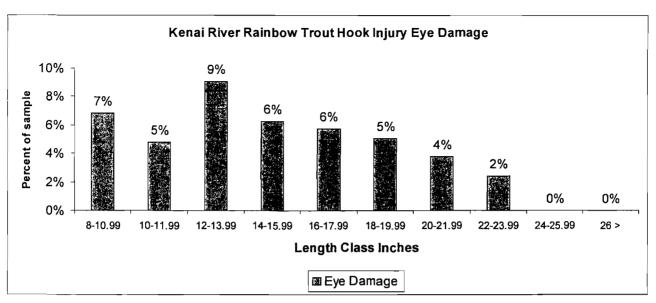


Figure 19.- Summary of Kenai River rainbow trout eye damage hooking injury by length class, 1998 through 2002.

Table 8. Summary of Kenai River rainbow trout harvest by length class regulation, 1998 through 2003.

	Up	per River		N	1iddle Riv	ver	L	ower Rive	er
	Regulationa	Harvest	Season	Regulation	Harvest	Season	Regulation	Harvest	Season
1984	3, 1>20" 1984	930	6/16 - 10/31	3, 1>20"	1,830	6/16 - 10/31	3, 1>20"	710	6/16 - 10/31
1985	3, 1>20"	710	#1	3, 1>20"	2,350	11	3, 1>20"	880	
1986	3, 1>20"	733	+1	3, 1>20"	1,069	11	3, 1>20"	623	
1987	2, 1>20"	364	н	2, 1>20"	1,299	11	2, 1>20"	522	
1988	2, 1>20"	559	н	2, 1>20"	1,279	10	2, 1>20"	295	It
1989	1>20"	253		2, 1>20"	1,183	11	2, 1>20"	481	11
1990	1>20"	1,145	u	2, 1>20"	1,880	**	2, 1>20"	510	n
1991	1>24"	740	er e	2, 1>20"	2,063	Ħ	2, 1>20"	516	11
1992	1>24"	403	**	2, 1>20"	1,147	н	2, 1>20"	427	41
1993	1>30"	192	6/16 - 4/16	1>20"	1,233	n	1>20"	1,149	н
1994	1>30"	163	"	1>20"	907	tr	1>20"	506	9
1995	1>30"	310	"	1>20"	1,220	tı .	1>20"	620	10
1996	1>30" 1996	237	"	1>20"	1,019	II	1>20"	304	"
1997	C & R	0	ır	1>20"	1,171	6/15 - 4/15	1>20"	739	6/15 - 4/15
1998		0	6/15 - 4/15	1>20"	1,407	n	1>20"	608	R
1999		0	**	1>20"	2,268	n	1>20"	1,516	"
2000		0	n	1>20"	2,167	u	1>20"	1,292	n
2001		0	n	1>20"	1,435	**	1>20"	987	H.
2002		0	**	1>20"	1,808	н	1>20"	995	н
2003		0	11	1>20"	1,072	Ħ	1>20"	1,026	п

^a C & R - Catch and Release only, retention of rainbow trout not allowed.

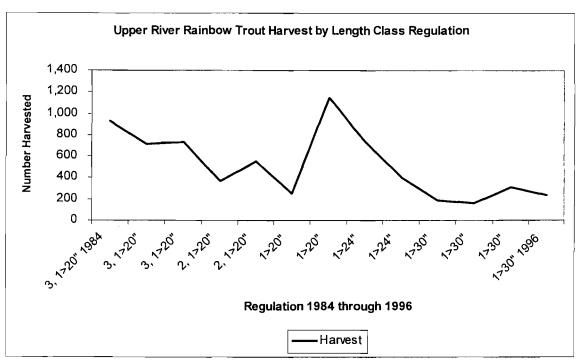


Figure 20.- Summary of Upper Kenai River rainbow trout harvest by length class regulation, 1984 through 1996.

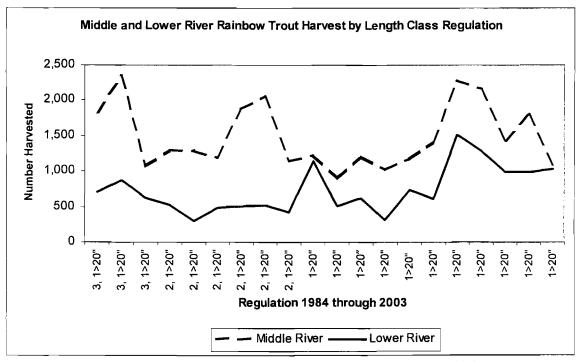


Figure 21.- Summary of Middle and Lower Kenai River rainbow trout harvest by length class regulation, 1984 through 2003.

Table 9. Summary of Upper Kenai River radio-tagged rainbow trout locations, 2000 and 2001.

Table 9. Suili			o-tagged ran	ibow trout locatio
Sample	Number	Number		Percent
Period	Radio-tagged	Radio-tagged		Radio-tagged
Date ^a	fish in river	fish in lake	Total	fish in lake
Aug Early	12	0	12	0%
Aug Late	90	7	97	7%
Sept Early	136	1	137	1%
Sept Late	106	16	122	13%
Oct Early	65	44	109	40%
Oct Late	58	45	103	44%
Nov Early	47	43	90	48%
Dec Early	12	59	71	83%
Jan Late	19	37	56	66%
April Early	25	53	78	68%
April Late	31	52	83	63%
May Early	44	18	62	29%
May Late	81	13	94	14%
June Early	85	2	87	2%
June Late	79	3	82	4%
July Early	73	3	76	4%
July Late	74	2	76	3%
Aug Early	73	1	74	1%
Aug Late	67	0	67	0%
Sept Early	57	0	57	0%
Sept Late	45	3	48	6%
Oct Early	22	14	36	39%
Oct Late	25	18	43	42%
Nov Early	19	16	35	46%
Nov Late	17	27	44	61%

^a Early monthly period is 1-15, late monthly period is 16 to month end.

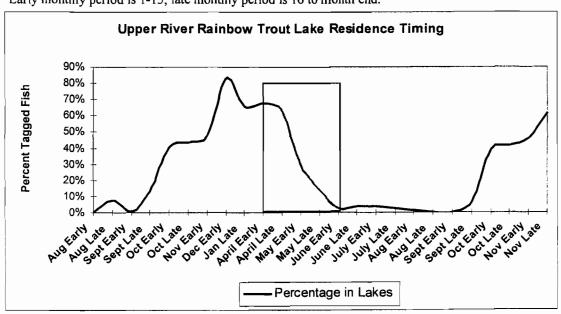


Figure 22.- Locations of radio-tagged Upper River rainbow trout 2000 and 2001, shaded area represents seasonal spawning closure.

Table 10 - Kenai River Dolly Varden harvest and catch by river section as determined by Statewide Harvest Survey, 1984-2006.

	Harvest													Catch											
	Cook l			na Bridge ose River		River to	Skilak Kenai		Kenai Riv Reach No Specifie	ot	Total	Cook I			na Bridge ose River	Moose Skilal	River to		Inlet to	Kenai Reach Spec	Not	Total			
Year	Number	Percent	Number	Percent	Number	Percent	Number	Percent	Number Per	rcent	Number	Number	Percent	Number	Percent	Number	Percent	Number	Percent	Number	Percent	Number			
1984	7,506	23.9	1,966	6.3	11,211	35.7	10,724	34.1			31,407														
1985	7,560	28.8	3,277	12.5	8,930	34.0	6,468	24.7			26,235														
1986	1,249	21.6	771	13.4	1,928	33.4	1,827	31.6			5,775														
1987	2,429	31.8	1,671	21.9	2,139	28.0	1,391	18.2			7,630														
1988	3,531	32.2	1,266	11.5	3,527	32.1	2,653	24.2			10,977														
1989	3,414	33.9	1,371	13.6	3,649	36.3	1,630	16.2			10,064														
1990	2,738	22.9	2,424	20.2	2,741	22.9	4,079	34.0			11,982	7,795	22.5	5,094	14.7	7,537	21.8	14,151	40.9			34,577			
1991	4,211	29.0	3,285	22.6	4,268	29.4	2,740	18.9			14,504	10,665	15.5	8,116	11.8	19,363	28.2	30,601	44.5			68,745			
1992	3,777	26.1	2,516	17.4	4,900	33.9	3,269	22.6			14,462	11,822	15.0	5,899	7.5	26,348	33.4	34,754	44.1			78,823			
1993	4,599	36.2	1,539	12.1	3,503	27.6	3,057	24.1			12,698	13,019	17.1	6,079	8.0	20,778	27.2	36,451	47.8			76,327			
1994	3,276	38.6	1,107	13.0	2,051	24.2	2,052	24.2			8,486	8,752	14.2	5,185	8.4	14,584	23.6	33,168	53.8			61,689			
1995	4,069	42.7	1,732	18.2	2,113	22.2	1,609	16.9			9,523	10,146	18.4	5,399	9.8	12,447	22.6	27,103	49.2			55,095			
1996	2,411	32.2	1,797	24.0	1,995	26.7	1,281	17.1			7,484	9,787	17.3	5,973	10.6	14,506	25.7	26,245	46.4			56,511			
1997	2,518	36.2	1,042	15.0	2,824	40.6	573	8.2			6,957	9,955	11.0	5,268	5.8	22,266	24.5	53,317	58.7			90,806			
1998	1,977	32.5	1,787	29.4	1,847	30.4	468	7.7 9.0			6,079	7,560	12.4	5,961	9.8	11,732	19.3	35,659	58.5			60,912			
1999	3,867	51.1 52.7	1,086	14.3 23.7	1,932	25.5 18.9	683 349	9.0 4.7			7,568 7,427	14,752 18,261	20.2	6,316 9,122	8.7 8.7	20,053	27.5 20.3	31,826	43.6			72,947			
2000	3,916	57.6	1,759 1,613	23.7	1,403 789	18.9	349 363	4.7 5.6			6,528	16,304	17.4 15.1	8,367	7.8	21,291 28,312	26.3	56,375 54,802	53.7 50.8			105,049 107,785			
2001 2002	3,763 2,191	37.0 37.9	1,613	24.7	1,105	19.1	766	13.3	288	5.0	5.781	16,304	21.2	7,751	10.0	13,384	17.3	38,481	49.7	1,437	1.9	77,467			
2002	2,191	49.0	1,431	24.6	1,066	17.4	487	8.0	246	4.0	6,113	15,520	14.9	9,765	9.4	25,972	25.0	50,969	49.1	1,437	1.6	103,910			
2003	1,759	30.2	2,129	36.6	1,220	21.0	452	7.8	258	4.4	5,818	14,386	9.9	13,591	9.3	23,833	16.3	89,318	61.3	4,660	3.2	145,788			
2004	1,739	35.9	934	21.6	1,243	28.8	565	13.1	26	0.6	4,316	13,501	11.4	9,629	8.1	27,398	23.0	62,798	52.8	5,615	4.7	118,941			
2006	971	30.2	1,061	33.0	515	16.0	414	12.9	257	8.0	3,218	11,405	11.6	8,135	8.3	24,499	24.9	52,048	52.9	2,211	2.2	98,298			
Mean	3,420	35.6	1,720	19.0	3,020	27.3	2,160	17.5	200	3.5	10,360	12,410	15.8	7,340	9.3	19,360	23.9	42,250	50.3	3,350	2.8	82,210			

Reach not specified adopted by SWHS beginning in 2002.

From: Mills 1985-1994, Howe et al. 1995, 1996, 2001 a-d, Walker et al. 2003; Jennings et al. 2004, 2006 a-b, 2007 in

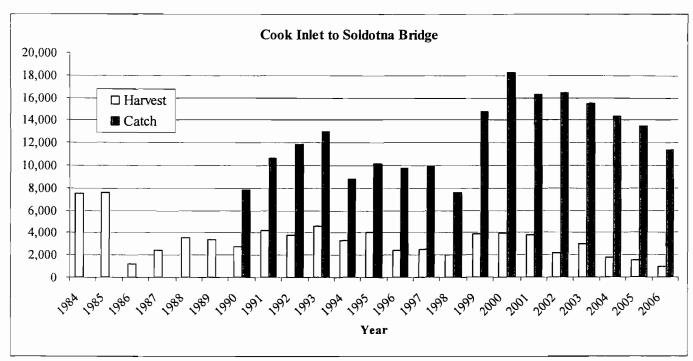


Figure 23.- Kenai River Dolly Varden catch and harvest as determined by the Statewide Harvest Survey, Cook Inlet to Soldotna Bridge, 1984-2006.

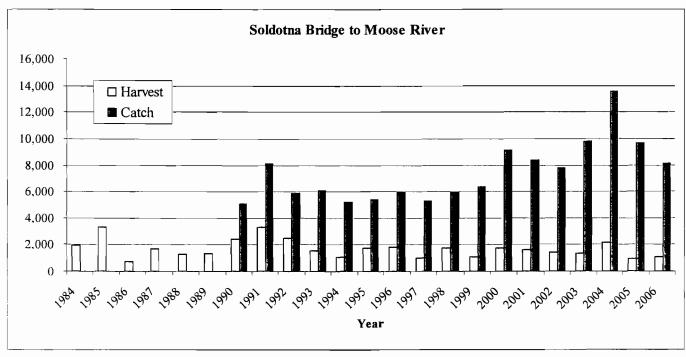


Figure 24.- Kenai River Dolly Varden catch and harvest as determined by the Statewide Harvest Survey, Soldotna Bridge to Moose River, 1984-2006.

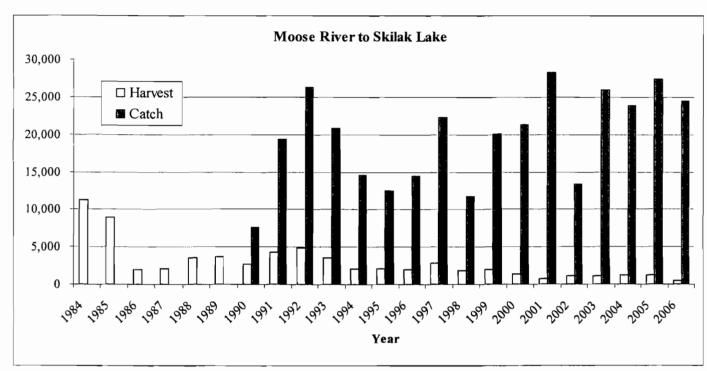


Figure 25.- Kenai River Dolly Varden catch and harvest as determined by the Statewide Harvest Survey, Moose River to Skilak Lake, 1984-2006.

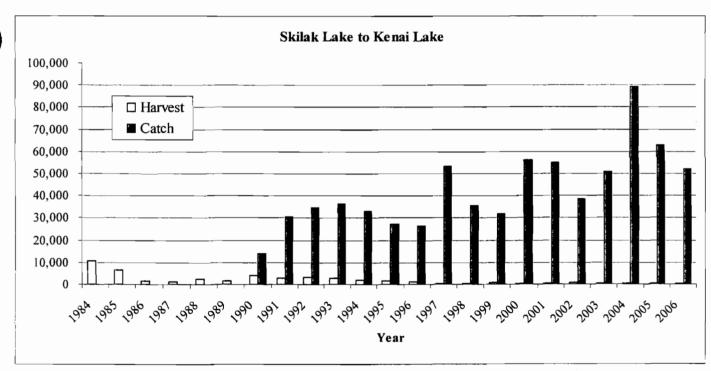


Figure 26.- Kenai River Dolly Varden catch and harvest as determined by the Statewide Harvest Survey, Skilak Lake to Kenai Lake, 1984-2006.

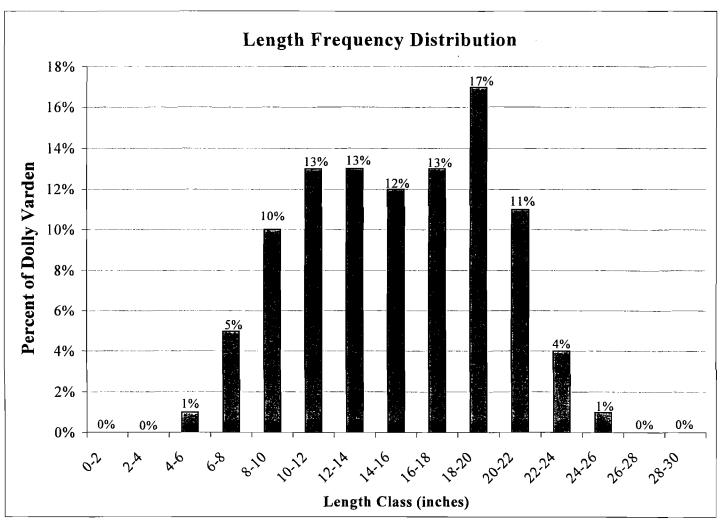


Figure 27.- Length frequency distribution of Kenai River Dolly Varden (all years, all studies).

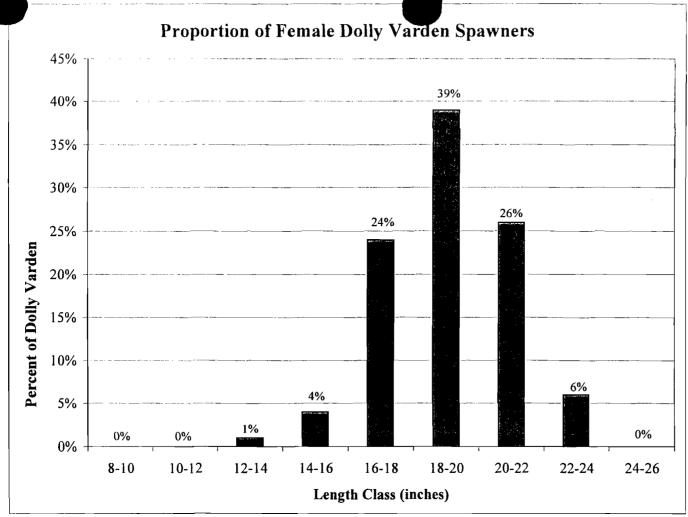


Figure 28.- Proportion of Kenai River female Dolly Varden spawners (all years, all studies).

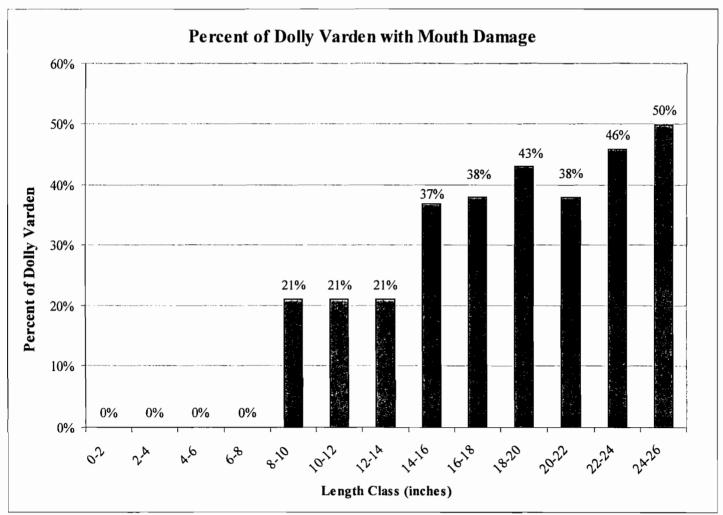


Figure 29.- Percent of Kenai River Dolly Varden with mouth damage (all years, all studies where data is recorded).

Table 11 - Dolly Varden harvest and catch and effort for all species for Ptarmigan Creek, Quartz Creek, Kenai Lake, Russian River and Skilak Lake, 1984-2006.

		Ptarmigan Creek			Quartz Creek			Kenai Lake			Russian River			Skilak Lake	
Year	Effort ^a	Harvest	Catch	Effort ^a	Harvest	Catch	Effort ^a	Harvest	Catch	Effort*	Harvest	Catch	Effort*	Harvest	Catch
1984	1,857	2,120		2,530	3,791		502	224			1,072			0	
1985	988	1,387		451	121		607	69			399			0	
1986	1,483	2,508		4,146	1,605		NA^b	76			826			0	
1987	942	417		5,361	181		580	109			72			91	
1988	1,946	527		3,965	1,292		855	546			473			110	
1989	790	628		4,893	2,399		377	134			361			438	
1990	2,041	1,041	4,081	5,655	2,842	8,672	1,042	302	926		760	2,290		187	583
1991	1,200	705	3,445	5,354	1,905	14,329	1,064	326	757		1,148	6,134		378	1,240
1992	1,750	1,188	4,342	7,906	2,441	9,864	1,536	98	236		664	3,629		172	1,35
1993	1,742	1,057	8,202	9,152	4,317	21,473	2,586	764	1,656		1,001	4,141		145	653
1994	1,425	296	1,877	7,241	2,175	11,702	2,524	443	1,017		595	4,443		233	772
1995	1,914	801	1,642	5,179	1,004	4,659	3,240	606	2,730		554	6,430		224	1,03
1996	336	0	231	3,018	339	3,186	878	48	230		135	5,983		146	1,31
1997	758	54	2,128	3,401	350	13,766	1,734	160	362		376	6,564		327	5,878
1998	701	185	4,195	3,166	396	16,990	520	25	67		73	5,957		17	214
1999	883	77	3,191	4,708	223	8,051	1,462	88	611		196	11,791		110	782
2000	732	44	821	2,423	80	6,318	1,033	95	333		168	11,596		175	1,487
2001	430	11	3,096	3,105	65	10,280	2,509	176	456		253	11,087		48	243
2002	888	0	1,242	4,242	114	11,510	2,502	309	935		175	8,566		134	1,414
2003	899	50	1,028	4,357	123	19,627	1,097	54	107		263	10,504		64	825
2004	687	68	3,609	6,589	342	31,267	497	13	40		324	25,713		152	653
2005	599	0	3,018	6,106	216	23,953	2,072	165	262		232	9,218		0	464
2006	1,061	0	4,291	5,582	219	31,731	619	24	143		261	11,390		39	321

From: Mills 1985-1994; Howe et al. 1995, 1996, 2001 a-d; Walker et al. 2003; Jennings et al. 2004, 2006 a-d, 2007 *In prep*; except Kenai Lake 1984-1988, M. Mills, Alaska Department of Fish and Game, Division of Sport Fish, Research and Technical Services, Anchorage, personal communication.

^{*} Effort directed toward all species.

^b NA = not available.

Russian River Dolly Varden Catch and Harvest (1990 - 2006)

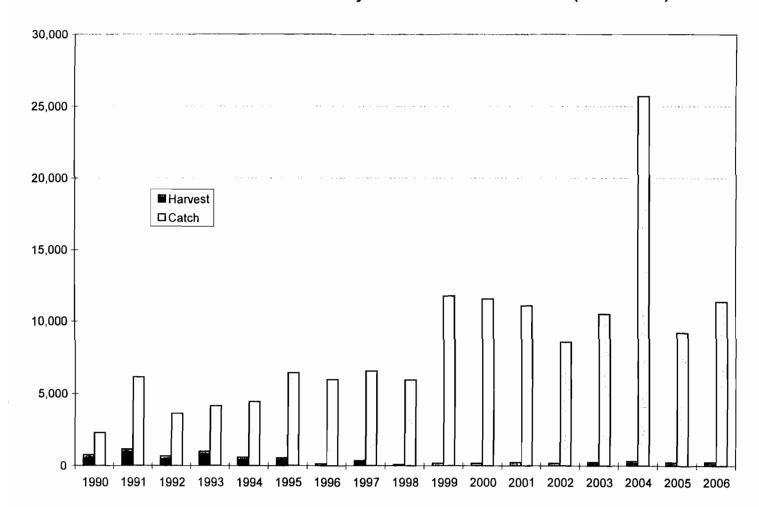


Figure 30.- Russian River Dolly Varden catch and harvest, 1990-2006

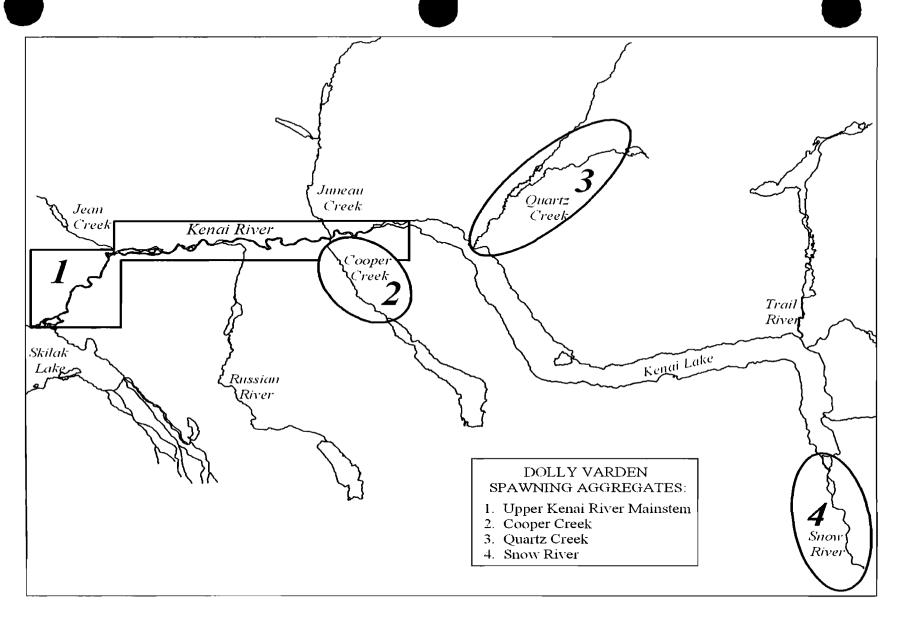


Figure 31. Map of Kenai River drainage showing locations of spawning Dolly Varden population aggregates.

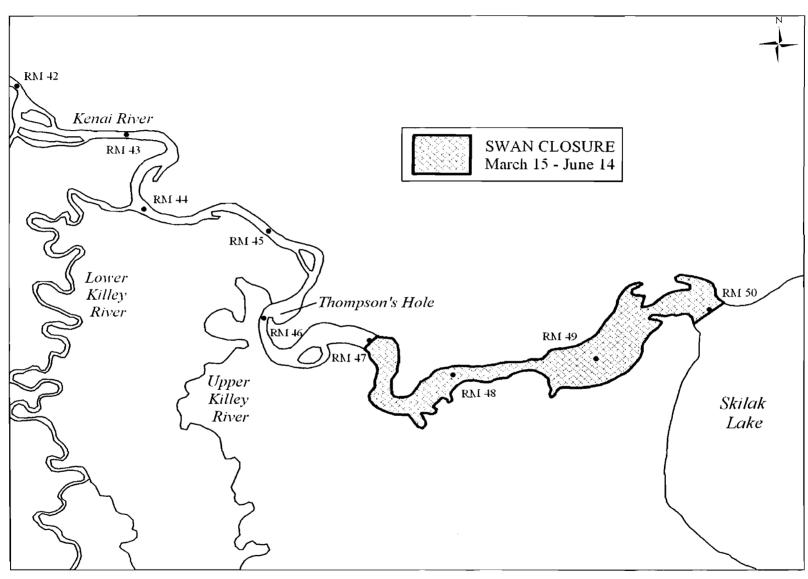


Figure 32. Map of Skilak Lake Outlet showing seasonal drift only area, motor use prohibited March 15 through June 14.

Table 12 - Arctic Char catch, harvest and effort for Cooper Lake, 1997-2006.

Year	Effort ^a	Catc	h	Harvest
1997		143	0	0
1998		104	0	0
1999		363	0	0
2000		673	0	0
2001		126	0	0
2002		309	984	90
2003		280	685	54
2004		248	120	0
2005		175	82	35
2006		184	197	9
Mean		261	207	19

From: Howe et al. 2001c-d; Walker et al. 2003; Jennings et al. 2004, 2006 a-b, 2007 *In prep.* ^a Effort for all species fished.

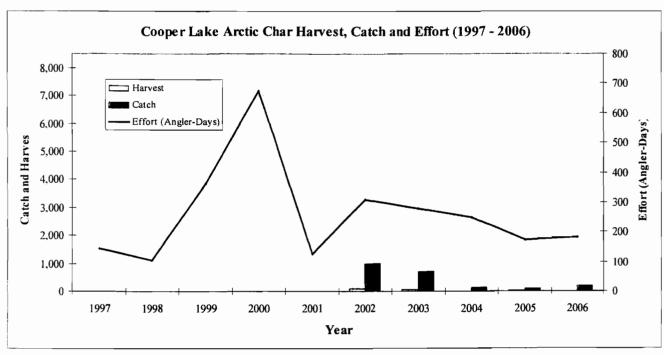


Figure 33 - Cooper Lake Arctic Char harvest, catch and effort, 1997-2006.

Table 13 - Hidden Lake, fishing effort and lake trout catch and harvest as determined by Statewide Harvest Survey, 1977 - 2006

Year	Effort	Catch ^a	Harvest
1977	7,462		1,54
1978	4,028		85
1979	5,974		1,10
1980	5,783		1,86
1981	4,761		1,06
1982	6,728		2,11
1983	6,761		1,43
1984	4,835		1,04
1985	3,676		1,40
1986	6,254		3,76
1987	12,532		1,05
1988	4,820		1,18
1989	1,152		61
1990	4,188	2,020	1,26
1991	4,426	2,302	1,49
1992	4,172	2,005	99
1993	5,030	2,358	1,44
1994	3,014	1,271	82
1995	4,443	1,103	85
1996	2,305	2,082	1,13
1997	2,575	1,091	52
1998	1,576	1,012	55
1999	2,017	1,452	54
2000	1,804	437	31
2001	1,604	734	16
2002	1,412	653	20
2003	1,761	443	28
2004	1,902	1,188	48
2005	1,548	728	21
2006	1,975	580	38
Mean	2,606	1,262	68

From: Mills 1979-1980, 1981 a-b, 1982-1994; Howe et al. 1995, 1996, 2001 a-d;

Walker et al. 2003; Jennings et al. 2004, 2006 a-b, 2007, In prep.

^a Catch data not available until 1990.

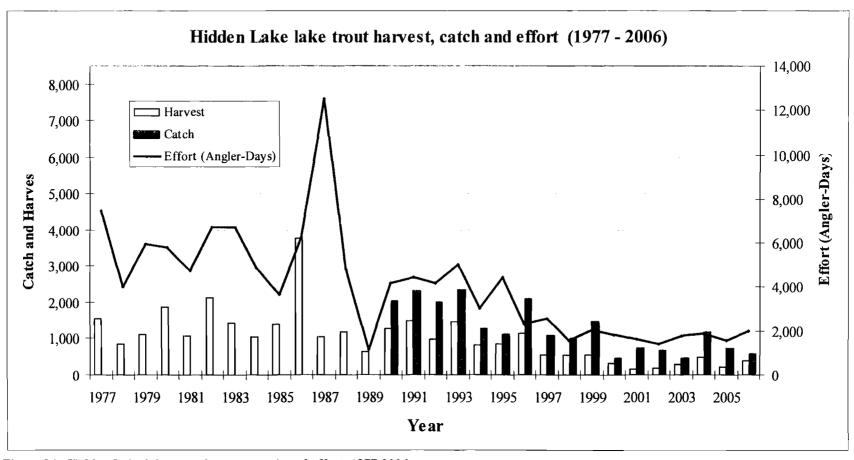


Figure 34 - Hidden Lake lake trout harvest, catch and effort, 1977-2006.

Table 14 - Northern pike catch and harvest for Arc, Scout and Stormy Lakes 2000 - 2006.

Year	Ar	c Lake ^b		Sco	out Lake ^c		Sto	ormy Lake	e^d
	Effort ^a	Catch	Harvest	Effort ^a	Catch	Harvest	Effort ^a	Catch	Harves
2000	145	10	10	661	0	0	232	0	0
2001	122	0	0	107	0	0	353	103	103
2002	89	0	0	271	0	0	509	34	34
2003	0	0	0	38	0	0	310	241	241
2004	0	0	0	42	0	0	165	45	15
2005	0	0	0	176	0	0	151	165	165
2006	0	0	0	70	0	0	70	55	55
Mean	51	1	1	195	0	0	256	92	88

From: Walker et al. 2003; Jennings et al. 2004, 2006 a-b, 2007 In prep.

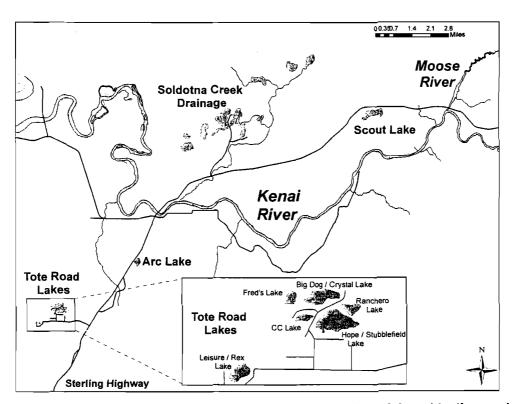


Figure 35 - Map of Tote Road, Scout and Soldotna Creek drainage lakes with pike populations.

^a Effort for all species fished.

Northern pike verified in 2000
 Northern pike verified in 2004
 Northern pike verified in 2001

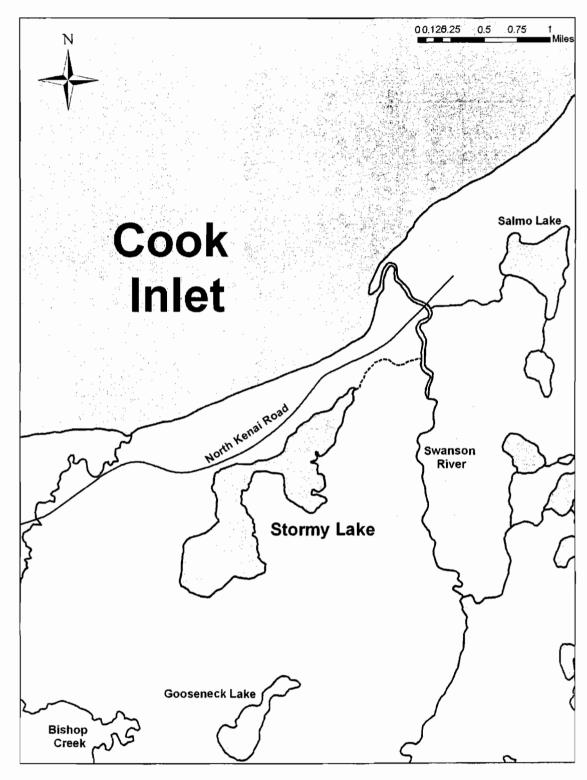


Figure 36 - Map of Stormy Lake.

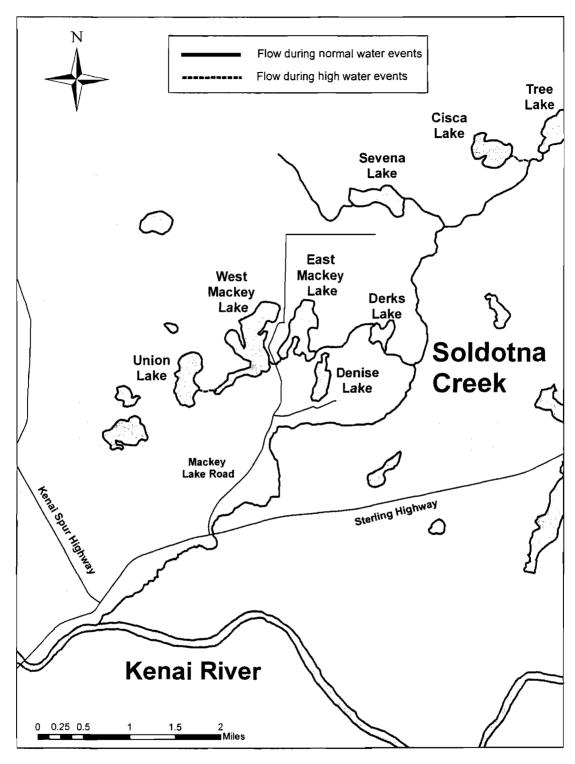


Figure 37 - Map of Soldotna Creek drainage lakes with pike populations.

Table 15 - Kenai Peninsula northern pike harvest, 1981-2006.

	Kenai Lakes River									
Year	Lakes	River	Total							
1981	32		32							
1982	105		105							
1983	294		294							
1984	187		187							
1985	52	69	121							
1986	0	0	0							
1987	0	12	12							
1988	36	0	36							
1989	49	18	67							
1990	30	10	40							
1991	86	0	86							
1992	239	0	239							
1993	216	26	242							
1994	36	0	36							
1995	219	29	248							
1996	32	92	124							
1997	21	7	28							
1998	114	0	114							
1999	329	0	329							
2000	153	6	159							
2001	1,288	0	1,288							
2002	368	12	380							
2003	641	58	699							
2004		a 58	2,321							
2005	212	12	224							
2006	55	0	55							
Mean	271	19	287							

From: Mills 1982-1994; Howe et al. 1995, 1996, 2001 a-d; Walker et al. 2003; Jennings et al. 2004, 2006 a-b, 2007 *In prep*.

^a Number may be inflated due to one large angler report.

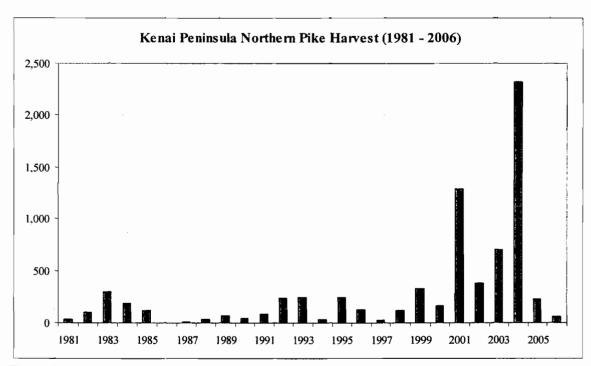


Figure 38 - Kenai Peninsula northern pike harvest, 1981-2006.

Table 16 - Kenai Peninsula waterbodies with confirmed populations of northern pike, 2007

Waterbody	Yea	r Confirmed by ADF&G
Arc Lake		2000
Big Dog Lake / Crystal Lake	a	1983
CC Lake	a	
Denise Lake		2002
Derks Lake		1977
E. Mackey Lake		1977
Egumen Lake		Strongly Suspected (1995)
Fred's Lake	a	
Hope Lake / Stubblefield Lake	a	
Kenai River		Unknown
Leisure Lake		2006
Moose River		1985
Ranchero Lake	a	
Scout Lake		2004
Sevena Lake		1977
Stormy Lake		2001
Tree Lake		2001
Union Lake		1995
W. Mackey Lake		1970's?

^a Commonly referred to as the Tote Road Lakes Derks Lake was likely point of introduction, confirmed presence in 1977.

Deliberation Materials

Committee D (Personal Use)

UCI BOF 2008

Soldotna SF Division

Committee D: Kenai Peninsula Personal Use Fishing

Proposals: 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224.

Category	Prop#	Proposal Intent/Effect	ADF&G Position	Background Information
Personal Use - Kenai Peninsula	211	Prohibit dipnetting on the Kenai River until BEG is met	NEUTRAL	Tables 1-9 (pp. 1-5, 7-11, 14-16) Figures 1-4 (pp. 6-7, 12-13)
Personal Use - Kenai Peninsula	212	Prohibit personal use dipnet fishery on Kenai River until escapement goals met	NEUTRAL	Tables 1-9 (pp. 1-5, 7-11, 14-16) Figures 1-4 (pp. 6-7, 12-13)
Personal Use - Kenai Peninsula	213	Link personal use dipnet openings to escapement numbers	NEUTRAL	Tables 1-9 (pp. 1-5, 7-11, 14-16) Figures 1-4 (pp. 6-7, 12-13)
Personal Use - Kenai Peninsula	214	Extend dipnet season on Kenai River	NEUTRAL	Tables 1-9 (pp. 1-5, 7-11, 14-16) Figures 1-4 (pp. 6-7, 12-13)
Personal Use - Kenai Peninsula	215	Increased harvest opportunity in personal use fishery in Kenai and Kasilof rivers	NEUTRAL	Tables 15, 17 (pp. 26-27)
Personal Use - Kenai Peninsula	216	Increase Kasilof River personal use household limit	NEUTRAL	Tables 1-5, 10-13 (pp. 1-5, 7-9, 18 19, 22-24) Figures 1-2, 6-8 (pp. 6- 7, 20-21, 25)
Personal Use - Kenai Peninsula	217	Reduce personal use fishery limit to 5 salmon per person, 25 per household	NEUTRAL	Tables 14, 19 (pp. 26, 29)
Personal Use - Kenai Peninsula	218	Lower annual limits for personal use salmon harvest to 20 for head of household and 5 for each dependent and no more than 50% of limit may	NEUTRAL	Tables 15-16, 19 (pp. 26-27, 29)
Personal Use - Kenai Peninsula	219	Lower annual limits for personal use salmon harvest to 15 for head of household and 5 for each dependent	NEUTRAL	Tables 18-19 (pp. 28-29)
Personal Use - Kenai Peninsula	220	Prohibit personal use dipnets with mesh size over 2 1/2 inches	NEUTRAL	See Staff Comments
Personal Use - Kenai Peninsula	221	Implement motor type restriction for dip net fishing from vessel	SUPPORT	See Staff Comments
Personal Use - Kenai Peninsula	222	Restrict 2-stroke motor boat use in personal use fishery	OPPOSE	See Staff Comments
Personal Use - Kenai Peninsula	223	Require motorized boats utilizing the personal use fishery to be anchored or without power while fishing	OPPOSE	See Staff Comments
Personal Use - Kenai Peninsula	224	Allow rod and reel in personal use fishery/Identify consumptive users as a person fishing for winter supply	OPPOSE	See Staff Comments

LIST OF TABLES

Table	Page
Table 1 Effort and harvest in Upper Cook Inlet personal use salmon fisheries, 1996-2007	1
Table 2 Sockeye salmon exploitation rate by Upper Cook Inlet personal use fisheries, 1996-2007	4
Table 3 Effort (days fished) in the Upper Cook Inlet personal use salmon fisheries, 1996-2007	5
Table 4 Number of permits issued, permits returned and those that did not fish in the Upper Cook Inlet personal use salmon fishery, 1996-2007.	7
Table 5 Upper Cook Inlet personal use salmon fishing regulatory history, 1996-2007 (only changes are listed in successive years)	lefined.
Table 6 Kenai River cumulative daily sonar counts of sockeye salmon, 1996-2007	8
Table 7 Kenai River personal use sockeye salmon dip net fishery summary, 1981-2007	12
Table 8 Effort and harvest in the Kenai River personal use dip net fishery, 1996-2007	13
Table 9 Cumulative harvest timing for the Kenai River personal use dip net fishery, 2001-2006	14
Table 10 Kasilof River cumulative daily sonar counts of sockeye salmon, 1996-2007	16
Table 11 Kasilof River personal use dip net fishery summary, 1981-2007	20
Table 12 Effort and harvest in the Kasilof River personal use dip net fishery, 1996-2007	21
Table 13 Cumulative harvest timing for the Kasilof River personal use dip net fishery, 2001-2006	22
Table 14 Percent of personal use permit holders that would have exceeded a 5 salmon per person bag limit by year (Proposal 217).	24
Table 15 Percent of personal use permit holders that would have exceeded a 25 salmon per household bag limit by year.	24
Table 16 Percent of personal use permit holders that would have exceeded a 20 (head of household) -5 (each dependent) bag limit by year (proposal 218).	25
Table 17 Percent of personal use permit holders that would have harvested over 50% of their bag limit from the Kenai River by year.	25
Table 18 Percent of personal use permit holders that would have exceeded a 15 (head of household) -5 (each dependent) bag limit by year (proposal 219).	26
Table 19 Estimated reduction in harvest with proposed bag limits from proposal 217, 218 and 219	27

LIST OF FIGURES

FIGURE Figure 1 Permit effort (days fished) for Upper Cook Inlet personal use salmon fisheries, 1996-2007	PAGE 6
Figure 2 Number of permits issued in the Upper Cook Inlet personal use salmon fishery, 1996-2007	7
Figure 3 Kenai River sockeye salmon average cumulative daily sonar counts, 1996-2007.	10
Figure 4 Kenai River sockeye salmon cumulative sonar counts, 1996-2007	11
Figure 5 Map of the Kenai River personal use shoreline and boat dip net area.	15
Figure 6 Kasilof River sockeye salmon average cumulative daily sonar counts, 1996-2007.	18
Figure 7 Kasilof River sockeye salmon cumulative sonar counts, 1996-2007.	19
Figure 8 Map of the Kasilof River personal use set gillnet and dip net area	23

Table 1.- Effort and harvest in Upper Cook Inlet personal use salmon fisheries, 1996-2007.

	Days	Days	Fish	ed	Soc	ckeye		Cł	inoc	k	(Coho]	Pink			Chui	n	Т	otal	
Year	Open	Est.	SE	RP	Est.	SE	RP	Est.	SE	RP	Est.	SE	RP	Est.	SE	RP	Est.	SE	RP	Est.	SE	RP
Fish Cr	eek dip	net																				
1996	22	3,749	41	2%	17,260	161	2%	37	8	42%	2,414	25	2%	331	9	5%	153	5	6%	20,195	168	2%
1997	13	991	34	7%	3,277	76	5%	0	0		63	5	16%	53	7	26%	4	1	49%	3,397	84	5%
1998	15	1,141	21	4%	4,036	113	5%	1	0	0%	649	19	6%	80	10	25%	29	2	14%	4,795	117	5%
1999	16	432	16	7%	1,083	138	25%	0	0		17	3	35%	12	7	114%	0	0		1,112	139	25%
2000	16	1,054	25	5%	6,925	211	6%	0	0		958	72	15%	83	12	28%	29	3	20%	7,995	225	6%
2001	3	131	7	10%	436	40	18%	0	0		18	7	76%	2	0	0%	1	0	0%	457	41	18%
2002	0																					
2003	0																					
2004	0																					
2005	0																					
2006	0																					
2007	0																					
Min.	0	131			436			0			17			2			0			457		
Mean	7	1,250			5,503			6			687			94			36			6,325		
Max.	22	3,749	_		17,260			37			2,414			331			153			20,195	-	
<u>Kasilof</u>	<u>River di</u>																					
1996	27	1,300	23	3%	11,197	127	2%	50		4%	334			103	2	4%	17	0	0%	11,701	130	2%
1997	27	1,091	32	6%	9,737	150	3%	35	2	11%	90	3	7%	19	2	21%	19	1	10%	9,900	153	3%
1998	27	3,421	33	2%	45,161	525	2%	134	3	4%	731	18	5%	610	25	8%	74	32	85%	46,710	528	2%
1999	27	3,611	43	2%	37,176	507	3%	127	5	8%	286	50		264	12	9%	52	8	30%	37,905	511	3%
2000	27	2,622	36	3%	23,877	403	3%	134		10%	1,004	16	3%	841	39	9%	34	0	0%	25,890	407	3%
2001	27	3,382	37	2%	37,612	505	3%	138	6	9%	766	25	6%	307	14	9%	23	0	0%	38,846	511	3%
2002	44	4,020	38	2%	46,769	530	2%	106		11%	1,197	59	10%	1,862	73	8%	139	7	10%	50,073	553	2%
2003	44	3,874	28	1%	43,870	440	2%	57		14%	592	49	16%	286	21	14%	30	1	7%	44,835	447	2%
2004	44	4,432	19	1%	48,315	259	1%	44	3	13%	668	21	6%	396	15	7%	90	5	11%	49,513	263	1%
2005	44	4,500	9	0%	43,151	100	0%	16		12%	538	16	6%	658	12	4%	102	2	4%	44,465	103	0%
2006	44	5,763	10	0%	56,144	113	0%	55		4%	1,057	15	3%	992	8	2%	105	4	7%	58,353	117	0%
2007	44	4,600	9	0%	43,293	105	0%	35		4%	487	8	3%	383	6	2%	136	2_	7%_	44,334	106	0%
Min.	27	1,091			9,737			16			90			19			17			9,900		
Mean	36	3,551			37,192			78			646			560			68			38,544		
Max.	44	5,763			56,144			138			1,197			1,862			139			58,353		

	Days	Days	Fish	ed	Sockeye		Ch	Chinook			Coho]	Pink			Chu	m	7	otal		
Year	Open	Est.	SE	RP	Est.	SE	RP	Est.	SE	RP	Est.	SE	RP	Est.	SE	RP	Est.	SE	RP	Est.	SE	RP
Kasilof	River g	illnet																				
1996	5	582	16	5%	9,506	156	3%	46	3	13%	0	0		8	0	0%	1	0	0%	9,561	157	3%
1997	5	815	26	6%	17,997	231	3%	65	2	6%	1	0	0%	102	7	13%	3	1	65%	18,168	233	3%
1998	5	1,075	24	4%	15,975	425	5%	126	7	11%	0	0		15	4	52%	12	10	163%	16,128	426	5%
1999	10	1,287	39	6%	12,832	371	6%	442	27	12%	25	2	16%	10	0	0%	10	0	0%	13,319	374	6%
2000	13	1,252	23	4%	14,774	275	4%	514	15	6%	9	0	0%	17	2	23%	10	0	0%	15,324	276	4%
2001	8	1,001	20	4%	17,201	394	4%	174	6	7%	6	0	0%	11	0	0%	7	5	140%	17,399	397	4%
2002	10	1,025	16	3%	17,980	274	3%	192	5	5%	12	0	0%	30	2	13%	13	4	60%	18,227	277	3%
2003	10	1,206	17	3%	15,706	277	3%	400	13	6%	107	0	0%	9	0	0%	4	0	0%	16,226	284	3%
2004	10	1,272	10	2%	25,417	203	2%	163	4	5%	58	13	44%	6	1	33%	0	0	0%	25,644	205	2%
2005	11	1,506	6	1%	26,609	104	1%	87	1	2%	326	5	3%	16	1	12%	1	0	0%	27,039	104	1%
2006	10	1,724	5	1%	28,867	91	1%	287	2	1%	420	16	7%	11	0	0%	6	0	0%	29,591	94	1%
2007	10	1,569	7	1%	14,943	66	1%	343	3	2%	68	4	12%	2	0	0%	0	0	0%	15,356	66	1%
Min.	5	582			9,506			46	_	_	0			2			0			9,561		
Mean	9	1,193			18,151			237			86			20			6			18,499		
Max.	13	1,724			28,867			514			420			102			13			29,591		
	River dip																					
1996		10,503	60	1%	102,821	367	1%	295	5	3%	1,932	29	3%	2,404	33	3%	175	10	11%	,	375	1%
1997		11,023	87	2%	114,619	439	1%	364		7%	559	21	7%	619	14	4%	58	5		116,219	448	1%
1998		10,802	59	1%	103,847	716	1%	254		8%	1,011	62	12%	1,032	62	12%	85	3		106,229	724	1%
1999		13,738	79	1%	149,504	,	1%	488	13	5%	1,009		21%	1,666	64	8%	102	13		152,769	-	1%
2000		12,354	69	1%	98,262	752	1%	410		9%	1,449	62	8%	1,457	75	10%	193	31		101,771	762	1%
2001		14,772	66	1%	150,766	909	1%	638		5%	1,555		13%	1,326	37	5%	155	19	24%	,	926	1%
2002		14,840	56	1%	180,028	844	1%	606	11	4%	1,721	64	7%	5,662	102	4%	551	36	13%	,	874	1%
2003		15,263	50	1%	223,580	891	1%	1,016		3%	1,332	68	10%	1,647	98	12%	249	22	17%	,	905	1%
2004		18,513	35	0%	262,831	583	1%	792	7	2%	2,661	66	5%	2,103	27	3%	387	12	6%	,	905	1%
2005		20,977	18	0%	295,496	273	0%	997	3	1%	2,512	24	2%	1,806	12	1%	321	2	1%	301,132	275	0%
2006		12,685	16	0%	127,630	183	0%	1,034	3	1%	2,235	15	1%	11,127	37	1%	551	9	3%	142,577	203	0%
2007		21,861	23	0%	291,270	335	0%	1,509	4	1%	2,111	24	1%	1,939	23	1%	472	_17	3%	297,301	337	0%
Min.		10,503			98,262			254			559			619			58			101,771		
Mean		14,778			175,055			700			1,674			2,732			275			180,436		
Max.	27	21,861			295,496			1,509			2,661			11,127			551			301,132		

Table 1.- continued.

	Days Days Fished		Sc	Sockeye		Cł	Chinook			Coho			Pink		Chum		m	Total				
Year	Open	Est.	SE	RP	Est.	SE	RP	Est.	SE	RP	Est.	SE	RP	Est.	SE	RP	Est.	SE	RP	Est.	SE	RP
Unknov	wn Fis <u>h</u> e	ery																	_			
1996		472	33	14%	4,761	463	19%	24	7	61%	131	37	55%	127	37	57%	4	3	120%	5,047	467	18%
1997		1,003	50	10%	3,310	276	16%	0	0	0%	64	14	43%	51	21	80%	4	3	139%	3,429	282	16%
1998		921	39	8%	7,562	287	7%	34	5	29%	294	77		196	19	19%	20	0	0%	8,106	301	7%
1999		684	20	6%	7,994	352	9%	51	5	19%	76	7	18%	126	2	3%	4	0	0%	8,251	353	8%
2000		648	23	7%	5,429	274	10%	44	13	58%	218	60		84	11	26%	24	15	123%	5,799	282	10%
2001		1,339	34	5%	12,673	380	6%	188	17	18%	292		20%	175	24	27%	90	34	74%	13,418	394	6%
2002		1,339	26	4%	14.846	353	5%	166	10	12%	341	25	14%	916	81	17%	54	8	29%	16,323	380	5%
2003		1,325	21	3%	15,675	247	3%	238		21%	219	14	13%	140	9	13%	88	9	20%	16,360	254	3%
2004		1,143	13	2%	13,527	179	3%	99	3	6%	366	25	13%	210	10	9%	25	4	31%	14,227	185	3%
2005		270	2	1%	4,520	38	2%	32	1	6%	39	1	5%	40	2	10%	4	0	0%	4,635	38	2%
2006		371	2	1%	3,406	34	2%	29	1	7%	47	2	8%	304	16	10%	84	0	0%	3,870	41	2%
2007		534	3	1%	6,729	52	2%	37	<u> </u>	5%	61	3	10%	28	<u> </u>	7%	6	0	0%	6,861	52	1%
Min.		270			3,310			0			39			28			4			3,429		
Mean		837			8,369			78			179			200			34			8,861		
Max.		1,339			15,675			238			366			916			90			16,360		
_					<u>isheries T</u>											_						
1996		16,606			145,545	644	1%	452		5%	4,811	56	2%	2,973	50	3%	350			154,131	655	1%
1997		14,923			148,940	592	1%	464		6%	777	26	7%	844	27	6%	88	6		151,113	604	1%
1998		17,360			176,581		1%	549		5%	2,685		7%	1,933	70	7%	220	-		181,968		1%
1999		19,752			208,589	•	1%	1,108			1,413		17%	2,078	66	6%	168	15		213,356	•	1%
2000		17,930	88		149,267	961	1%	1,102			3,638		6%	2,482	86	7%	290			156,779	976	1%
2001		20,625	86		218,688	,		1,138			2,637		8%	1,821	46	5%	276			224,560		1%
2002		21,224	74		259,623	,		1,070			3,271	91	5%	8,470		3%	757			273,191		1%
2003		21,668	63		298,831	•		1,711			2,250	85	7%	2,082		9%	371	24		305,245		1%
2004		25,360	43		350,091	678	0%	1,098	9	2%	3,754	75	4%	2,715	32	2%	502			358,158	689	0%
2005		27,253	21		369,776	311	0%	1,132	3	1%	3,415	29	2%	2,520	17	1%	428	3		377,271	314	0%
2006		20,543	20		216,047	236	0%	1,405	4	1%	3,759	27	1%	12,434	41	1%	746			234,391	242	0%
2007		28,602	29	0%	356,717	386	0%	1,924	5	1%	2,727	26	2%	2,352	24	2%	614	17	5%	364,334	388	0%
Min.		14,923			145,545			452			777			844			88			151,113		
Mean		20,987			241,558			1,096			2,928			3,559			401			239,106		
Max.		28,602			369,776			1,924			4,811			12,434			757			377,271		

Table 2.- Sockeye salmon exploitation rate by Upper Cook Inlet personal use fisheries, 1996-2007.

	Harv		Inriver	Ex	Exploitation rate					
year	Dip net	Gillnet	Return a,b,c	Dip net	Gillnet	Combined				
Fish creek										
1996	17,260		80,488	21.4%						
1997	3,277		58,434	5.6%						
1998	4,036		27,055	14.9%						
1999	1,083		28,261	3.8%						
2000	6,925		26,479	26.2%						
2001	436		43,932	1.0%						
2002				closed-						
2003				closed-						
2004			-	closed-						
2005			-	closed-						
2006				closed-						
2007			•	closed-						
Minimum	436		26,479	1.0%						
Mean	5,503		44,108	12.2%						
Maximum	17,260		80,488	26.2%						
Kasilof River										
1996	11,197	9,506	272,524	4.1%	3.5%	7.6%				
1997	9,737	17,997	296,855	3.3%	6.1%	9.3%				
1998	45,161	15,975	336,936	13.4%	4.7%	18.1%				
1999	37,176	12,832	366,086	10.2%	3.5%	13.7%				
2000	23,877	14,774	298,903	8.0%	4.9%	12.9%				
2001	37,612	17,201	366,887	10.3%	4.7%	14.9%				
2002	46,769	17,281	294,749	15.9%	6.1%	22.0%				
2002	43,870	15,706	423,687	10.4%	3.7%	14.1%				
2004	48,315	25,417	656,901	7.4%	3.9%	11.2%				
2005	43,151	26,609	422,259	10.2%	6.3%	16.5%				
2006	56,144	28,867	458,730	12.2%	6.3%	18.5%				
2007	43,293	14,943	456,750 d	12.270	0.570	10.57				
Minimum	9,737	9,506	272,524	3.3%	3.5%	7.6%				
Mean	37,192	18,151	381,320	9.6%	4.9%	14.4%				
Maximum	56,144	28,867	656,901	15.9%	6.3%	22.0%				
Kenai River										
	102 921		041 767	10.9%						
1996 1997	102,821		941,767 1,224,567	9.4%						
1997	114,619			11.4%						
1999	103,847		907,035 1,000,415							
2000	149,504			14.9%						
	98,262		782,127	12.6%						
2001 2002	150,766		853,990 1,186,846	17.7%						
2002	180,028			15.2%						
	223,580		1,469,238	15.2%						
2004	262,831		1,715,315	15.3%						
2005	295,496		1,734,574	17.0%						
2006 2007	127,630		1,661,142	7.7%						
Minimum	291,270 98,262		782,127	7.7%						
Mean	175,055		1,225,183	13.4%						
Maximum	295,496		1,734,574	17.7%						
		m 1: 1	Willette (2003).							

a- 1996-1991 estimates from Tobias and Willette (2003).

b- 2002-2006 estimates from Terri Tobias (personal communication).

c- Inriver return calculated as sonar/weir passage+subsistance/personal use harvest+sport harvest below sonar/weir+Kenaitze educational harvest of late-run sockeye.

d-Estimates not available until Fall 2008.

Table 3.- Effort (days fished) in the Upper Cook Inlet personal use salmon fisheries, 2000-2007.

	2000		2001		2002		2003		2004		2005		2006		2007		00-07
Fishery	Estimate	SE	Average														
Kenai Dip net	12,354	69	14,772	66	14,840	56	15,263	50	18,513	35	20,977	18	12,685	16	21,861	23	18,752
Kasilof Dip net	2,622	36	3,382	37	4,020	38	3,874	28	4,432	19	4,500	9	5,763	10	4,600	9	4,742
Kasilof Gillnet	1,252	23	1,001	20	1,025	16	1,206	17	1,272	10	1,506	6	1,724	5	1,569	7	1,508
Fish Creek Dip net	1,054	25	131	7	0	0	0	0	0	0	0	0	0	0	0	0	169
Unrecorded Site	648	23	1,339	34	1,339	26	1,325	60	1,143	13	270	2	371	2	534	3	996
Total	17,930	88	20,625	86	21,224	74	21,668	63	25,360	43	27,253	21	20,543	20	28,564	29	26,167

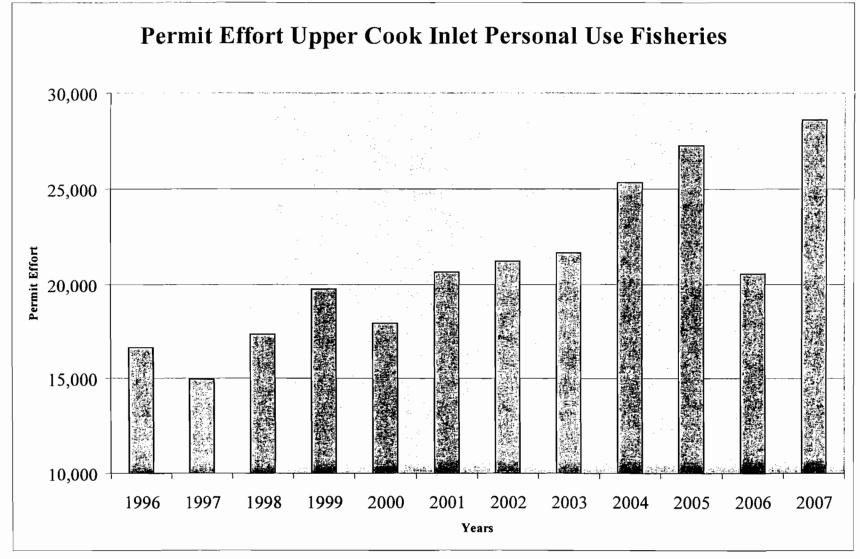
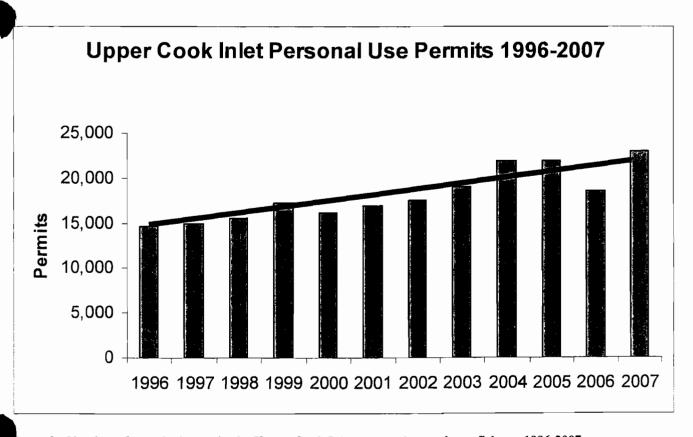



Figure 1.- Permit effort (days fished) for Upper Cook Inlet personal use salmon fisheries, 1996-2007.

Table 4.- Number of permits issued, permits returned and those that did not fish in the Upper Cook Inlet personal use salmon fishery, 1996-2007.

			1996-2007 Sta	itistics		
	Permits I	ssued*	Returned 1	Permits ^a	Did Not Fish	
Year	Number	SE	Number	%	Number	%
1996	14,576	0	13,452	92	4,408	30
1997	14,919	0	13,756	92	6,248	42
1998	15,535	19	13,190	85	5,539	36
1999	17,197	25	14,216	83	5,643	33
2000	16,107	11	13,582	84	5,745	36
2001	16,915	1	14,398	85	3,528	21
2002	17,568	1	14,284	81	4,858	28
2003	19,110	2	15,726	82	3,577	19
2004	21,910	. 2	17,748	82	4,001	18
2005	21,905	1	19,081	88	3,840	18
2006	18,563	1	16,532	89	4,695	25
2007	23,046	1	20,312	88	4,190	18

^aEstimated Numbers

igure 2.- Number of permits issued in the Upper Cook Inlet personal use salmon fishery, 1996-2007.

Table 6.- Kenai River cumulative daily sonar counts of sockeye salmon, 1996-2007.

	-						Year						
	_												Average
5	1007		4000		****	•••	***		2004	•••	-004		Cum. Daily
Date	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	Count
1-Jul	834	3,451	1,774	1,082	1,744	1,209	4,943	8,820	3,164	5,393	1,764	3,740	3,160
2-Jul	1,644	8,514	4,992	2,106	3,396	6,680	12,788	13,292	6,591	13,427	4,501	8,207	7,178
3-Jul	2,495	14,565	7,674	2,929	6,651	10,885	17,470	19,681	10,151	20,680	7,036	12,067	11,024
4-Jul	3,681	22,108	10,208	3,712	9,866	14,797	26,271	24,841	12,509	32,346	9,653	14,738	15,394
5-Jul	5,559	31,270	13,268	4,783	11,815	18,495	53,529	28,007	14,334	45,821	12,410	17,654	21,412
6-Jul	8,087	36,034	19,130	6,628	14,089	21,192	79,876	31,982	16,379	58,152	15,715	20,976	27,353
7-Jul	9,666	39,884	25,341	9,426	18,191	24,819	132,931	36,769	20,127	68,010	19,148	26,137	35,871
8-Jul	13,124	46,564	31,351	13,013	22,165	30,125	169,261	43,203	26,140	79,985	22,025	34,021	44,248
9-Jul	15,208	50,332	39,873	17,533	29,070	36,120	192,839	53,388	28,975	107,091	25,684	42,654	53,231
10-Jul	17,013	72,153	49,916	21,071	37,715	40,644	211,799	77,506	31,663	129,463	29,879	46,572	63,783
11-Jul	20,125	124,497	54,402	23,209	42,257	45,630	223,788	137,726	33,887	167,639	32,754	51,189	79,759
12-Jul	23,063	182,427	57,262	25,359	46,717	48,641	230,764	178,650	37,128	216,433	34,623	56,114	94,765
13-Jul	25,285	248,446	60,219	27,448	71,631	52,213	238,567	207,884	43,144	242,769	37,282	58,906	109,483
14-Jul	51,542	311,028	63,437	31,631	162,433	62,476	248,819	229,462	157,250	258,885	39,212	63,434	139,967
15-Jui	168,838	329,537	67,923	39,319	241,242	91,356	273,005	318,655	295,462	272,948	43,242	70,330	184,321
16-Jul	275,914	368,651	78,449	43,178	286,574	121,858	309,527	427,545	390,382	318,219	56,544	77,241	229,507
17-Jul	318,960	442,645	114,900	53,625	309,888	163,409	336,822	520,840	438,760	379,930	72,019	82,669	269,539
18-Jul	345,861	526,755	140,663	78,173	340,491	191,794	381,145	592,114	470,854	430,293	80,983	91,550	305,890
19-Jul	371,916	533,957	160,248	111,075	364,879	226,341	475,906	623,936	491,511	505,512	86,982	134,199	340,539
20-Jul	395,555	556,022	177,635	131,878	377,358	252,875	537,957	655,918	501,700	541,565	94,450	149,979	364,408
21-Jul	422,061	577,282	189,169	160,346	389,663	267,041	570,978	723,034	532,184	562,504	110,461	181,575	390,525
22-Jul	440,821	587,786	208,828	200,433	401,555	282,398	594,661	788,676	627,654	588,014	142,747	228,372	424,329
23-Jul	470,565	620,976	255,659	247,603	420,032	302,953	621,160	843,099	656,900	640,512	176,110	267,450	460,252
24-Jul	508,733	690,530	300,885	289,253	446,026	339,758	647,439	873,619	689,087	696,036	219,805	301,579	500,229
25-Jul	566,375	701,823	332,835	358,989	469,929	387,914	672,273	905,092	723,806	725,956	269,604	335,714	537,526
26-Jul	600,066	708,821	352,904	413,995	491,640	439,484	703,956	929,562	765,397	744,400	352,858	382,201	573,774
27-Jul	614,623	712,966	375,858	472,990	509,858	474,483	715,724	969,171	800,513	756,137	408,458	442,461	604,437
28-Jul	624,079	717,969	417,171	519,477	525,697	493,151	726,184	997,552	842,523	765,322	466,552	484,839	631,710
29-Jul	630,337	725,304	461,789	549,926	542,014	508,476	738,767	1,015,442	877,735	778,298	531,695	516,454	656,353
30-Jul	636,473	732,239	494,084	572,539	550,946	526,167	749,889	1,033,715	902,956	809,677	589,795	536,403	677,907
31-Jul	643,859	739,081	532,782	587,474	557,832	541,110	763,767	1,052,908	922,454	845,402	638,656	555,525	698,404
1-Aug	658,761	743,158	588,182	606,365	565,146	555,313	776,184	1,075,605	935,937	870,106	698,006	574,961	720,644
2-Aug	681,523	745,992	656,002	625,550	570,265	570,134	789,954	1,095,870	953,775	885,158	747,366	589,383	742,581
3-Aug	699,958	750,231	668,764	639,732	579,041	581,245	805,317	1,111,115	992,784	906,507	789,197	598,124	760,168

-continued-

Table 6.- continued.

							Year						
Date	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	Average
4-Aug	716,638	754,090	677,227	653,718	588,750	594,159	821,790	1,121,817	1,036,568	924,070	833,128	610,664	777,718
5-Aug	730,966	757,723	685,839	665,635	596,778	602,948	839,071	1,139,644	1,065,584	939,564	879,388	629,143	794,357
6-Aug	740,711	770,558	701,281	678,944	603,766	612,154	853,372	1,153,324	1,093,109	977,229	909,551	652,588	812,216
7-Aug	748,541	784,528	713,064	698,282	609,780	621,868	868,529	1,162,694	1,114,652	1,010,843	931,541	668,269	827,716
8-Aug	760,369	806,700	723,661	717,041	614,679	630,954	887,706	1,171,598	1,126,729	1,024,891	945,401	681,403	840,928
9-Aug	771,878	824,184	731,142	732,320	619,240	635,503	911,722	1,181,309	1,156,990	1,036,415	958,698	705,832	855,436
10-Aug	783,195	835,043	738,435	739,524	624,578	640,621	930,304	1,181,309	1,203,397	1,046,364	969,763	720,111	867,720
11-Aug	790,699	856,771	747,839	747,334	624,578	642,753	942,711	1,181,309	1,247,872	1,061,514	984,717	741,683	880,815
12-Aug	797,847	874,725	756,446	758,150	624,578	648,424	948,521	1,181,309	1,293,975	1,113,980	1,009,139	763,985	897,590
13-Aug	797,847	895,485	767,558	764,283	624,578	650,036	953,858	1,181,309	1,323,366	1,175,253	1,030,297	778,447	911,860
14-Aug	797,847	911,367	767,558	773,065	624,578	650,036	957,924	1,181,309	1,343,481	1,213,075	1,050,379	789,057	921,640
15-Aug	797,847	924,360	767,558	783,771	624,578	650,036	957,924	1,181,309	1,359,167	1,255,963	1,081,926	799,982	932,035
16-Aug	797,847	933,814	767,558	790,811	624,578	650,036	957,924	1,181,309	1,369,085	1,295,659	1,117,682	809,952	941,355
17-Aug	797,847	951,079	767,558	797,212	624,578	650,036	957,924	1,181,309	1,379,539	1,323,220	1,150,017	819,282	949,967
18-Aug	797,847	965,028	767,558	803,379	624,578	650,036	957,924	1,181,309	1,385,981	1,339,438	1,182,233	827,488	956,900
19-Aug	797,847	979,050	767,558	803,379	624,578	650,036	957,924	1,181,309	1,385,981	1,348,442	1,220,657	838,032	962,899
20-Aug	797,847	992,129	767,558	803,379	624,578	650,036	957,924	1,181,309	1,385,981	1,364,220	1,257,566	848,198	969,227
21-Aug	797,847	1,005,041	767,558	803,379	624,578	650,036	957,924	1,181,309	1,385,981	1,376,452	1,282,704	854,756	973,964
22-Aug	797,847	1,018,118	767,558	803,379	624,578	650,036	957,924	1,181,309	1,385,981	1,376,452	1,317,024	861,008	978,435
23-Aug	797,847	1,032,415	767,558	803,379	624,578	650,036	957,924	1,181,309	1,385,981	1,376,452	1,346,925	867,572	982,665
24-Aug	797,847	1,049,287	767,558	803,379	624,578	650,036	957,924	1,181,309	1,385,981	1,376,452	1,367,808	867,572	985,811
25-Aug	797,847	1,064,818	767,558	803,379	624,578	650,036	957,924	1,181,309	1,385,981	1,376,452	1,389,715	867,572	988,931
26-Aug	797,847	1,064,818	767,558	803,379	624,578	650,036	957,924	1,181,309	1,385,981	1,376,452	1,412,845	867,572	990,858
27-Aug	797,847	1,064,818	767,558	803,379	624,578	650,036	957,924	1,181,309	1,385,981	1,376,452	1,441,030	867,572	993,207
28-Aug	797,847	1,064,818	767,558	803,379	624,578	650,036	957,924	1,181,309	1,385,981	1,376,452	1,466,404	867,572	995,322
29-Aug	797,847	1,064,818	767,558	803,379	624,578	650,036	957,924	1,181,309	1,385,981	1,376,452	1,482,409	867,572	996,655
30-Aug	797,847	1,064,818	767,558	803,379	624,578	650,036	957,924	1,181,309	1,385,981	1,376,452	1,493,029	867,572	997,540
31-Aug	797,847	1,064,818	767,558	803,379	624,578	650,036	957,924	1,181,309	1,385,981	1,376,452	1,499,692	867,572	998,096
Total	797,847	1,064,818	767,558	803,379	624,578	650,036	957,924	1,181,309	1,385,981	1,376,452	1,499,692	867,572	

Cumulative average, 1996 - 2007

998,096

Last day of sonar counts

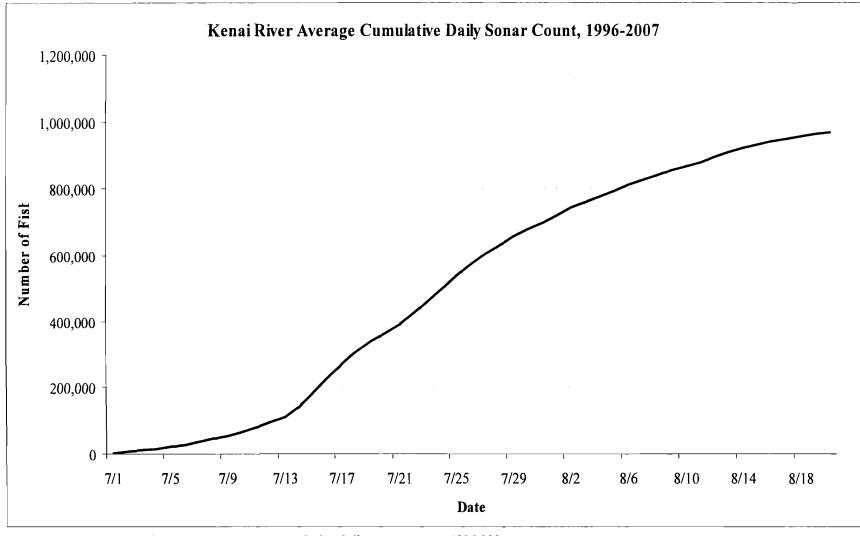


Figure 3.- Kenai River sockeye salmon average cumulative daily sonar counts, 1996-2007.

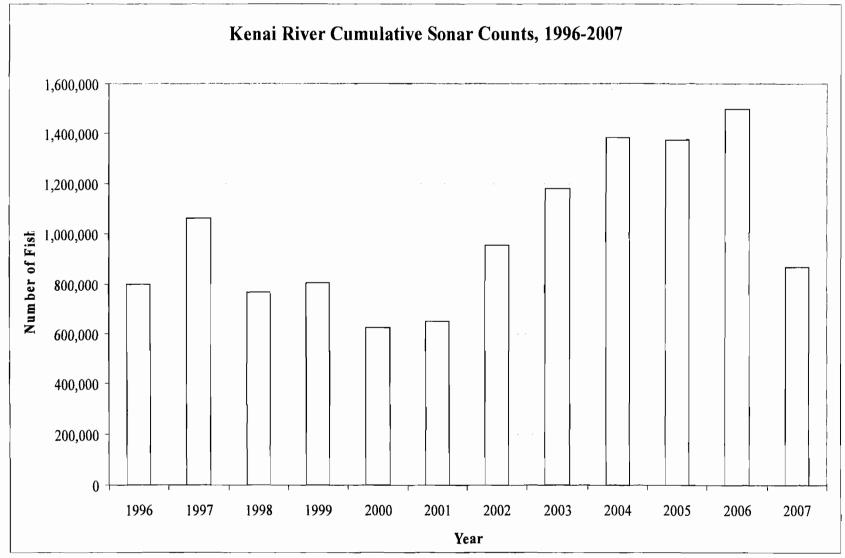


Figure 4.- Kenai River sockeye salmon cumulative sonar counts, 1996-2007.

Table 7.- Kenai River personal use sockeye salmon dip net fishery summary, 1981-2007.

Year	Date and Time Opened	Date and Time Closed	Total Days	Sockeye Harvest ^a	Total Sockeye Salmon Return to Mile 19	Percent of Return Harvested	Fishery Participation (Days Fished) ^b
1981	No Fishery	ND	ND	ND	407,639	ND	ND
1982	7/26 18:00	8/5 24:00	9.3	Unknown	619,831	ND	ND
1983	7/20 18:00	8/5 24:00	15.3	7,562	630,340	1.2	3,203
1984	No Fishery	ND	ND	ND	344,571	ND	ND
1985	No Fishery	ND	ND	ND	502,820	ND	ND
1986	No Fishery	ND	ND	ND	501,157	ND	ND
1987	7/23 12:00	8/5 24:00	13.5	24,086	1,596,871	1.5	22,547
1988	7/22 18:00	8/5 24:00	14.3	16,880	1,021,469	1.7	29,013
1989	7/21 00:01	8/5 24:00	15.0	48,976	1,599,959	3.1	31,312
1990	No Fishery	ND	ND	ND	659,520	ND	ND
1991	Subsistence	Fishery only	ND	ND	647,597	ND	ND
1992	c 7/27 12:00	8/5 24:00	6.5 ^d	12,189	994,798	1.2	10,371
1993	7/17 14:00	7/31 24:00	14.4	33,467	813,617	4.1	14,896
1994	Subsistence	Fishery only	ND	ND	1,003,446	ND	ND
1995	7/25 06:00	7/31 24:00	4.8 ^d	14,352	630,447	2.3	11,122
1996	7/10 00:01	8/5 24:00	27.0	102,821	797,847	12.9	10,503
1997	7/10 00:01	7/31 24:00	22.0	114,619	1,064,818	10.8	11,023
1998	7/10 00:01	7/28 00:01	18.0	103,847	767,558	13.5	10,802
1999	7/10 00:01	7/31 24:00	22.0	149,504	803,379	18.6	13,738
2000	7/10 00:01	7/31 24:00	22.0	98,262	624,578	15.7	12,354
2001	7/10 00:01	7/31 24:00	22.0	150,766	650,036	23.2	14,722
2002	7/10 06:00	7/31 23:00	22.0	180,028	957,924	18.8	14,840
2003	7/10 06:00	7/31 23:00	22.0	223,580	1,181,309	18.9	15,263
2004	7/10 06:00	7/31 23:00	22.0	262,831	1,385,981	19.0	18,513
2005	7/10 06:00	7/31 23:00	22.0	295,496	1,376,452	21.5	20,977
2006	7/10 06:00	8/10 23:01	13.0 ^{e f}	127,630	1,499,692	8.5	12,685
2007	g 7/10 06:00	7/31 23:00	22.0		867,572		

Note: ND = no data collected.

^a Harvest not known in 1982; 1983-1995 from Statewide Harvest Survey (Mills 1983-1994; Howe et al. 1995, 1996). 1996-2006 reported harvest from expanded to include permits not returned.

^b 1981-1995 is individual days fished. 1996-2006 is household days fished. Each household day fished may include fishing effort by more than one household member named on the household's permit

^c A subsistence dip net fishery also occurred in 1992.

^d Fishery closed on Wednesday and Saturday to avoid conflict with concurrent subsistence permit fishery. Total days reflects this closure.

^e By Emergency Order - the personal use fishery closed on July 21 at 11:00 PM; it reopened on July 31 from 6:00 AM to 11:00 PM; and it reopened a final time from August 3 at 5:00 PM until August 10 at 11:59 PM. Total days reflect this closure.

Fish passing sonar during personal use fishing closures are not included in sockeye available during dip net fishery.

g 2007 harvest and participation numbers not available.

Table 8.- Effort and harvest in the Kenai River personal use dip net fishery, 1996-2007.

		Cook Inlet	_						
-	Use S	almon Fishe	ries ^a			Kenai Ri	ver		_
Year	Permits Issued	Permits Returned	Did Not Fish	Days Fished	Sockeye	Chinook	Coho	Pink	Chum
1996	14,576	13,452	4,408	10,503	102,821	295	1,932	2,404	175
1997	14,919	13,756	6,248	11,023	114,619	364	559	619	58
1998	15,535	13,190	5,539	10,802	103,847	254	1,011	1,032	85
1999	17,197	14,216	5,643	13,738	149,504	488	1,009	1,666	102
2000	16,107	13,582	5,745	12,354	98,262	410	1,449	1,457	193
2001	16,915	14,398	3,528	14,772	150,766	638	1,555	1,326	155
2002	17,568	14,284	4,858	14,840	180,028	606	1,721	5,662	551
2003	19,110	15,726	3,576	15,263	223,580	1,016	1,332	1,647	249
2004	21,910	17,748	4,001	18,513	262,831	792	2,661	2,103	387
2005	21,905	19,081	3,839	20,977	295,496	997	2,512	1,806	321
2006	18,563	16,532	4,695	12,685	127,630	1,034	2,235	11,127	551
2007	23,046	20,312	4,190	21,861	291,270	1,509	2,111	1,939	472
Mean	18,113	15,523	4,689	14,778	175,055	700	1,674	2,732	275

^aOne permit is issued for all four Upper Cook Inlet personal use salmon fisheries (Kenai River dip net, Kasilof River dip net, Kasilof River gill net, and Fish Creek dip net).

Table 9.- Cumulative harvest timing for the Kenai River personal use dip net fishery, 2001-2006.

	Sockeye					<u> </u>		Chin	ıook		-	Coho						
	2001	2002	2003	2004	2005	2006	2001	2002	2003	2004	2005	2006	2001	2002	2003	2004	2005	2006
7/10	0.6	2.1	1.3	0.7	1.9	1.0	2.1	2.5	3.1	2.4	2.9	1.5	1.0	6.2	2.8	0.1	1.2	0.9
7/11	1.0	2.6	5.2	1.1	3.8	1.8	4.2	6.2	7.0	4.8	6.2	2.8	2.0	6.6	5.7	1.7	4.7	1.4
7/12	1.6	4.1	10.4	1.7	6.7	2.7	5.7	14.6	15.5	6.3	11.9	5.1	3.6	7.1	8.9	2.6	5.6	1.6
7/13	3.4	7.1	16.1	6.4	9.3	3.5	10.9	25.4	23.8	8.6	16.9	7.6	7.2	8.7	10.9	3.9	6.5	5.4
7/14	6.9	10.3	18.7	16.2	11.4	6.1	16.6	32.0	29.4	13.2	21.4	11.8	8.6	12.8	11.4	8.7	7.5	12.8
7/15	12.2	17.4	26.9	25.0	19.3	14.5	23.8	38.3	38.4	17.3	28.7	23.9	16.9	14.5	16.0	11.4	8.6	14.8
7/16	19.6	23.4	37.2	34.0	31.1	24.2	27.0	44.5	43.3	24.4	33.9	36.2	25.0	15.4	17.2	16.7	15.9	15.8
7/17	28.0	32.1	46.9	41.4	38.1	29.3	33.6	51.8	48.2	37.4	40.4	43.7	29.0	17.3	22.3	20.2	17.1	15.8
7/18	39.3	40.4	54.4	44.7	45.9	33.8	46.4	54.5	59.0	43.1	45.4	54.2	34.4	20.3	24.5	26.4	23.3	17.1
7/19	45.4	51.3	60.8	46.7	50.2	39.9	50.9	61.1	70.6	49.4	52.2	65.0	39.6	24.1	31.7	27.1	25.0	18.6
7/20	51.2	60.0	65.1	52.8	55.5	52.6	60.9	68.4	77.6	60.5	59.9	74.3	43.3	27.8	39.0	30.8	26.2	26.0
7/21	57.0	66.7	71.9	67.6	59.5	81.4	69.8	73.2	80.0	67.2	64.3	89.0	49.9	33.5	44.0	38.1		39.1
7/22	61.5	71.4	77.2	70.6	69.2	-	76.2	76.7	83.5	72.3	69.2	-	55.4	36.1	48.0	40.8		-
7/23	67.2	77.1	82.0	75.6	79.2	-	80.2	80.5	87.0	77.8	74.7	-	58.1	43.4	50.8	48.1		-
7/24	77.5	83.1	85.2	82.0	83.6	-	83.0	84.2	88.0	84.3	79.8	-	62.2	49.7	56.4	53.1		-
7/25	86.8	88.8	88.0	86.2	86.1	-	85.8	87.9	90.6	87.6	82.5	-	67.2	56.0	64.8	60.6		-
7/26	89.6	91.3	91.2	88.4	87.8	-	87.9	90.9	93.6	88.4	86.6	-	69.5	61.7	80.0	63.5		-
7/27	92.8	94.5	93.9	91.0	88.8	-	93.0	93.1	95.2	90.5	88.5	-	76.6	67.6	84.5	68.8		-
7/28	95.9	96.8	95.8	93.9	90.3	-	95.7	96.9	96.4	92.2	91.0	-	86.3	76.3	89.2	76.1		-
7/29	97.8	98.0	97.1	96.1	93.9	-	97.7	98.1	97.1	94.1	94.0	-	88.0	84.2	92.6	84.2		•
7/30	99.2	99.4	98.9	98.0	98.6	-	98.7	99.8	98.0	97.3	98.9	-	92.7	94.3	95.3	91.4		-
7/31	100	100	100	100	100	87.1	100	100	100	100	100	92.4	100	100	100	100	100	43.6
8/01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
8/02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
8/03	-	-	-	-	-	87.2	-	-	-	-	-	92.5	-	-	-	-		44.1
8/04	-	-	-	-	-	88.3	-	-	-	-	-	93.2	-	-	-	-		46.8
8/05	-	-	-	-	-	91.9	-	-	-	-	-	95.3	-	-	•	-		56.8
8/06	-	-	-	-	-	93.9	-	-	-	-	-	96.1	-	-	-	-		66.0
8/07	-	-	-	-	-	95.5	-	-	-	-	-	97.6	-	-	-	-		71.8
8/08	-	-	-	-	-	96.6	-	-	-	-	-	98.5	-	-	-	-		77.2
8/09	-	-	-	-	-	97.9	-	-	-	-	-	99.4	-	-	-	-		84.8
8/10		<u> </u>		-		100		-	-			100		-				100

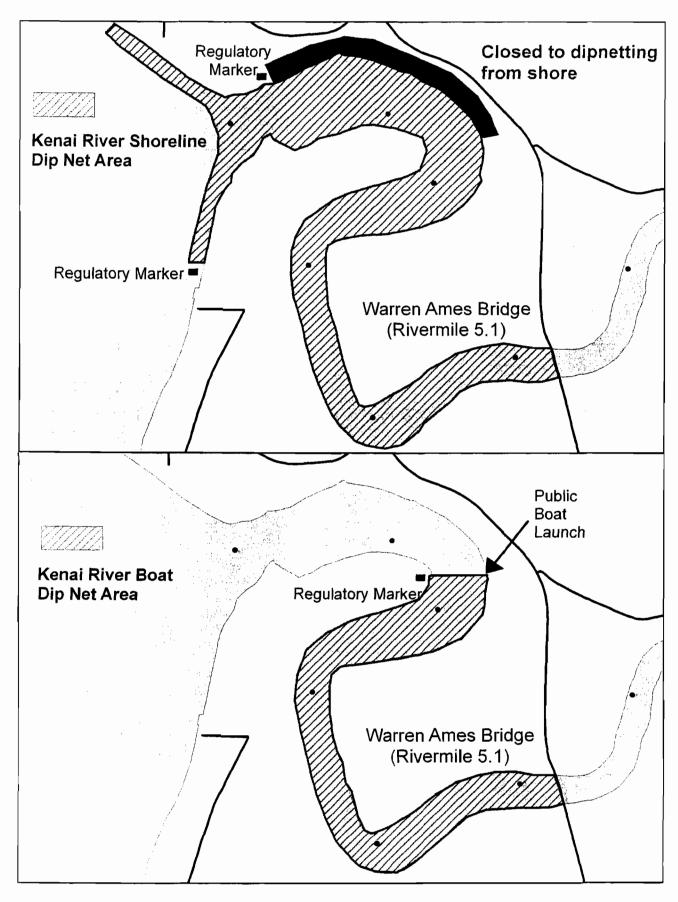


Figure 5.- Map of the Kenai River personal use shoreline and boat dip net area.

Table 10.- Kasilof River cumulative daily sonar counts of sockeye salmon, 1996-2007.

_		_					Year						
 			_										Average
													Cum. Daily
 Date	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	Count
10-Jun	0	0	0	0	0	0	0	0	0				0
11-Jun	0	0	0	0	0	0	0	0	0				0
12-Jun	0	0	0	0	0	0	0	0	0				0
13-Jun	0	0	0	0	0	0	0	0	0				0
14-Jun	0	685	0	0	0	0	2,918	0	0				400
15-Jun	640	1,849	296	645	172	1,802	6,088	1,516	4,176	7,624	3,214	3,927	2,662
16-Jun	1,791	3,395	728	1,289	488	6,182	8,757	2,480	6,013	15,019	4,887	8,401	4,953
17-Jun	3,963	7,009	1,503	2,164	1,053	13,141	11,451	3,177	7,359	25,578	6,709	10,998	7,842
18-Jun	5,733	10,437	4,408	2,790	2,279	19,672	15,212	4,128	10,009	40,066	8,320	13,152	11,351
19-Jun	8,347	16,096	7,897	3,657	3,560	26,291	21,647	6,158	12,864	57,238	10,883	15,044	15,807
20-Jun	11,686	26,060	9,779	5,087	5,242	29,886	26,896	11,630	19,376	73,530	14,304	17,137	20,884
21-Jun	13,804	33,143	13,192	7,839	6,577	33,923	31,350	19,207	30,509	82,935	19,724	19,248	25,954
22-Jun	19,641	37,532	17,752	11,766	9,587	38,034	35,520	23,246	53,307	85,487	23,958	22,517	31,529
23-Jun	27,731	41,790	22,419	17,148	13,193	44,945	39,407	33,159	79,850	87,288	27,808	26,702	38,453
24-Jun	36,188	48,922	25,657	22,614	17,881	53,655	41,836	40,767	107,904	90,851	31,925	29,126	45,611
25-Jun	40,580	60,264	29,246	30,965	23,085	64,627	43,949	46,144	128,174	98,653	38,382	31,516	52,965
26-Jun	45,336	73,290	33,811	37,572	29,147	70,368	47,995	54,828	129,266	105,471	45,826	32,425	58,778
27-Jun	56,816	85,397	41,587	45,966	35,117	79,487	52,189	55,787	130,790	109,933	53,136	34,647	65,071
28-Jun	73,807	89,756	49,339	56,475	40,561	90,456	52,875	56,244	133,731	114,374	60,256	40,252	71,511
29-Jun	79,532	95,855	58,039	67,363	48,464	94,337	53,331	59,484	138,248	123,648	67,889	41,000	77,266
30-Jun	86,378	104,285	61,277	76,278	55,761	101,649	54,258	67,707	142,884	125,747	70,447	41,492	82,347
1-Jul	95,350	109,622	68,805	86,585	63,318	105,854	60,249	70,917	144,137	134,146	72,385	43,262	87,886
2-Jul	96,560	120,708	75,356	90,872	72,012	115,466	63,418	76,907	145,861	146,433	77,543	46,899	94,003
3-Jul	97,164	124,557	79,105	95,949	78,636	119,682	70,976	89,332	148,625	152,292	82,916	48,181	98,951
4-Jul	99,789	136,560	81,148	98,514	80,830	125,666	78,495	94,771	152,964	159,607	89,760	51,171	104,106
5-Jul	109,562	138,719	87,831	103,739	86,536	127,394	80,311	96,524	154,695	168,012	96,053	52,453	108,486
6-Jul	112,882	140,036	96,313	108,324	91,790	130,280	85,832	102,199	158,183	174,268	101,274	53,747	112,927
7-Jul	118,628	144,760	99,682	117,722	94,277	138,084	96,766	113,042	166,980	177,544	105,875	58,627	119,332
8-Jul	123,874	145,882	105,221	128,796	99,713	146,382	106,385	118,484	172,646	183,494	108,715	67,695	125,607
9-Jul	124,759	147,955	112,386	130,977	105,630	148,337	110,469	126,318	174,202	186,935	114,134	73,326	129,619
10-Jul	126,641	150,662	119,688	133,572	112,997	151,772	116,468	136,393	175,971	191,008	121,557	75,812	134,378
11-Jul	131,091	154,856	121,747	137,082	115,351	153,295	119,011	147,306	177,546	202,465	124,084	81,956	138,816
12-Jul	132,035	158,995	123,489	139,060	120,231	155,355	120,902	166,687	181,499	213,216	125,934	83,521	143,410
13-Jul	134,409	164,131	127,139	141,520	128,045	157,792	123,880	172,475	217,947	222,797	127,996	85,123	150,271
14-Jul	162,534	165,930	129,631	145,964	142,201	163,016	125,460	181,433	310,679	227,758	131,920	89,914	164,703
i5-Jul	177,503	167,679	135,459	147,762	158,973	172,884	129,173	187,969	348,376	231,455	147,116	93,168	174,793
 16-Jul	180,290	171,137	142,711	150,315	161,222	183,382	131,944_	216,725	365,954	238,017	160,778	97,480	183,330.

Table 10.continued.

						Yea	ır						
										_			Average Cum. Daily
Date	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	Count
17-Jul	181,894	178,923	156,684	156,576	165,662	196,954	135,272	242,635	376,882	242,101	164,711	100,419	191,55
18-Jul	184,252	181,410	164,849	161,394	168,288	211,734	140,674	254,052	384,765	249,190	167,767	124,427	199,40
19-Jul	189,533	183,397	175,423	167,006	174,978	217,221	145,627	259,538	390,314	254,405	172,816	143,228	206,12
20-Jul	194,260	185,227	183,354	176,056	182,828	220,406	153,770	264,028	394,785	259,043	175,162	151,315	211,68
21-Jul	197,404	186,310	187,814	193,416	186,042	224,083	155,808	272,322	410,919	262,618	178,149	175,102	219,16
22-Jul	201,525	188,202	194,685	212,184	193,392	225,475	160,494	283,183	418,377	266,433	180,606	197,206	226,81
23-Jul	205,672	193,519	202,107	225,284	201,887	229,333	163,798	294,765	427,884	273,182	183,259	209,775	234,20
24-Jui	212,393	197,126	211,202	236,783	209,911	246,084	170,473	299,958	436,241	279,138	185,524	223,347	242,34
25-Jul	218,780	199,399	218,325	247,715	214,342	277,232	179,408	306,505	443,991	284,426	190,492	245,355	252,16
26-Jul	220,595	201,207	223,996	258,998	218,602	280,145	184,116	310,572	450,489	288,717	193,929	264,270	257,97
27-Jul	222,447	203,023	229,248	270,418	223,037	285,051	186,528	317,219	455,235	291,413	197,641	275,766	263,08
28-Jul	223,912	205,573	237,776	275,466	226,899	287,899	189,168	323,988	461,304	294,310	217,334	280,516	268,67
29-Jul	224,885	207,671	243,913	281,417	231,100	292,165	193,028	329,771	465,914	299,512	248,667	285,663	275,30
30-Jui	225,829	210,907	249,528	285,442	233,441	297,385	195,420	333,972	470,621	306,190	259,508	290,631	279,90
31-Jul	226,822	213,460	256,205	289,068	235,530	301,375	197,909	337,593	474,526	309,461	272,126	296,872	284,24
1-Aug	230,581	215,592	262,234	292,233	237,077	303,798	201,174	340,735	477,452	311,828	283,691	301,081	288,12
2-Aug	234,444	218,216	264,603	296,305	239,584	305,369	205,840	343,773	481,297	314,013	296,616	304,196	292,02
3-Aug	238,000	220,403	266,051	300,514	242,413	307,570	209,754	346,455	487,189	316,948	305,005	306,710	295,58
4-Aug	242,085	222,315	267,647	303,760	245,431	307,570	213,027	347,924	498,912	318,281	314,780	310,749	299,31
5-Aug	244,595	226,192	269,812	305,925	247,328	307,570	215,143	349,948	506,597	321,074	320,083	313,677	302,32
6-Aug	245,993	231,962	271,112	308,139	249,116	307,570	217,219	352,059	512,521	324,672	323,756	316,142	305,0
7-Aug	247,886	238,452	272,360	310,424	251,160	307,570	219,597	354,212	517,856	325,872	326,159	319,843	307,6
8-Aug	249,944	245,950	273,213	312,587	252,623	307,570	221,599	355,906	523,174	327,106	328,308	323,956	310,16
9-Aug	249,944	251,347	273,213	312,587	254,273	307,570	223,701	357,625	532,956	328,335	331,575	328,081	312,60
10-Aug	249,944	255,865	273,213	312,587	256,053	307,570	225,273	359,633	539,887	329,564	334,764	330,280	314,55
11-Aug	249,944	261,791	273,213	312,587	256,053	307,570	226,682	359,633	546,327	332,026	339,846	333,272	316,5
12-Aug	249,944	266,025	273,213	312,587	256,053	307,570	226,682	359,633	552,515	336,793	345,933	335,682	318,5
13-Aug	249,944	266,025	273,213	312,587	256,053	307,570	226,682	359,633	559,967	341,195	352,026	336,866	320,14
14-Aug	249,944	266,025	273,213	312,587	256,053	307,570	226,682	359,633	567,101	345,030	355,656	336,866	321,36
15-Aug	249,944	266,025	273,213	312,587	256,053	307,570	226,682	359,633	573,072	348,012	360,005	336,866	322,4
16-Aug	249,944	266,025	273,213	312,587	256,053	307,570	226,682	359,633	577,581	348,012	363,228	336,866	323,1
17-Aug	249,944	266,025	273,213	312,587	256,053	307,570	226,682	359,633	577,581	348,012	365,843	336,866	323,33
18-Aug	249,944	266,025	273,213	312,587	256,053	307,570	226,682	359,633	577,581	348,012	368,092	336,866	323,5
Total	249,944	266,025	273,213	312,587	256,053	307,570	226,682	359,633	557,581	348,012	368,092	336,866	
mulative avera	ige, 1996 - 20	007	321,855		_								

Cumulative average, 1996 - 2007
Last day of sonar counts

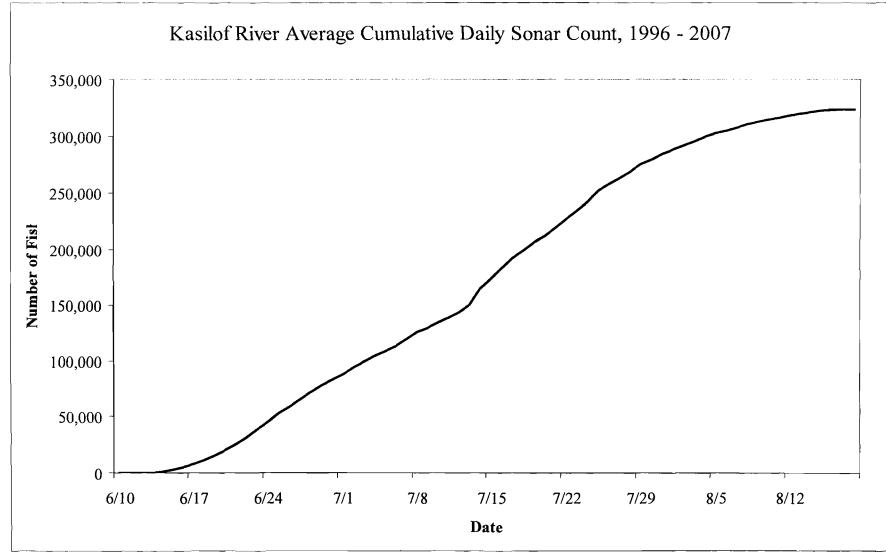


Figure 6.- Kasilof River sockeye salmon average cumulative daily sonar counts, 1996-2007.

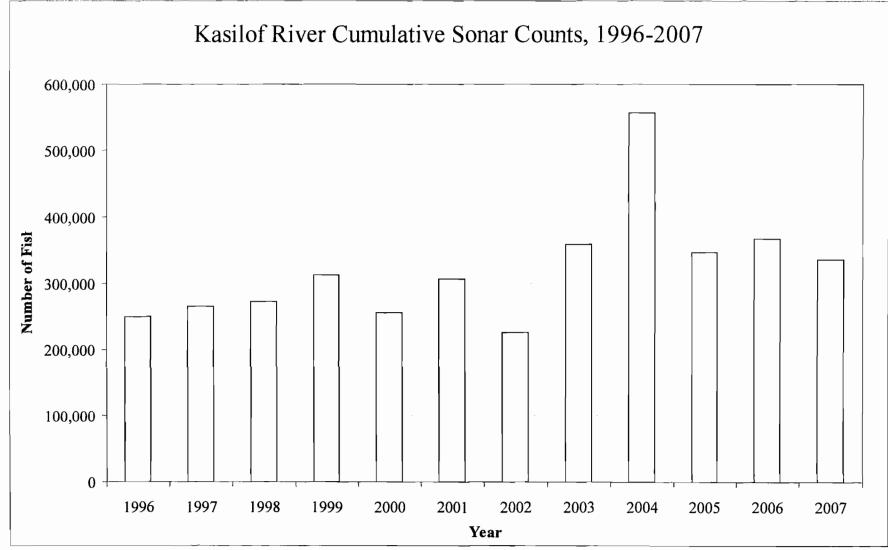


Figure 7.- Kasilof River sockeye salmon cumulative sonar counts, 1996-2007.

Table 11.- Kasilof River personal use dip net fishery summary, 1981-2007.

Year	Date and Time Opened	Date and Time Closed	Total Days		Sockeye Harvest ^a	Total Sockeye Salmon Return to Mile 8	Percent of Return Harvested	Fishery Participation (Days Fished) ^b
1981	7/4 12:00	7/31 24:00	27.50		10,300	256,625	4.0	5,370
1982	7/21 12:00	8/5 24:00	15.50		1,800	180,239	1.0	2,580
1983	7/15 24:00	8/5 24:00	21.00		11,124	210,271	5.3	4,417
1984	7/16 12:00	8/5 24:00	20.50		12,771	231,685	5.5	5,956
1985	7/15 18:00	8/5 24:00	21.25		16,284	505,049	3.2	9,260
1986	7/15 06:00	8/5 24:00	21.75		38,674	275,963	14.0	13,929
1987	° 7/10 12:00	8/5 24:00	25.50		18,454	249,250	7.4	8,910
1988	7/22 18:00	8/5 24:00	14.25		3,547	204,000	1.7	6,930
1989	No Fishery	ND	ND		ND	158,206	ND	ND
1990	No Fishery	ND	ND		ND	144,136	ND	ND
1991	Subsistence	Fishery	ND		ND	238,269	ND	ND
1992	Subsistence	Fishery	ND		ND	184,178	ND	ND
1993	No Fishery	ND	ND		ND	149,939	ND	ND
1994	7/22 12:00	8/5 23:59	10.50	ď	3,679	205,117	1.8	2,361
1995	7/17 18:00	7/31 24:00	10.25	d	4,160	204,935	2.0	2,845
1996	7/10 00:01	8/5 24:00	27.00		11,197	249,944	4.5	1,300
1997	7/10 00:01	8/5 24:00	27.00		9,737	266,025	3.7	1,091
1998	7/10 00:01	8/5 24:00	27.00		45,161	273,213	16.5	3,421
1999	7/10 00:01	8/5 24:00	27.00		37,176	312,587	11.9	3,611
2000	7/10 00:01	8/5 24:00	27.00		23,877	256,053	9.3	2,622
2001	7/10 00:01	8/5 24:00	27.00		37,612	307,570	12.2	3,382
2002	6/25 00:01	8/7 24:00	44.00		46,769	226,682	20.6	4,020
2003	6/25 00:01	8/7 24:00	44.00		43,870	359,633	12.2	3,874
2004	6/25 00:01	8/7 24:00	44.00		48,315	577,581	8.4	4,432
2005	6/25 00:01	8/7 24:00	44.00		43,151	348,012	12.4	4,500
2006	6/25 00:02	8/7 24:01	44.00		56,144	368,092	15.3	5,763
2007	e 6/25 00:01	8/7 24:00	44.00			336,866		

Note: ND = no data collected.

^a Harvest and participation during first 2 years of fishery are field creel survey estimates. 1983-1995 data are from Statewide Harvest Survey (Mills 1983-1994, Howe et al. 1995, 1996). 1996-2006 total reported harvest from returned permits, expanded to include permits not returned.

^b 1981-1995 is individual days fished. 1996-2006 is household days fished. Each household day fished may include fishing effort by more than one household member named on the household's permit.

^c The fishery was closed from July 14 at 6:00 a.m. to July 15 at 6:00 p.m. as a precautionary measure due to possible oil contamination.

^d Fishery closed on Wednesday and Saturday due to subsistence/personal use permit fishery. Total days reflect this closure.

^e 2007 harvest and participation numbers not available.

Table 12.- Effort and harvest in the Kasilof River personal use dip net fishery, 1996-2007.

	• -	Cook Inlet almon Fishe		Kasilof River Dip Net Fishery								
Year	Permits Issued	Permits Returned	Did Not Fish	Days Fished	Sockeye	Chinook	Coho	Pink	Chum			
1996	14,576	13,452	4,408	1,300	11,197	50	334	103	17			
1997	14,919	13,756	6,248	1,091	9,737	35	90	19	19			
1998	15,535	13,190	5,539	3,421	45,161	134	731	610	74			
1999	17,197	14,216	5,643	3,611	37,176	127	286	264	52			
2000	16,107	13,582	5,745	2,622	23,877	134	1,004	841	34			
2001	16,915	14,398	3,528	3,382	37,612	138	766	307	23			
2002	17,568	14,284	4,858	4,020	46,769	106	1,197	1,862	139			
2003	19,110	15,726	3,576	3,874	43,870	57	592	286	30			
2004	21,910	17,748	4,001	4,432	48,315	44	668	396	90			
2005	21,905	19,081	3,839	4,500	43,151	16	538	658	102			
2006	18,563	16,532	4,695	5,763	56,144	55	1,057	992	105			
2007	23,046	20,312	4,190	4,600	43,293	35	487	383	136			
Mean	18,113	15,523	4,689	3,551	37,192	78	646	560	68			

^a One permit is issued for all four Upper Cook Inlet personal use salmon fisheries (Kenai River dip net, Kasilof River dip net, Kasilof River gill net, and Fish Creek dip net).

Table 13.- Cumulative harvest timing for the Kasilof River personal use dip net fishery, 2001-2006.

2091 2002 2003 2004 2005 2006 2001 2002 2003 2004 2005 2006 2001 2002 2003 2004 2005 2006 2006 2006 2007 2003 2004 2005 2006 2006 2006 2007 20		Sockeye							Chinook					Coho					
6/25 0.0 0.8 0.9 1.7 6.2 1.6 0.0 0.0 0.0 34.7 10.0 7.4 0.0 0.0 0.7 11.2 0.9 6/26 0.0 1.8 1.4 2.6 8.2 2.8 0.0 0.0 0.0 3.4 7 10.0 7.4 10.0 0.0 0.7 11.2 1.9 6/28 0.0 2.5 1.6 4.4 8.9 4.0 0.0 11.8 3.6 12.5 10.0 22.2 0.0 0.7 0.7 0.7 1.4 1.9 6/28 0.0 3.7 3.1 7.3 12.1 5.2 0.0 23.5 3.6 12.5 20.0 25.9 0.0 0.8 0.7 1.4 1.9 6/28 0.0 3.7 3.1 7.3 12.1 5.2 0.0 23.5 3.6 12.5 20.0 25.9 0.0 0.8 0.7 1.4 1.9 6/28 0.0 3.7 3.1 7.3 12.1 5.2 0.0 23.5 3.6 12.5 20.0 25.9 0.0 0.8 0.7 1.4 1.9 1.9 6/28 0.0 0.4 5.3 8 8.0 13.2 5.5 0.0 23.5 3.6 12.5 20.0 25.9 0.0 1.1 1.2 1.4 2.5 7.0 1.0 1.0 1.0 1.0 1.0 1.2 1.4 1.9 1.9 1.0 1.0 1.0 1.0 1.0 1.2 1.4 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.4 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		2001		<u>-</u>		2005	2006	2001	2002			2005	2006	2001	2002			2005	2006
626 0.0 1.8 1.4 2.6 8.2 2.8 0.0 0.0 3.6 8.3 10.0 18.5 0.0 0.3 0.7 1.2 1.9 1.9 627 0.0 2.5 1.6 4.4 8.9 4.0 0.0 11.8 3.6 12.5 10.0 22.2 0.0 0.7 0.7 1.4 1.9 628 0.0 3.3 2.0 5.3 10.9 4.5 0.0 23.5 3.6 12.5 20.0 25.9 0.0 0.8 0.7 1.4 1.9 629 0.0 3.7 3.1 7.3 12.1 5.2 0.0 23.5 3.6 12.5 20.0 25.9 0.0 0.8 0.7 1.4 1.9 629 0.0 3.7 3.1 7.3 12.1 5.2 0.0 23.5 3.6 12.5 20.0 25.9 0.0 0.8 1.2 1.4 1.9 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	6/25														_				0.0
627 0.0 2.5 1.6 4.4 8.9 4.0 0.0 11.8 3.6 12.5 10.0 22.2 0.0 0. 0.7 0.7 1.4 1.9 628 0.0 3.3 2.0 5.3 10.9 4.5 0.0 23.5 3.6 12.5 20.0 25.9 0.0 0.8 0.7 1.4 1.9 629 0.0 3.7 3.1 7.3 12.1 5.2 0.0 23.5 3.6 12.5 20.0 25.9 0.0 0.8 1.2 1.4 1.9 630 0.0 0.4 5.5 3.8 8.0 13.2 5.5 0.0 23.5 3.6 12.5 20.0 25.9 0.0 0.1 1.1 1.2 1.4 2.5 701 0.0 5.4 5.3 9.6 11.5 20.8 8.6 0.0 23.5 3.6 12.5 20.0 25.9 0.0 0.1 1.1 1.2 1.4 2.5 701 0.0 5.4 5.3 9.6 11.5 20.8 8.6 0.0 23.5 3.6 12.5 20.0 33.3 0.0 1.1 1.4 1.4 3.8 8.6 702 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		0.0	1.8																1.0
6/28 0.0 3.3 2.0 5.3 10.9 4.5 0.0 23.5 3.6 12.5 20.0 25.9 0.0 0.8 0.7 1.4 1.9 6/29 0.0 3.7 3.1 7.3 12.1 5.5 0.0 23.5 3.6 12.5 20.0 25.9 0.0 1.1 1.2 1.4 2.5 7/01 0.0 5.4 5.3 9.6 18.0 7.0 0.0 23.5 3.6 12.5 20.0 33.3 0.0 1.1 1.4 1.4 2.8 7/03 0.0 9.8 11.38 23.9 9.2 0.0 23.5 7.1 16.7 20.0 33.3 0.0 1.1 1.6 4.6 2.8 7/05 0.0 10.8 11.2 10.0 23.5 7.1 37.5 20.0 37.0 0.0 3.8 4.6 4.8 25.6 1 7/05 0.0 14.8 15.		0.0																	1.7
6/29 0.0 3.7 31. 7.3 12.1 5.2 0.0 23.5 3.6 12.5 20.0 25.9 0.0 0.8 1.2 1.4 1.9 6/30 0.0 4.5 3.8 8.0 13.2 5.5 0.0 23.5 3.6 12.5 20.0 25.9 0.0 1.1 1.4 1.4 3.8 7/02 0.0 6.8 6.7 11.5 20.8 8.6 0.0 23.5 3.6 16.7 20.0 33.3 0.0 1.1 1.6 42.2 8.8 7/04 0.0 18.8 1.1 3.8 2.3 9.2 0.0 23.5 7.1 16.7 20.0 33.3 0.0 1.1 1.6 4.2 2.8 7/05 0.0 11.6 12.2 18.3 3.7 1.2 0.0 23.5 7.1 37.5 40.0 40.7 0.0 3.8 4.6 4.8 25.6 1 1.0 <th< td=""><td>6/28</td><td>0.0</td><td>3.3</td><td>2.0</td><td>5.3</td><td>10.9</td><td></td><td>0.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.7</td></th<>	6/28	0.0	3.3	2.0	5.3	10.9		0.0											1.7
6/30 0.0 4.5 3.8 8.0 13.2 5.5 0.0 23.5 3.6 12.5 20.0 25.9 0.0 1.1 1.2 1.4 4.2 8.8 7/02 0.0 6.8 6.7 11.5 20.8 8.6 0.0 23.5 3.6 12.5 20.0 33.3 0.0 1.1 1.6 4.2 8.8 7/03 0.0 10.8 9.1 15.5 26.6 11.2 0.0 23.5 7.1 16.7 20.0 33.3 0.0 1.1 1.6 4.6 11.6 10.2 11.6 10.2 11.6 10.2 11.6 10.2 3.2 1.1 1.6 4.6 22.8 1.1 1.6 4.6 4.8 2.1 1.6 4.0 1.1 1.6 4.6 4.8 2.1 1.6 1.0 2.3 7.1 37.5 20.0 37.0 0.0 3.8 4.6 4.8 22.7 1.7 1.0 <	6/29	0.0	3.7	3.1	7.3	12.1	5.2	0.0	23.5	3.6	12.5	20.0			0.8	1.2	1.4	1.9	1.7
7/02 0.0 6.8 6.7 11.5 20.8 8.6 0.0 23.5 3.6 16.7 20.0 33.3 0.0 1.1 1.6 4.2 8.8 7/03 0.0 9.0 8.1 13.8 23.9 9.2 0.0 23.5 7.1 16.7 20.0 33.3 0.0 1.1 1.6 4.6 11.6 7/05 0.0 11.6 10.2 16.4 28.9 12.3 0.0 23.5 7.1 37.5 20.0 37.0 0.0 3.8 4.6 4.8 22.5 1 7/07 0.0 11.6 10.2 16.4 22.1 33.3 17.5 10.0 23.5 7.1 37.5 40.0 40.7 0.0 3.8 4.6 4.8 225.0 1 7/08 0.0 16.6 22.3 7.1 37.5 40.0 40.7 0.0 4.7 7.4 5.0 22.8 7.1 37.5 40.0	6/30	0.0	4.5	3.8	8.0	13.2	5.5	0.0	23.5	3.6	12.5	20.0		0.0	1.1	1.2	1.4	2.5	1.7
7/03 0.0 9.0 8.1 13.8 23.9 9.2 0.0 23.5 7.1 16.7 20.0 33.3 0.0 1.1 1.6 4.6 11.6 7/04 0.0 11.6 10.2 16.4 28.9 12.3 0.0 23.5 7.1 25.0 20.0 37.0 0.0 3.8 3.6 4.6 23.8 1 7/05 0.0 11.6 10.2 16.4 28.9 12.3 0.0 23.5 7.1 37.5 20.0 37.0 0.0 3.8 4.6 4.8 22.7 7 7/06 0.0 13.6 15.4 22.1 33.3 17.5 0.0 23.5 7.1 37.5 40.0 40.7 0.0 3.8 4.6 4.8 25.6 1 7/09 0.0 20.6 16.8 23.5 35.5 18.5 0.0 23.5 7.1 37.5 40.0 40.7 0.1 9.6 7.4	7/01	0.0	5.4	5.3	9.6	18.0	7.0	0.0	23.5	3.6	12.5	20.0	33.3	0.0	1.1	1.4	1.4	3.8	2.2
7/04 0.0 10.8 9.1 15.5 26.6 11.2 0.0 23.5 7.1 25.0 20.0 37.0 0.0 3.8 3.2 4.6 23.8 17/05 0.0 11.6 10.2 16.4 28.9 12.3 0.0 23.5 7.1 37.5 20.0 37.0 0.0 3.8 4.6 4.8 22.7 17/07 0.0 11.3 6 20.9 31.7 15.7 0.0 23.5 7.1 37.5 40.0 40.7 0.0 3.8 4.6 4.8 25.6 17/08 0.0 18.4 15.4 22.1 33.3 17.5 0.0 23.5 7.1 37.5 40.0 40.7 0.0 4.7 4.6 4.8 28.1 27.1 17.1 17.1 21.2 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28.1 </td <td>7/02</td> <td>0.0</td> <td>6.8</td> <td>6.7</td> <td>11.5</td> <td>20.8</td> <td>8.6</td> <td>0.0</td> <td>23.5</td> <td>3.6</td> <td>16.7</td> <td>20.0</td> <td>33.3</td> <td>0.0</td> <td>1.1</td> <td>1.6</td> <td>4.2</td> <td>8.8</td> <td>2.7</td>	7/02	0.0	6.8	6.7	11.5	20.8	8.6	0.0	23.5	3.6	16.7	20.0	33.3	0.0	1.1	1.6	4.2	8.8	2.7
705 0.0 11.6 10.2 16.4 28.9 12.3 0.0 23.5 7.1 37.5 20.0 37.0 0.0 3.8 4.6 4.8 24.7 7.06 0.0 11.8 12.5 18.3 30.7 14.4 0.0 23.5 7.1 37.5 30.0 40.7 0.0 3.8 4.6 4.8 25.0 1 7/07 0.0 11.5 13.3 30.7 14.4 0.0 23.5 7.1 37.5 40.0 40.7 0.0 4.7 7.4 5.0 27.8 7.1 37.5 40.0 40.7 0.0 4.7 7.4 5.0 27.8 7.1 37.5 40.0 40.7 0.0 4.9 7.4 8.3 22.7 7.1 11.7 40.0 40.7 0.1 9.6 7.4 10.2 22.7 11.1 29.2 21.1 20.0 20.2 23.5 7.1 31.7 40.0 40.7 0.1 9.6	7/03	0.0	9.0	8.1	13.8	23.9	9.2	0.0	23.5	7.1	16.7	20.0	33.3	0.0	1.1	1.6	4.6	11.6	4.0
7/106 0.0 14.8 12.5 18.3 30.7 14.4 0.0 23.5 7.1 37.5 30.0 40.7 0.0 3.8 4.6 4.8 25.0 1 7/07 0.0 17.5 13.6 20.9 31.7 15.7 0.0 23.5 7.1 37.5 40.0 40.7 0.0 4.7 7.4 5.0 27.8 1 7/09 0.0 20.6 16.8 23.5 53.5 18.5 0.0 23.5 7.1 37.5 40.0 40.7 0.0 4.9 7.4 8.3 28.1 1 7/11 2.9 24.1 28.0 26.5 40.1 20.8 18.2 23.5 7.1 41.7 40.0 40.7 0.1 9.6 7.4 10.7 28.1 27/11 29.2 24.1 28.0 20.0 44.2 43.9 39.3 38.3 40.0 40.7 0.1 9.6 7.4 10.2 27.3 48.3 <	7/04	0.0	10.8	9.1	15.5	26.6	11.2	0.0	23.5	7.1	25.0	20.0	37.0	0.0	3.8	3.2	4.6	23.8	13.3
7/07 0.0 17.5 13.6 20.9 31.7 15.7 0.0 23.5 7.1 37.5 40.0 40.7 0.0 3.8 4.6 4.8 25.6 1 7/08 0.0 18.4 15.4 22.1 33.3 17.5 0.0 23.5 7.1 37.5 40.0 40.7 0.0 4.7 7.4 5.0 22.8 1.7 17.0 11.7 22.8 18.5 23.5 35.5 18.5 0.0 23.5 7.1 37.5 40.0 40.7 0.1 9.6 7.4 10.7 22.8 1.6 24.7 37.4 20.0 0.9 23.5 7.1 50.0 40.0 40.7 0.1 9.6 7.4 11.3 28.1 27/11 29.2 24.1 28.0 25.5 40.1 20.8 18.8 23.5 7.1 50.0 40.0 40.7 0.6 10.5 8.8 11.3 28.1 27.1 27.1 30.0 40.0	7/05	0.0	11.6	10.2	16.4	28.9	12.3	0.0	23.5	7.1	37.5	20.0	37.0	0.0	3.8	4.6	4.8	24.7	13.3
7/08 0.0 18.4 15.4 22.1 33.3 17.5 0.0 23.5 7.1 37.5 40.0 40.7 0.0 4.7 7.4 5.0 27.8 7.7 7/09 0.0 20.6 16.8 23.5 35.5 18.5 0.0 23.5 7.1 37.5 40.0 40.7 0.0 4.9 7.4 8.3 28.1 1.7 7/11 2.9 24.1 28.0 26.5 40.1 20.8 11.8 23.5 7.1 50.0 40.7 0.6 10.5 40.7 41.1 21.9 4.4 29.4 39.3 58.3 40.0 40.7 0.6 10.5 40.4 11.1 11.5 40.4 43.2 44.8 43.2 22.0 44.4 29.4 39.3 58.3 40.0 44.4 11.0 11.9 14.8 33.1 40.0 44.1 10.0 14.1 30.6 23.2 24.2 24.2 24.2 24.2 24.2	7/06	0.0	14.8	12.5		30.7	14.4	0.0	23.5	7.1	37.5	30.0	40.7	0.0	3.8	4.6	4.8	25.0	15.0
7/09 0.0 20.6 16.8 23.5 35.5 18.5 0.0 23.5 7.1 37.5 40.0 40.7 0.0 4.9 7.4 8.3 28.1 1 7/10 1.7 22.8 1.6 24.7 37.4 20.0 0.9 23.5 7.1 41.7 40.0 40.7 0.1 9.6 7.4 10.7 28.1 2 7/11 2.9 24.1 28.0 26.5 40.1 20.8 1.8 23.5 7.1 40.0 40.7 0.6 10.5 8.8 11.7 28.2 7/13 9.3 33.7 40.2 35.6 45.7 23.3 8.8 35.3 39.3 58.3 40.0 44.4 1.0 11.9 14.8 13.1 29.1 20.0 49.4 59.3 3.8 40.0 44.1 1.0 11.9 14.8 13.1 29.1 22.1 23.8 40.0 40.0 40.0 40.0 40.0	7/07	0.0	17.5	13.6	20.9	31.7	15.7	0.0	23.5	7.1	37.5	40.0	40.7	0.0	3.8	4.6	4.8	25.6	16.1
7/10 1.7 22.8 19.6 24.7 37.4 20.0 0.9 23.5 7.1 41.7 40.0 40.7 0.1 9.6 7.4 10.7 28.1 27/11 2.9 24.1 28.0 26.5 40.1 20.8 1.8 23.5 7.1 50.0 40.0 40.7 0.1 9.6 7.4 10.7 28.1 27/12 3.9 28.2 34.6 28.4 43.2 22.0 4.4 29.4 39.3 58.3 40.0 40.7 0.6 10.5 8.8 11.7 28.4 27/13 9.3 33.7 40.2 35.6 45.7 23.3 8.8 35.3 39.3 58.3 40.0 44.4 1.0 11.9 14.8 13.0 24.1 27/14 15.5 44.4 47.6 29.1 15.0 41.2 39.3 58.3 40.0 44.4 1.0 11.3 28.1 27.2 23.2 23.0 23.0 23.0 23.2 24.7		0.0	18.4	15.4	22.1	33.3	17.5	0.0	23.5	7.1	37.5	40.0	40.7	0.0	4.7	7.4	5.0	27.8	16.2
7/11 2.9 24.1 28.0 26.5 40.1 20.8 1.8 23.5 7.1 50.0 40.0 40.7 0.1 9.6 7.4 11.3 28.1 7.7 7/12 3.9 28.2 34.6 28.4 43.2 22.0 4.4 29.4 39.3 58.3 40.0 40.7 0.6 10.5 8.8 11.7 28.4 7.7 7/13 9.3 33.7 40.2 35.6 45.7 23.3 8.8 35.3 39.3 58.3 40.0 44.4 1.0 11.9 14.8 13.1 29.1 21.7 21.7 23.3 48.4 35.3 39.3 58.3 40.0 44.4 1.0 11.9 14.8 30.3 20.2 21.7 23.3 48.2 26.3 20.2 23.0 30.3 22.2 30.0 43.2 40.0 59.3 7.2 23.2 23.0 30.3 24.2 24.7 41.3 28.1 22.7 27.1 28.2	7/09	0.0		16.8		35.5	18.5	0.0	23.5	7.1	37.5	40.0	40.7	0.0	4.9	7.4	8.3	28.1	17.8
7/12 3.9 28.2 34.6 28.4 43.2 22.0 4.4 29.4 39.3 58.3 40.0 40.7 0.6 10.5 8.8 11.7 28.4 27/13 9.3 33.7 40.2 35.6 45.7 23.3 8.8 35.3 39.3 58.3 40.0 44.4 1.0 11.9 14.8 13.1 29.1 77/14 15.5 40.4 43.2 44.8 47.6 29.1 15.0 41.2 39.3 58.3 40.0 44.4 1.0 11.9 14.8 13.1 29.1 27/15 23.8 40.0 50.5 55.5 55.3 58.4 46.6 30.1 64.7 57.1 62.5 40.0 59.3 6.8 20.5 32.6 23.0 22.2 77/18 43.0 58.8 65.3 64.6 64.8 51.0 40.7 70.6 64.3 66.7 40.0 59.3 17.5 24.7 49.9 33.5 44.7 22 77/14<				19.6			20.0	0.9	23.5	7.1		40.0	40.7	0.1	9.6	7.4	10.7	28.1	20.6
7/13 9.3 33.7 40.2 35.6 45.7 23.3 8.8 35.3 39.3 58.3 40.0 44.4 1.0 11.9 14.8 13.1 29.1 7/14 15.5 40.4 43.2 44.8 47.6 29.1 15.0 41.2 39.3 58.3 40.0 48.1 3.6 13.2 16.9 19.4 30.6 2 7/16 32.8 44.0 50.2 49.3 51.0 43.4 28.3 52.9 46.4 58.3 40.0 51.9 3.9 14.4 23.6 23.0 30.3 22.2 2 7/16 30.9 49.0 55.5 55.3 58.4 46.6 30.1 64.7 75.1 62.5 40.0 59.3 7.2 23.2 28.6 30.3 42.7 7 40.0 59.3 75.2 33.3 24.7 49.9 33.5 44.7 2 2 7/17 41.2 24.7 49.9 33.5 44.7 2				28.0			20.8	1.8	23.5	7.1	50.0	40.0	40.7	0.1	9.6	7.4	11.3	28.1	21.7
7/14 15.5 40.4 43.2 44.8 47.6 29.1 15.0 41.2 39.3 58.3 40.0 48.1 3.6 13.2 16.9 19.4 30.6 27.7 23.8 44.0 50.2 49.3 51.0 43.4 28.3 52.9 46.4 58.3 40.0 51.9 3.9 14.4 23.6 23.0 32.2 27.7 7/16 30.9 49.0 55.5 55.3 58.4 46.6 30.1 64.7 57.1 62.5 40.0 59.3 6.8 20.5 32.6 23.0 40.3 22.7 7/18 48.8 66.0 71.6 64.8 51.0 40.7 70.6 66.7 40.0 59.3 72 23.2 38.6 30.3 42.5 27.7 7/19 48.8 66.0 71.6 66.3 67.7 52.6 40.7 70.6 71.4 75.0 40.0 59.3 17.2 34.3 52.2 34.4 32.2 34.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>43.2</td> <td></td> <td></td> <td></td> <td>39.3</td> <td></td> <td>40.0</td> <td>40.7</td> <td>0.6</td> <td>10.5</td> <td>8.8</td> <td></td> <td>28.4</td> <td>22.3</td>						43.2				39.3		40.0	40.7	0.6	10.5	8.8		28.4	22.3
7/15 23.8 44.0 50.2 49.3 51.0 43.4 28.3 52.9 46.4 58.3 40.0 51.9 3.9 14.4 23.6 23.0 32.2 2 7/16 30.9 49.0 55.5 55.3 58.4 46.6 30.1 64.7 57.1 62.5 40.0 59.3 6.8 20.5 32.6 23.0 40.3 2 7/17 38.7 54.2 60.1 60.9 62.3 48.9 36.3 70.6 60.7 66.7 40.0 59.3 15.5 24.7 49.9 33.5 44.7 2 7/19 48.8 66.0 71.6 66.3 67.7 60.6 40.7 70.6 61.4 75.0 40.0 59.3 17.7 34.9 52.9 33.9 46.4 47.2 2 24.7 44.9 33.5 44.7 2 40.0 59.3 16.5 30.3 52.9 33.9 46.4 47.2 2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8.8</td> <td>35.3</td> <td>39.3</td> <td>58.3</td> <td>40.0</td> <td>44.4</td> <td>1.0</td> <td>11.9</td> <td>14.8</td> <td></td> <td>29.1</td> <td>23.3</td>								8.8	35.3	39.3	58.3	40.0	44.4	1.0	11.9	14.8		29.1	23.3
7/16 30.9 49.0 55.5 55.3 58.4 46.6 30.1 64.7 57.1 62.5 40.0 59.3 6.8 20.5 32.6 23.0 40.3 2 7/17 38.7 54.2 60.1 60.9 62.3 48.9 36.3 70.6 60.7 66.7 40.0 59.3 7.2 23.2 38.6 30.3 42.5 2 7/18 45.0 58.8 65.3 64.6 64.8 51.0 40.7 70.6 64.3 66.7 40.0 59.3 15.5 24.7 49.9 33.5 44.7 2 7/20 56.4 72.4 74.3 72.0 70.2 55.4 53.1 70.6 82.1 83.3 40.0 59.3 17.7 34.9 52.9 33.9 46.9 2 7/21 62.8 76.1 59.9 59.3 70.6 82.1 89.8 40.0 70.4 41.2 44.7 46.5 46.5												40.0		3.6	13.2				25.2
7/17 38.7 54.2 60.1 60.9 62.3 48.9 36.3 70.6 60.7 66.7 40.0 59.3 7.2 23.2 38.6 30.3 42.5 2 7/18 45.0 58.8 65.3 64.6 64.8 51.0 40.7 70.6 64.3 66.7 40.0 59.3 15.5 24.7 49.9 33.5 44.7 2 7/19 48.8 66.0 71.6 66.3 67.7 52.6 40.7 70.6 71.4 75.0 40.0 59.3 17.7 34.9 52.9 33.9 46.9 2 7/20 56.4 72.4 74.3 72.0 70.2 55.4 53.1 70.6 82.1 95.8 40.0 70.4 28.2 38.8 59.8 46.5 47.5 2 7/21 62.7 76.8 87.7 87.8 81.6 81.1 61.2 62.8 76.5 92.9 95.8 70.0 70																			27.4
7/18 45.0 58.8 65.3 64.6 64.8 51.0 40.7 70.6 64.3 66.7 40.0 59.3 15.5 24.7 49.9 33.5 44.7 7/19 48.8 66.0 71.6 66.3 67.7 52.6 40.7 70.6 71.4 75.0 40.0 59.3 17.7 34.9 52.9 33.9 46.9 2 7/20 56.4 72.4 74.3 72.0 70.2 55.4 53.1 70.6 82.1 83.3 40.0 59.3 22.7 36.3 55.2 36.4 47.2 2 7/21 62.7 76.8 77.3 77.2 72.8 57.9 59.3 70.6 82.1 95.8 40.0 70.4 28.2 38.8 59.8 46.5 47.2 47.2 47.2 47.2 47.2 47.2 47.2 47.2 47.2 47.2 47.2 47.2 47.2 47.2 47.2 47.2 47.2 47.2																			27.4
7/19 48.8 66.0 71.6 66.3 67.7 52.6 40.7 70.6 71.4 75.0 40.0 59.3 17.7 34.9 52.9 33.9 46.9 2 7/20 56.4 72.4 74.3 72.0 70.2 55.4 53.1 70.6 82.1 83.3 40.0 59.3 22.7 36.3 55.2 36.4 47.2 2 7/21 62.7 76.8 77.3 77.2 72.8 57.9 59.3 70.6 82.1 95.8 40.0 70.4 28.2 38.8 59.8 46.5 47.5 2 7/22 67.9 78.9 81.6 81.1 61.2 62.8 76.5 92.9 95.8 70.0 70.4 41.2 44.7 64.2 46.5 52.5 33.7 7/24 79.2 85.4 85.5 84.6 83.8 64.1 64.6 76.5 100 95.8 70.0 70.4 46.8 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>27.5</td></td<>																			27.5
7/20 56.4 72.4 74.3 72.0 70.2 55.4 53.1 70.6 82.1 83.3 40.0 59.3 22.7 36.3 55.2 36.4 47.2 2 7/21 62.7 76.8 77.3 77.2 72.8 57.9 59.3 70.6 82.1 95.8 40.0 70.4 28.2 38.8 59.8 46.5 47.5 2 7/22 67.9 78.9 81.6 79.3 76.1 59.9 61.1 70.6 85.7 95.8 70.0 70.4 30.8 39.9 62.4 46.5 49.4 3 7/23 72.7 82.6 83.9 81.6 81.1 61.2 62.8 76.5 92.9 95.8 70.0 70.4 41.2 44.7 64.2 46.5 53.8 3 7/24 79.2 85.4 85.5 86.6 66.9 76.5 100 95.8 70.0 70.4 46.8 50.4 50																			27.6
7/21 62.7 76.8 77.3 77.2 72.8 57.9 59.3 70.6 82.1 95.8 40.0 70.4 28.2 38.8 59.8 46.5 47.5 2 7/22 67.9 78.9 81.6 79.3 76.1 59.9 61.1 70.6 85.7 95.8 70.0 70.4 30.8 39.9 62.4 46.5 49.4 3 7/23 72.7 82.6 83.9 81.6 81.1 61.2 62.8 76.5 92.9 95.8 70.0 70.4 41.2 44.7 64.2 46.5 52.5 3 7/24 79.2 85.4 85.5 84.6 83.8 64.1 64.6 76.5 100 95.8 70.0 70.4 44.0 48.0 64.2 48.5 53.8 3 7/25 82.1 87.8 87.3 86.8 67.9 66.4 76.5 100 95.8 70.0 74.1 47.9 52.																			27.6
7/22 67.9 78.9 81.6 79.3 76.1 59.9 61.1 70.6 85.7 95.8 70.0 70.4 30.8 39.9 62.4 46.5 49.4 30.8 70.0 70.4 41.2 44.7 64.2 46.5 49.4 30.8 70.0 70.4 41.2 44.7 64.2 46.5 52.5 33.8 70.0 70.4 41.2 44.7 64.2 46.5 52.5 33.8 70.0 70.4 44.0 48.0 64.2 48.5 53.8 33.8 70.0 70.0 70.4 44.0 48.0 64.2 48.5 53.8 33.8 70.0 70.0 70.4 44.0 48.0 64.2 48.5 53.8 33.8 70.0 70.0 70.4 46.8 50.4 67.4 50.1 57.2 33.8 70.0 74.1 47.9 52.7 74.6 50.1 57.2 33.9 79.9 92.2 88.3 87.6 69.6 69.9 76.5 100 95.8 70.0 74.1 54.8 55.4 75.8 51.1																			27.7
7/23 72.7 82.6 83.9 81.6 81.1 61.2 62.8 76.5 92.9 95.8 70.0 70.4 41.2 44.7 64.2 46.5 52.5 3 7/24 79.2 85.4 85.5 84.6 83.8 64.1 64.6 76.5 100 95.8 70.0 70.4 44.0 48.0 64.2 48.5 53.8 3 7/25 82.1 87.8 87.4 86.5 85.6 66.4 64.6 76.5 100 95.8 70.0 70.4 46.8 50.4 67.4 50.1 54.4 3 7/26 84.3 89.3 90.5 87.3 86.8 67.9 66.4 76.5 100 95.8 70.0 74.1 47.9 52.7 74.6 50.1 57.2 3 7/27 87.3 91.9 92.2 88.3 87.6 69.6 69.9 76.5 100 95.8 70.0 74.1 56.1<																			28.8
7/24 79.2 85.4 85.5 84.6 83.8 64.1 64.6 76.5 100 95.8 70.0 70.4 44.0 48.0 64.2 48.5 53.8 3 7/25 82.1 87.8 87.4 86.5 85.6 66.4 64.6 76.5 100 95.8 70.0 70.4 46.8 50.4 67.4 50.1 54.4 3 7/26 84.3 89.3 90.5 87.3 86.8 67.9 66.4 76.5 100 95.8 70.0 74.1 47.9 52.7 74.6 50.1 57.2 3 7/27 87.3 91.9 92.2 88.3 87.6 69.6 69.9 76.5 100 95.8 70.0 74.1 54.8 55.4 75.8 51.1 57.2 3 7/28 89.5 93.9 92.9 89.4 88.7 77.4 77.0 82.4 100 95.8 70.0 74.1 60.4 </td <td></td> <td>30.8</td>																			30.8
7/25 82.1 87.8 87.4 86.5 85.6 66.4 64.6 76.5 100 95.8 70.0 70.4 46.8 50.4 67.4 50.1 54.4 3 7/26 84.3 89.3 90.5 87.3 86.8 67.9 66.4 76.5 100 95.8 70.0 74.1 47.9 52.7 74.6 50.1 57.2 3 7/27 87.3 91.9 92.2 88.3 87.6 69.6 69.9 76.5 100 95.8 70.0 74.1 54.8 55.4 75.8 51.1 57.2 3 7/28 89.5 93.9 92.9 89.4 88.7 77.4 77.0 82.4 100 95.8 70.0 74.1 56.1 62.3 76.0 52.5 58.8 5 7/29 92.3 94.5 93.3 90.3 90.0 81.2 81.4 82.4 100 95.8 90.0 74.1 60.4 63.8 76.9 57.0 66.9 5 7/30 94.0 95.3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>36.1</td></td<>																			36.1
7/26 84.3 89.3 90.5 87.3 86.8 67.9 66.4 76.5 100 95.8 70.0 74.1 47.9 52.7 74.6 50.1 57.2 3 7/27 87.3 91.9 92.2 88.3 87.6 69.6 69.9 76.5 100 95.8 70.0 74.1 54.8 55.4 75.8 51.1 57.2 3 7/28 89.5 93.9 92.9 89.4 88.7 77.4 77.0 82.4 100 95.8 70.0 74.1 56.1 62.3 76.0 52.5 58.8 5 7/29 92.3 94.5 93.3 90.3 90.0 81.2 81.4 82.4 100 95.8 90.0 74.1 60.4 63.8 76.9 57.0 66.9 57.0 66.9 3 7/30 94.0 95.3 94.2 91.8 92.1 88.7 83.2 82.4 100 95.8 90.0 74.1 64.9 65.1 77.8 64.0 70.9 8																			36.7 36.8
7/27 87.3 91.9 92.2 88.3 87.6 69.6 69.9 76.5 100 95.8 70.0 74.1 54.8 55.4 75.8 51.1 57.2 3 7/28 89.5 93.9 92.9 89.4 88.7 77.4 77.0 82.4 100 95.8 70.0 74.1 56.1 62.3 76.0 52.5 58.8 5 7/29 92.3 94.5 93.3 90.3 90.0 81.2 81.4 82.4 100 95.8 90.0 74.1 60.4 63.8 76.9 57.0 66.9 5 7/30 94.0 95.3 94.2 91.8 92.1 88.7 83.2 82.4 100 95.8 90.0 74.1 64.9 65.1 77.8 64.0 70.9 8 7/31 94.8 95.6 94.9 92.9 93.2 84.1 82.4 100 95.8 90.0 92.6 67.1 65.5 79.2 66.7 71.9 8 8/01 95.9 95.9																			36.8
7/28 89.5 93.9 92.9 89.4 88.7 77.4 77.0 82.4 100 95.8 70.0 74.1 56.1 62.3 76.0 52.5 58.8 57.0 66.9 57.0 77.9 88.8 89.0 99.0 92.6 67.1 65.5 79.2 66.7 71.9 88.8 88.0 89.0 99.0 92.6 67.1 65.5 79.2 66.7 71.9 88.8 88.0 89.0 99.0 92.6 70.9																			39.0
7/29 92.3 94.5 93.3 90.3 90.0 81.2 81.4 82.4 100 95.8 90.0 74.1 60.4 63.8 76.9 57.0 66.9 57.0 7/30 94.0 95.3 94.2 91.8 92.1 88.7 83.2 82.4 100 95.8 90.0 74.1 64.9 65.1 77.8 64.0 70.9 8 7/31 94.8 95.6 94.9 92.9 93.2 90.7 83.2 82.4 100 95.8 90.0 92.6 67.1 65.5 79.2 66.7 71.9 8 8/01 95.9 95.9 94.0 93.9 93.2 84.1 82.4 100 100 90.0 92.6 67.9 67.9 80.6 78.8 72.2 8 8/02 96.9 96.7 97.5 94.8 95.1 94.6 85.8 94.1 100 100 90.0 92.6 75.0 75.5<																			50.4
7/30 94.0 95.3 94.2 91.8 92.1 88.7 83.2 82.4 100 95.8 90.0 74.1 64.9 65.1 77.8 64.0 70.9 8 7/31 94.8 95.6 94.9 92.9 93.2 90.7 83.2 82.4 100 95.8 90.0 92.6 67.1 65.5 79.2 66.7 71.9 8 8/01 95.9 95.9 94.0 93.9 93.2 84.1 82.4 100 100 90.0 92.6 70.9 67.9 80.6 78.8 72.2 8 8/02 96.9 96.7 97.5 94.8 95.1 94.6 85.8 94.1 100 100 90.0 92.6 75.0 75.5 85.5 82.4 72.2 8 8/03 98.2 98.0 98.1 96.5 95.9 96.3 92.0 94.1 100 100 90.0 92.6 82.7 82.9 85.9 84.8 79.4 9 8/04 99.3 98.8 98.																			
7/31 94.8 95.6 94.9 92.9 93.2 90.7 83.2 82.4 100 95.8 90.0 92.6 67.1 65.5 79.2 66.7 71.9 88.8 8/01 95.9 95.9 94.0 93.9 93.2 84.1 82.4 100 100 90.0 92.6 70.9 67.9 80.6 78.8 72.2 88.8 8/02 96.9 96.7 97.5 94.8 95.1 94.6 85.8 94.1 100 100 90.0 92.6 75.0 75.5 85.5 82.4 72.2 88.8 8/03 98.2 98.0 98.1 96.5 95.9 96.3 92.0 94.1 100 100 90.0 92.6 82.7 82.9 85.9 84.8 79.4 98.8 98.0 98.5 97.4 96.4 97.5 99.1 100 100 100 90.0 92.6 88.5 90.4 88.7 87.3 81.3 98.8 98.6 98.0 98.3 98.6 100 100 100																			81.1
8/01 95.9 95.9 95.9 94.0 93.9 93.2 84.1 82.4 100 100 90.0 92.6 70.9 67.9 80.6 78.8 72.2 88.0 8/02 96.9 96.7 97.5 94.8 95.1 94.6 85.8 94.1 100 100 90.0 92.6 75.0 75.5 85.5 82.4 72.5 88.8 8/03 98.2 98.0 98.1 96.5 95.9 96.3 92.0 94.1 100 100 90.0 92.6 82.7 82.9 85.9 84.8 79.4 96.8 8/04 99.3 98.8 98.5 97.4 96.4 97.5 99.1 100 100 100 90.0 92.6 88.5 90.4 88.7 87.3 81.3 98.6 8/05 100 99.2 98.9 98.0 98.3 98.6 100 100 100 100 90.0 100 100 92.6 88.5 90.4 88.6 90.3 85.3 98.6																			85.0
8/02 96.9 96.7 97.5 94.8 95.1 94.6 85.8 94.1 100 100 90.0 92.6 75.0 75.5 85.5 82.4 72.5 88.8 8/03 98.2 98.0 98.1 96.5 95.9 96.3 92.0 94.1 100 100 90.0 92.6 82.7 82.9 85.9 84.8 79.4 98.8 98.8 98.5 97.4 96.4 97.5 99.1 100 100 100 90.0 92.6 88.5 90.4 88.7 87.3 81.3 98.8 8/05 100 100 100 100 90.0 92.6 88.5 90.4 88.7 87.3 81.3 98.8 88/05 98.8 98.9 98.0 98.3 98.6 100 100 100 100 90.0 100 100 92.6 89.6 90.3 85.3 98.8 99.6 99.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 </td <td></td> <td>88.6</td>																			88.6
8/03 98.2 98.0 98.1 96.5 95.9 96.3 92.0 94.1 100 100 90.0 92.6 82.7 82.9 85.9 84.8 79.4 98.8 8/04 99.3 98.8 98.5 97.4 96.4 97.5 99.1 100 100 100 90.0 92.6 88.5 90.4 88.7 87.3 81.3 98.8 8/05 100 99.2 98.9 98.0 98.3 98.6 100 100 100 90.0 100 100 92.6 89.6 90.3 85.3 98.5 8/06 100 99.7 99.3 98.8 99.6 99.5 100 100 100 90.0 100 100 97.3 95.6 96.4 96.9 96.9																			89.0
8/04 99.3 98.8 98.5 97.4 96.4 97.5 99.1 100 100 100 90.0 92.6 88.5 90.4 88.7 87.3 81.3 98.6 8/05 100 99.2 98.9 98.0 98.3 98.6 100 100 100 100 90.0 100 100 92.6 89.6 90.3 85.3 98.6 8/06 100 99.7 99.3 98.8 99.6 99.5 100 100 100 90.0 100 100 97.3 95.6 96.4 96.9 96.9																			90.4
8/05 100 99.2 98.9 98.0 98.3 98.6 100 100 100 100 90.0 100 100 92.6 89.6 90.3 85.3 98.6 100 99.7 99.3 98.8 99.6 99.5 100 100 100 100 90.0 100 100 97.3 95.6 96.4 96.9 95.																			92.8
8/06 100 99.7 99.3 98.8 99.6 99.5 100 100 100 100 90.0 100 100 97.3 95.6 96.4 96.9 9																			96.4
																			99.6
8/07 100 100 100 100 100 100 100 100 100 1																			100

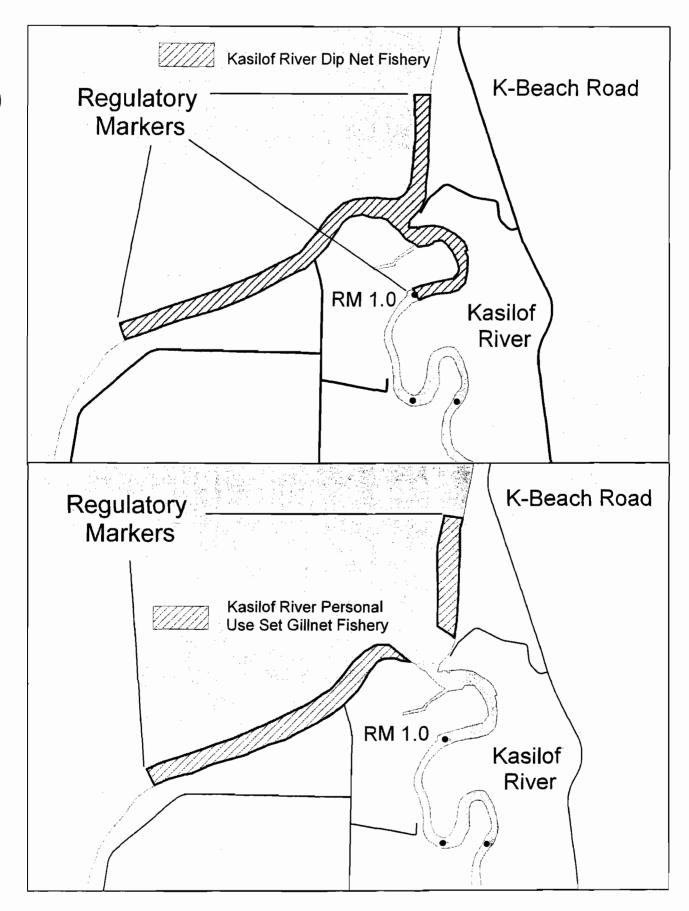


Figure 8.- Map of the Kasilof River personal use set gillnet and dip net area

Table 14.- Percent of personal use permit holders that would have exceeded a 5 salmon per person bag limit by year (Proposal 217).

		At or Und	er Limit	Over I	_imit
		Number of	% of	Number of	% of
Year		Permits	Permits	Permits	Permits
	2001	8,903	62.1%	5,442	37.9%
	2002	7,817	54.7%	6,464	45.3%
	2003	8,425	53.6%	7,301	46.4%
	2004	9,394	52.9%	8,354	47.1%
	2005	9,720	50.9%	9,361	49.1%
	2006	10,507	63.8%	5,957	36.2%

Table 15.- Percent of personal use permit holders that would have exceeded a 25 salmon per household bag limit by year.

		At or Und	er Limit	Over I	_imit
		Number of	% of	Number of	% of
Year		Permits	Permits	Permits	Permits
	2001	11,330	79.0%	3,015	21.0%
	2002	10,651	74.6%	3,630	25.4%
	2003	11,541	73.4%	4,185	26.6%
	2004	12,895	72.7%	4,853	27.3%
	2005	13,735	72.0%	5,346	28.0%
	2006	13,307	80.8%	3,157	19.2%

Table 16.- Percent of personal use permit holders that would have exceeded a 20 (head of household) -5 (each dependent) bag limit by year (proposal 218).

		At or Und	er Limit	Over I	_imit
		Number of	% of	Number of	% of
Year		Permits	Permits	Permits	Permits
	2001	2,887	20.1%	11,458	79.1%
	2002	3,467	24.3%	10,814	75.7%
	2003	4,095	26.0%	11,631	74.0%
	2004	4,867	27.4%	12,881	72.6%
	2005	5,081	26.6%	14,000	73.4%
	2006	2,985	18.1%	13,558	82.4%

Table 17.- Percent of personal use permit holders that would have harvested over 50% of their bag limit from the Kenai River by year.

		< 50% fro	< 50% from Kenai		m Kenai
		Number of	% of	Number of	% of
Year		Permits	Permits	Permits	Permits
	2001	2,580	26.9%	7,024	73.1%
	2002	2,801	27.5%	7,403	72.5%
	2003	2,792	25.0%	8,385	75.0%
	2004	2,967	23.3%	9,749	76.7%
	2005	4,998	34.8%	9,356	65.2%
	2006	3,712	35.3%	6,804	64.7%

¹ Includes data only from permits that harvested at least one salmon

Table 18.- Percent of personal use permit holders that would have exceeded a 15 (head of household) -5 (each dependent) bag limit by year (proposal 219).

		At or Und	er Limit	Over Limit			
		Number of	% of	Number of	% of		
Year		Permits	Permits	Permits	Permits		
	2001	3,679	25.6%	10,666	74.4%		
	2002	4,468	31.3%	9,813	68.7%		
	2003	5,164	32.8%	10,562	67.2%		
	2004	6,068	34.2%	11,680	65.8%		
	2005	6,608	34.6%	12,473	65.4%		
	2006	3,906	23.7%	12,547	76.3%		

Table 19.- Estimated reduction in harvest with proposed bag limits from proposal 217, 218 and 219.

			Estimated Re	ported Harvest			Estimated Reduction in Harvest			
				Maximum of	Maximum of	•		Maximum of	Maximum of	
	Actual	Maximum of	Maximum of	20 Head of	15 Head of		Maximum of	20 Head of	15 Head of	
	Reported	5 Salmon /	25 Salmon/	Household, 5/	Household, 5/	5 Salmon /	25 Salmon/	Household, 5/	Household, 5/	
Year	Harvest ¹	Person	Household	Dependent	Dependent	Person	Household	Dependent	Dependent	
2001	210,685	34,604	77,849	114,441	134,366	83.6%	63.0%	45.7%	36.2%	
2002	256,868	35,625	86,228	136,725	162,122	86.1%	66.4%	46.8%	36.9%	
2003	288,885	37,234	94,116	161,034	187,679	87.1%	67.4%	44.3%	35.0%	
2004	343,931	40,586	104,975	194,085	224,066	88.2%	69.5%	43.6%	34.9%	
2005	372,636	48,366	120,995	202,649	240,418	87.0%	67.5%	45.6%	35.5%	
2006	230,521	39,754	39,084	118,005	140,530	82.8%	83.0%	48.8%	39.0%	
2001-2006 Avg.	283,921	39,362	87,208	1 <u>54,490</u>	181,530	86.1%	69.3%	45.6%	36.1%	
Proposals:		217	217	218	219	217	217	218	219	

¹Reported from the Kenai River dip net, Kasilof River dip net, and Kasilof River gill net personal use fisheries; excludes Fish Creek (open only in 2001) and harvests reported from unknown fisheries.

RC 35

Deliberation Materials

Committee F

UCI BOF 2008

Soldotna SF Division

Category	Prop#	Proposal Intent/Effect	ADF&G Position	Background Information
Kenai River Sport Fishing Vessels	283	Add one drift boat only day on the Kenai River	NEUTRAL	Tables 1-3 (pp.6 & 8-9) Figures 1-2 (pp.6-7)
Kenai River Sport Fishing Vessels	284	Add one drift boat only day on the Kenai River	NEUTRAL	Tables 1-3 (pp.6 & 8-9) Figures 1-2 (pp.6-7)
Kenai River Sport Fishing Vessels	285	Add one drift boat only day on the Kenai River	NEUTRAL	Tables 1-3 (pp.6 & 8-9) Figures 1-2 (pp.6-7)
Kenai River Sport Fishing Vessels	286	Add one additional non-guided drift only day on the Kenai River	NEUTRAL	Tables 1-3 (pp.6 & 8-9) Figures 1-2 (pp.6-7)
Kenai River Sport Fishing Vessels	287	Add one drift boat only day on the Kenai River	NEUTRAL	Tables 1-3 (pp.6 & 8-9) Figures 1-2 (pp.6-7)
Kenai River Sport Fishing Vessels	288	Make Sunday, Wednesday, and Friday drift-only days on Kenai River	NEUTRAL	Tables 1-3 (pp.6 & 8-9) Figures 1-2 (pp.6-7)
Kenai River Sport Fishing Vessels	289	Phase-in additional drift boats only days on Kenai River	NEUTRAL	Tables 1-3 (pp.6 & 8-9) Figures 1-2 (pp.6-7)
Kenai River Sport Fishing Vessels	290	Prohibit fishing from motorized vessel in Kenai River	OPPOSE	See Staff Comments
Kenai River Sport Fishing Vessels	291	Require 4-stroke or direct fuel injection motors on the Kenai River	NO ACTION	See Staff Comments
Kenai River Sport Fishing Vessels	292	Require 4-stroke or direct fuel injection motors on the Kenai River	NO ACTION	See Staff Comments
Kenai River Sport Fishing Vessels	293	Require 4-stroke or direct fuel injection motors on the Kenai River	NO ACTION	See Staff Comments
Kenai River Sport Fishing Vessels	294	Regulate motorized use for fishing on the Kenai River to reduce hydrocarbon pollution	NO ACTION	See Staff Comments
Kenai River Sport Fishing Vessels	295	Reduce fishing hours or restrict motorized use to reduce hydrocarbon discharge into Kenai River	NEUTRAL	See Staff Comments
Kenai River Sport Fishing Vessels	296	Restrict outboard motors to 35 hp on the Kenai River	NO ACTION	See Staff Comments
Kenai River Sport Fishing Vessels	297	Prohibit king salmon fishing from boats during a 48 hour period on lower Kenai River	NEUTRAL	Tables 4-5 (pp.10 & 12) Figures 3-6 (pp. 11 & 13-15)
Kenai River Sport Fishing Vessels	298	Prohibit non-residents from fishing from a vessel unless accompanied be a relative between 6pm and 6am on the Kenai River	NEUTRAL	See Staff Comments
Kenai River Sport Fishing Vessels	299	Open Kenai River below Soldotna Bridge to fishing from boats during king salmon season	NEUTRAL	Figure 7 (p. 16)
Kenai River Sport Fishing Vessels	300	Require course for powerboat operation on Kenai River	NO ACTION	See Staff Comments
Kenai River Sport Fishing Vessels	301	Restrict use of motorized vessel for fishing on the Upper Kenai River near Kenai Lake	NEUTAL	Figure 8 (p. 17)

Category	Prop#	Proposal Intent/Effect	ADF&G Position	Background Information
Guides - Kenai & Kasilof Rivers	302	Institute limited entry program for guides on Kenai and Kasilof rivers	NEUTRAL	Table 6 (p.18) Figure 9 (p.18)
Guides - Kenai & Kasilof Rivers	303	Modify existing Kenai River guide hours from 6am - 6pm, to 7am - 7pm.	NEUTRAL	See Staff Comments
Guides - Kenai & Kasilof Rivers	304	Modify existing Kenai River guide hours from 6am - 6pm, to 7am - 7pm.	NEUTRAL	See Staff Comments
Guides - Kenai & Kasilof Rivers	305	Modify existing Kenai River guide hours from 6am - 6pm, to 8am - 8pm.	NEUTRAL	See Staff Comments
Guides - Kenai & Kasilof Rivers	306	Prohibit guide boats with clients in fishing holes 10 minutes prior to opening times.	NEUTRAL	No Information
Guides - Kenai & Kasilof Rivers	307	Prohibit guides with clients from being on the river prior to ½ hour before start time	NEUTRAL	No Information
Guides - Kenai & Kasilof Rivers	308	Separate the guided and unguided sport fishers in the lower Kenai river by day and time	NEUTRAL	See Staff Comments
Guides - Kenai & Kasilof Rivers	309	Prohibit Kenai River guiding on Thursdays in June and July	NEUTRAL	See Staff Comments
Guides - Kenai & Kasilof Rivers	310	Prohibit guides from fishing on Kenai River on Sundays	NO ACTION	No Information
Guides - Kenai & Kasilof Rivers	311	Prohibit guides from fishing on Kenai River on Sundays	NO ACTION	No Information
Guides - Kenai & Kasilof Rivers	312	Restrict licensed guides while fishing during non-guide hours on Kenai River	NEUTRAL	No Information
Guides - Kenai & Kasilof Rivers	313	Limit guides on the Kenai River to only one client or group of clients per day during July	NEUTRAL	Table 7 (p.19)
Guides - Kenai & Kasilof Rivers	314	Restrict Kenai River guiding to one trip per day	NEUTRAL	Table 7 (p.19)
Guides - Kenai & Kasilof Rivers	315	Restrict Kenai River and Kasilof River guides to one trip per day on either river	NEUTRAL	Table 7 (p.19)
Guides - Kenai & Kasilof Rivers	316	Limit guides to only one client or group of clients per day for Upper Cook Inlet Rivers	NEUTRAL	Table 7 (p.19)
Guides - Kenai & Kasilof Rivers	317	Require guides to register for either the Kenai River or the Kasilof River	NEUTRAL	Table 9 (p.20)
Guides - Kenai & Kasilof Rivers	318	Restrict same day guiding on both Kenai and Kasilof rivers	NEUTRAL	Table 8 (p.20)
Guides - Kenai & Kasilof Rivers	319	Prohibit Kasilof River guided fishing when the Kenai River is closed to guided fishing.	NEUTRAL	Tables 10-12 (pp.21, 23 & 26) Figure 10 (p.22)
Guides - Kenai & Kasilof Rivers	320	Prohibit Kasilof River guided fishing on Mondays	NEUTRAL	Tables 10-12 (pp.21, 23 & 26) Figure 10 (p.22)
Guides - Kenai & Kasilof Rivers	321	Allow Kenai River guides to operate on Sundays in May and June, and no hour restrictions in May	NEUTRAL	Figures 11-12 (pp.24-25)
Guides - Kenai & Kasılof Rivers	322	Repeal the guide boat prohibition on Mondays in the Kenai River	NEUTRAL	Figures 11-12 (pp.24-25)
Guides - Kenai & Kasilof Rivers	323	Allow guides to fish from drift boats on the Kenai River in July	NEUTRAL	Figures 11-12 (pp.24-25)
Guides - Kenai & Kasilof Rivers	324	Allow a guide boat on the Kenai River to carry six persons instead of five during the month of July	NEUTRAL	Figures 11-12 (pp.24-25)
Guides - Kenai & Kasilof Rivers	325	Designate one day per week on the Kenai River late run to guided anglers only	NEUTRAL	Figures 11-12 (pp.24-25)
Guides - Kenai & Kasilof Rivers	326	Allow guided fishing 7 days per week with each individual guide allowed 5 days per week on the Kenai River	NEUTRAL	Figures 11-12 (pp.24-25)
Guides - Kenai & Kasilof Rivers	327	Eliminate Sunday closure for guides on the Kasilof River	NEUTRAL	Tables 10-12 (pp.21, 23 & 26) Figure 10 (p.22)
Guides - Kenai & Kasilof Rivers	328	Modify regulation prohibiting fishing by sport fishing guides when clients are present on the Kenai River	SUPPORT	See Statt Comments
Guides - Kenai & Kasilof Rivers	329	Align vessel registration regulations with DNR requirements that allow for un-registering guide vessels	SUPPORT	See Staff Comments

List of Tables

Table 1 Monday drift boat counts on the Kenai River, Soldotna Bridge to Warren Ames Bridge, from May 16 to July 31, 2005-2007.	
Table 2 Comparison of effort, catch and harvest between weekdays and weekends in th Kenai River king salmon fishery, Soldotna Bridge to Warren Ames Bridge, 2005-2007.	
Table 3 Comparison of effort, catch and harvest on weekdays and weekends, between guided and unguided anglers in the Kenai River king salmon fishery, Soldotna Bridge to Warren Ames Bridge, 2005-2007.	9
Table 4 Catch and harvest of early-run king salmon by Kenai River section, 1996-2006	
Table 5 Catch and harvest of late-run king salmon by Kenai River section, 1996-2006.	2
Table 6 Summary of Kenai River fishing guides registered with Alaska State Parks, 1982-2006	8
Table 7 Number of Kenai River fishing guides that conducted more than one trip per day during July, 2006-2007.	9
Table 8 Number of fishing guides with effort on both the Kenai and Kasilof Rivers on the same day during June and July, 2006-2007.	0
Table 9 Number of fishing guides with effort on both the Kenai and Kasilof Rivers in the same year, 2006-2007.	0
Table 10 Summary of creel survey data by day of week in the Kasilof River early-run king salmon fishery, 2004-2007	1
Table 11 Early-run Kasilof River king salmon creel summary, estimated Chinook salmon catch, harvest, and effort by angler category, May 16 through June 30, 2007	3
Table 12 Summary of early and late-run Kasilof River king salmon catch, harvest and effort by angler category as estimated by the Statewide Harvest Survey, 1996-2006	6

List of Figures

	Monday drift boat counts on the Kenai River, Soldotna Bridge to Warren mes Bridge, from May 16 to July 31, 2005-2007
la	Monday unguided drift boat catch, harvest and angler effort in the Kenai River te-run king salmon fishery, Soldotna Bridge to Warren Ames Bridge, 1999-007
	Catch and harvest of early-run king salmon by Kenai River section, 1996-
	Catch and harvest of late-run king salmon by Kenai River section, 1996-2006.
_	Estimated harvest of king salmon between the king salmon sonar site (rm 8.5) and Warren Ames Bridge, 1996-2007 (rm 5.1)
	Summary of total boat counts during the late-run king salmon fishery by Kenai iver section between Soldotna Bridge and Warren Ames Bridge, 2003-2007.15
_	Map of the Kenai River with detail of the seasonal closure to fishing from pats downstream of the Soldotna Bridge
	Map of the Upper Kenai River with detail of the unrestricted horsepower, no ake zone downstream of the Kenai Lake Bridge
-	Summary of Kenai River guides and vessels registered with Alaska State arks, 1982-2006
_	Creel survey data summary of guided and unguided boat anglers by day of eek in the Kasilof River early-run king salmon fishery, 2004-2007
_	Historic harvest and angler effort for the early-run Kenai River king salmon shery between the Soldotna Bridge and the Warren Ames Bridge, 1977-2007.
	Historic harvest and angler effort for the late-run Kenai River king salmon shery between the Soldotna Bridge and the Warren Ames Bridge, 1977-2007.

Table 1.- Monday drift boat counts on the Kenai River, Soldotna Bridge to Warren Ames Bridge, from May 16 to July 31, 2005-2007.

		2005			2006		2007		
Count #	Date	Time	Boats	Date	Time	Boats	Date	Time	Boats
1	16-May	1534	3	22-May	1345	0	21-May	1235	0
2	23-May	1548	7	29-May	1230	3	28-May	1230	2
3	6-Jun	1403	8	5-Jun	1030	10	4-Jun	1030	8
4	13-Jun	1425	7	12-Jun	1200	7	11-Jun	1200	7
5	20-Jun	1508	10	19-Jun	1300	19	18-Jun	1300	13
6	27-Jun	1009	21	26-Jun	1045	24	25-Jun	1045	17
7	4-Jul	1600	9	3-Jul	1230	27	2-Jul	1230	21
8	11-Jul	1131	46	10-Jul	1131	37	9-Jul	1600	54
9	18-Jul	1400	58	17-Jul	1400	57	16-Jul	1200	87
10	25-Jul	1200	53	24-Jul	1330	69	23-Jul	1330	107
11				31-Jul	1300	84	30-Jul	1300	92

Figure 1.- Monday drift boat counts on the Kenai River, Soldotna Bridge to Warren Ames Bridge, from May 16 to July 31, 2005-2007.

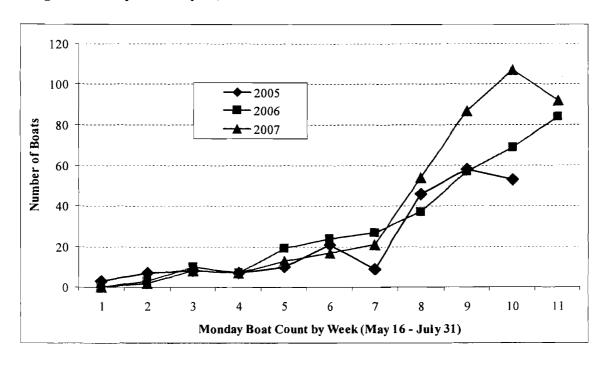
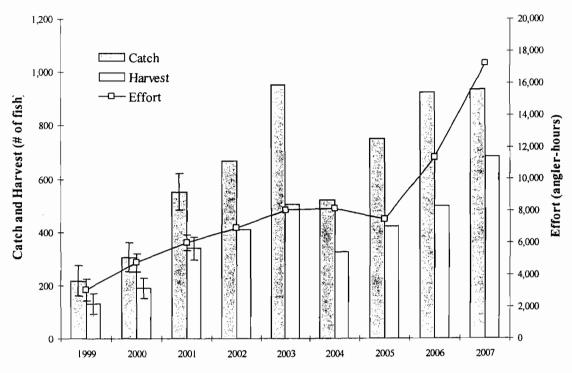



Figure 2.- Monday unguided drift boat catch, harvest and angler effort in the Kenai River late-run king salmon fishery, Soldotna Bridge to Warren Ames Bridge, 1999-2007.

Error bars show +/- I Standard Error.

Table 2.- Comparison of effort, catch and harvest between weekdays and weekends in the Kenai River king salmon fishery, Soldotna Bridge to Warren Ames Bridge, 2005-2007.

Early Run Summary

				.,	· J			
		ν	Veekdays			7	Weekends	
	# days	Effort	Catch	Harvest	# days	Effort	Catch	Harvest
Year								
2005	27	54,142	3,363	2,225	12	25,350	1,067	651
2006	30	25,350	1,067	651	13	15,540	655	403
2007	25	15,540	655	403	13	16,952	521	248
05-07 Mean		31,677	1,695	1,093		19,280	748	434
		Weekda	y Daily ave	rage		Weeken	nd Daily ave	rage
	_	Effort	Catch	Harvest	_	Effort	Catch	Harvest
2005	_	2,005	125	82	-	2,112	89	54
2006		845	36	22		1,195	50	31
2007	_	622	26	16		1,304	40	19
05-07 Mean		1,157	62	40		1,537	60	35

Late Run Summary

			Lat	<u>e R</u> un Summa:	ry			
		V	Veekdays			V	Veekends	
	# days	Effort	Catch	Harvest	# days	Effort	Catch	Harvest
Year								
2005	18	154,392	17,403	10,006	10	76,393	8,260	5,307
2006	16	173,118	12,786	8,950	10	84,582	7,002	4,241
2007	17	153,339	9,573	6,692	9	65,880	3,835	2,566
05-07 Mean		160,283	13,254	8,549		75,618	6,366	4,038
		Weekda	ıy Daily ave	rage		Weeken	d Daily ave	rage
		Effort	Catch	Harvest		Effort	Catch	Harvest
2005	_	8,577	967	556	_	7,639	826	531
2006		10,820	799	559		8,458	700	424
2007		9,020	563	394		7,320	426	285
05-07 Mean		9,472	776	503		7,806	651	413

Table 3.- Comparison of effort, catch and harvest on weekdays and weekends, between guided and unguided anglers in the Kenai River king salmon fishery, Soldotna Bridge to Warren Ames Bridge, 2005-2007.

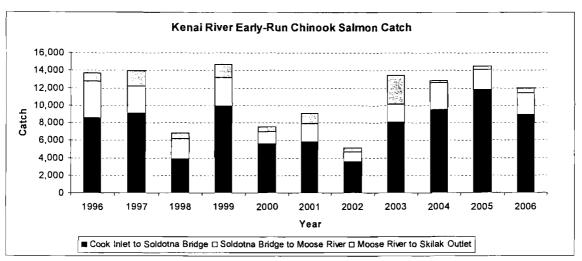
	E	arly Run		I	ate Run	
2007						
_	Effort	Catch	Harvest	Effort	Catch	Harvest
Guided weekdays	36,416	2,638	1,743	88,144	6,964	5,476
Guided weekends	8,380	389	191	18,500	1,171	929
Total	44,796	3,027	1,934	106,644	8,135	6,405
Unguided weekdays	12,690	455	366	65,195	2,609	1,216
Unguided weekends	12,770	462	344	47,380	2,664	1,636
Total	25,460	917	710	112,575	5,273	2,853
Grand Total	70,256	3,944	2,645	219,219	13,408	9,258
2006						
	Effort	Catch	Harvest	Effort	Catch	Harvest
Guided weekdays	36,848	2,732	2,309	92,768	7,994	5,816
Guided weekends	7,938	372	254	24,442	2,277	1,480
Total	44,786	3,104	2,564	117,210	10,272	7,295
Unguided weekdays	15,480	771	425	80,350	4,792	3,134
Unguided weekends	12,505	648	409	60,140	4,724	2,761
Total	27,985	1,419	833	140,490	9,516	5,895
Grand Total	72,771	4,523	3,397	257,700	19,788	13,190
2005				_		
	Effort	Catch	Harvest	Effort	Catch	Harvest
Guided weekdays	38,602	2,708	1,823	84,842	10,468	6,320
Guided weekends	8,398	546	403	20,708	2,948	2,100
Total	47,000	3,254	2,226	105,550	13,416	8,419
Unguided weekdays	15,540	655	403	69,550	6,935	3,686
Unguided weekends	16,952	521	248	55,685	5,312	3,207
Total	32,492	1,176	651	125,235	12,248	6,893
Grand Total	79,492	4,430	2,876	230,785	25,663	15,313

Table 4.- Catch and harvest of early-run king salmon by Kenai River section, 1996-2006.

	Cook Inlet to Soldotna Bridge		Soldotna Bridge to Moose River		Moose River to Skilak Outlet		Kenai River reach Not Specified		Kenai River Total	
Year	Catch	Harvest	Catch	Harvest	Catch	Harvest	Catch	Harvest	Catch	Harvest
1996	8,593	3,782	4,162	1,836	929	321			13,684	5,939
1997	9,110	3,805	3,111	1,178	1,724	305			13,945	5,288
1998	3,894	1,193	2,259	451	649	71			6,802	1,715
1999	9,883	4,732	3,294	1,835	1,501	760			14,678	7,327
2000	5,623	1,723	1,362	512	539	157			7,524	2,392
2001	5,861	1,757	2,075	591	1,144	343			9,080	2,691
2002	3,598	943	1,092	377	424	146	84	31 ª	5,198	1,497
2003	8,075	1,982	2,046	782	3,331	97	958	466 °	14,410	3,327
2004	9,522	2,853	3,046	1,064	290	0	0	0 a	12,858	3,917
2005	11,802	3,790	2,266	774	393	145	751	311 a	15,212	5,020
2006	8,942	3,528	2,473	1,121	519	175	373	107 a	12,307	4,931
Mean	7,718	2,735	2,471	956	1,040	229	433	183	11,427	4,004

^a Adopted by SWHS beginning in 2002.

Figure 3.- Catch and harvest of early-run king salmon by Kenai River section, 1996-2006.



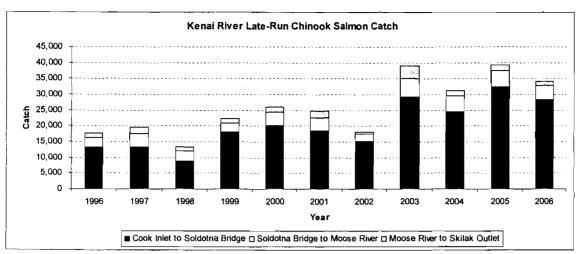


Table 5.- Catch and harvest of late-run king salmon by Kenai River section, 1996-2006.

	Cook Inlet to Soldotna Bridge		Soldotna Bridge to Moose River		Moose River to Skilak Outlet		rea	River ach pecified	Kenai River Total	
Year	Catch	Harvest	Catch	Harvest	Catch	Harvest	Catch	Harvest	Catch	Harvest
1996	13,253	7,373	3,013	1,562	1,445	491			17,711	9,426
1997	13,410	7,439	4,188	1,898	1,953	517			19,551	9,854
1998	8,957	4,201	2,995	1,200	1,357	334			13,309	5,735
1999	18,096	8,250	2,819	1,258	1,397	310			22,312	9,818
2000	20,091	11,064	4,269	2,597	1,542	549			25,902	14,210
2001	18,671	9,717	3,923	2,163	2,030	421			24,624	12,301
2002	15,220	7,428	2,261	926	729	198	442	304 a	18,652	8,856
2003	29,343	11,253	5,727	2,611	3,995	471	575	206 a	39,640	14,541
2004	24,550	10,893	5,125	2,263	1,502	481	1,165	555 a	32,342	14,192
2005	32,280	12,830	5,133	2,356	1,856	460	2,108	1,020 a	41,377	16,666
2006	28,226	11,391	4,581	2,176	1,148	418	1,418	694 ª	35,373	14,679
Mean	20,191	9,258	4,003	1,910	1,723	423	1,142	556	26,436	11,843

^a Adopted by SWHS beginning in 2002.

Figure 4.- Catch and harvest of late-run king salmon by Kenai River section, 1996-2006.

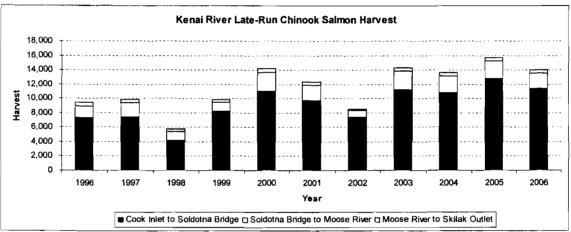


Figure 5.- Estimated harvest of king salmon between the king salmon sonar site (rm 8.5) and Warren Ames Bridge, 1996-2007 (rm 5.1).

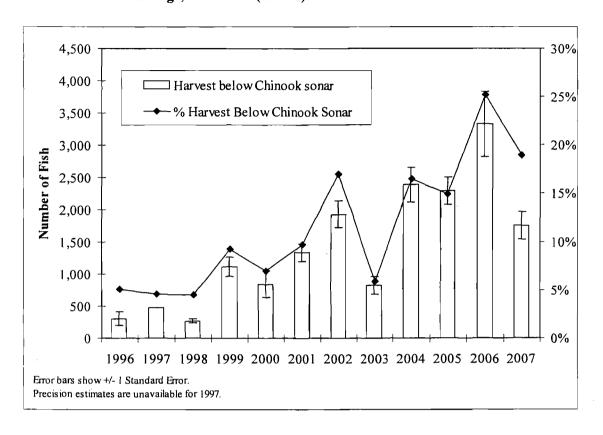


Figure 6.- Summary of total boat counts during the late-run king salmon fishery by Kenai River section between Soldotna Bridge and Warren Ames Bridge, 2003-2007.

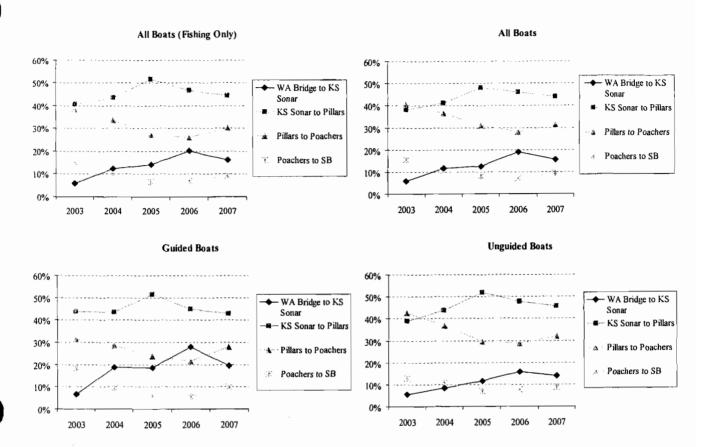


Figure 7.- Map of the Kenai River with detail of the seasonal closure to fishing from boats downstream of the Soldotna Bridge.

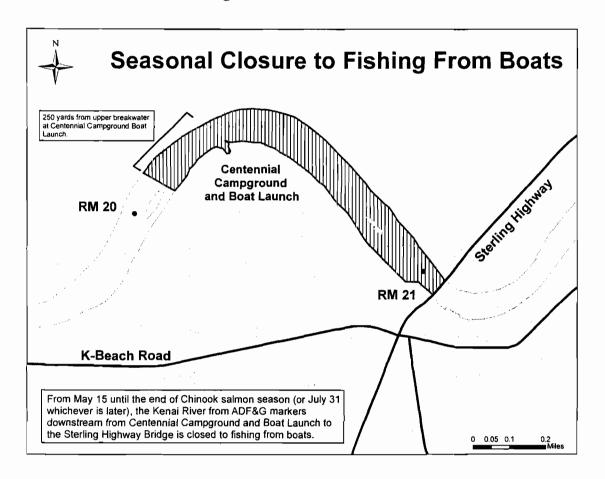


Figure 8.- Map of the Upper Kenai River with detail of the unrestricted horsepower, no wake zone downstream of the Kenai Lake Bridge.

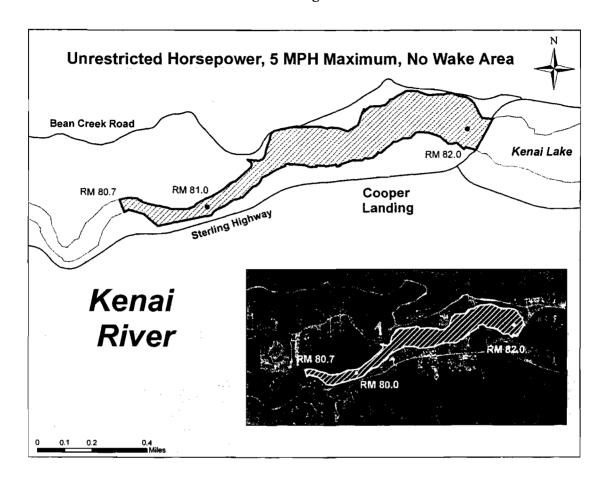
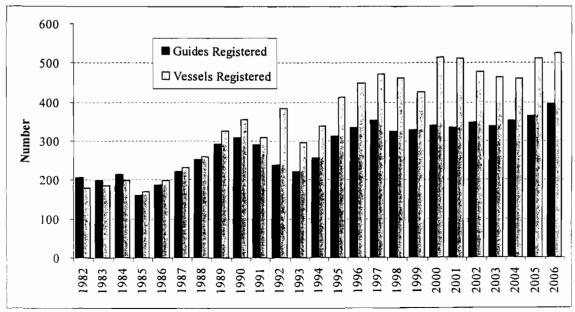



Table 6.- Summary of Kenai River fishing guides registered with Alaska State Parks, 1982-2006.

	Businesses	Guides		Vessels Registered	i
Year	Registered	Registered	Powered	Drift	Total
1982	125	207		_	179
1983	123	198			185
1984	115	214			199
1985	107	160	131	40	171
1986	130	187	138	60	198
987	145	222	154	77	231
988	162	252	180	79	259
989	202	292	225	101	326
1990	230	310	229	126	355
1991	176	290	198	112	310
992	194	238	251	134	385
993	191	222	169	127	296
994	3	257	182	157	339
995		314	236	177	413
996		335	326	124	450
997	а	354	314	158	472
998		325	326	137	463
999	4	329	286	140	426
2000		341	403 b	111	514
1002		335	403	109	512
2002		348	304	174	478
2003		339	301	164	465
2004		352	310	150	460
2005	c	365	354	158	512
2006	e	396	353 ^d	172	525

Note: Data provided by Alaska State Parks.

Figure 9.- Summary of Kenai River guides and vessels registered with Alaska State Parks, 1982-2006.

[&]quot; Data not available.

h Includes 25 motorized rafts/drift boats.

A percentage of these boats are used in other areas.

d Includes 13 motorized rafts/ drift boats.

Table 7.- Number of Kenai River fishing guides that conducted more than one trip per day during July, 2006-2007.

	2006			2007			
	Total # of Guides	Total # of Guides tha	t	Total # of Guides	Total # of Guides that	<u> </u>	
Date	on the River	conducted 2 trips	Percent	on the River	conducted 2 trips	Percent	
7/1	185	23	12.43%	a	a	a	
7/2	a	a	a	a	a	a	
7/3	a	a	а	191	20	10.47%	
7/4	219	28	12.79%	145	19	13.10%	
7/5	178	28	15.73%	163	19	11.66%	
7/6	188	27	14.36%	172	23	13.37%	
7/7	206	26	12.62%	180	16	8.89%	
7/8	209	30	14.35%	a	a	a	
7/9	a	a	a	a	a.	a	
7/10	a	a	a	231	36	15.58%	
7/11	257	55	21.40%	234	28	11.97%	
7/12	247	41	16.60%	238	32	13.45%	
7/13	243	47	19.34%	246	39	15.85%	
7/14	266	50	18.80%	229	37	16.16%	
7/15	252	45	17.86%	a	a	a	
7/16	a	a	a	a	a	а	
7/17	a	a	a	275	70	25.45%	
7/18	277	70	25.27%	268	59	22.01%	
7/19	269	72	26.77%	262	59	22.52%	
7/20	268	64	23.88%	254	54	21.26%	
7/21	258	65	25.19%	239	46	19.25%	
7/22	238	50	21.01%	a	a	a	
7/23	a	a	a	a	a	a	
7/24	a	a	a	266	64	24.06%	
7/25	264	71	26.89%	266	66	24.81%	
7/26	247	52	21.05%	259	58	22.39%	
7/27	229	50	21.83%	248	49	19.76%	
7/28	244	56	22.95%	222	45	20.27%	
7/29	212	31	14.62%	a	a	a	
7/30	a	a	a	a	а	a	
7/31	a	a	а	225	53	23.56%	
Average	236	47	19.32%	229	42	17.90%	

^a Days when fishing from guide boats was prohibited (Sundays and Mondays)

Table 8.- Number of fishing guides with effort on both the Kenai and Kasilof Rivers on the same day during June and July, 2006-2007.

	2006	2007		
7	Total # of Guides with effort	Total # of Guides with effort		
	on both the Kenai and		on both the Kenai and	
Date	Kasilof Rivers	Date	Kasilof Rivers	
6/1/2006	1	6/1/2007	1	
6/3/2006	1	6/5/2007	1	
6/6/2006	3	6/6/2007	1	
6/7/2006	2	6/8/2007	2	
6/8/2006	ı	6/9/2007	1	
6/10/2006	2	6/10/2007	1	
6/11/2006	1	6/12/2007	3	
6/13/2006	1	6/13/2007	2	
6/14/2006	2	6/14/2007	2	
6/15/2006	2	6/15/2007	1	
6/16/2006	2	6/16/2007	1	
6/17/2006	3	6/19/2007	3	
6/18/2006	2	6/20/2007	1	
6/20/2006	3	6/21/2007	1	
6/21/2006	1	6/22/2007	1	
6/22/2006	2	6/23/2007	2	
6/23/2006	2	6/24/2007	1	
6/24/2006	4	6/25/2007	ŧ	
6/25/2006	2	6/26/2007	2	
6/27/2006	1	6/27/2007	2	
6/29/2006	1	6/28/2007	1	
6/30/2006	1	6/29/2007	1	
7/1/2006	1	6/30/2007	1	
7/4/2006	2	7/2/2007	2	
7/10/2006	1	7/3/2007	1	
7/12/2006	2	7/4/2007	1	
7/14/2006	1	7/10/2007	1	
7/17/2006	3	7/18/2007	1	
7/18/2006	2	7/20/2007	2	
7/19/2006	2	7/24/2007	2	
7/20/2006	1	7/25/2007	1	
7/21/2006	1	7/27/2007	2	
7/22/2006	1	7/30/2007	_ 1	
7/25/2006	1	Total	47	
7/26/2006	1			
7/27/2006	1			
7/29/2006	11			
Total	61			

Note: Effort on both during the same day.

Table 9.- Number of fishing guides with effort on both the Kenai and Kasilof Rivers in the same year, 2006-2007.

Number of Guides Operating on both Kenai and Kasilof

Year	Rivers in the Same Year
2006	133
2007	128

Table 10.- Summary of creel survey data by day of week in the Kasilof River early-run king salmon fishery, 2004-2007.

2004					
Day of	Number	Number	Boat	Shore	
Week	Anglers	Angler Hours	Anglers	Anglers	
Guided Anglers					
Sunday	236	1,269	235	0	
Monday	177	972	177	0	
Tuesday	107	652	107	0	
Wednesday	179	1,114	179	0	
Thursday	126	567	126	0	
Friday	150	845	150	0	
Saturday	187	1,116	187	0	
	1,162	6,533	1,161	0	
Unguided Anglers					
Sunday	235	758	64	171	
Monday	200	688	92	108	
Tuesday	122	343	16	106	
Wednesday	118	454	26	92	
Thursday	217	725	33	184	
Friday	232	779	34	198	
Saturday	317	1,237	151	166	
	1,441	4,984	416	1,025	
Total:	2,603	11,517	1,577	1,025	

		2005		
Day of	Number	Number	Boat	Shore
Week	Anglers	Angler Hours	Anglers	Anglers
Guided Anglers				
Sunday	416	2,869	416	0
Monday	447	2,980	447	0
Tuesday	191	1,330	191	0
Wednesday	96	676	96	0
Thursday	128	890	128	0
Friday	55	355	55	0
Saturday	152	1,190	140	0
	1,485	10,289	1,473	0
Unguided Anglers				
Sunday	191	864	121	73
Monday	197	1,043	160	37
Tuesday	578	2,146	76	504
Wednesday	15	60	14	1
Thursday	111	402	27	87
Friday	23	122	23	0
Saturday	680	2,319	152	562
	1,795	6,955	573	1,264
Total:	3,280	17,244	2,046	1,264

		2006		
Day of	Number	Number	Boat	Shore
Week	Anglers	Angler Hours	Anglers	Anglers
Guided Anglers				
Sunday	266	1,872	267	0
Monday	328	2,260	328	0
Tuesday	234	1,729	234	0
Wednesday	43	293	43	0
Thursday	278	1,848	278	0
Friday	134	950	134	0
Saturday	301	2,171	302	0
	1,584	11,122	1,586	0
Unguided Anglers				
Sunday	233	748	47	188
Monday	73	333	48	25
Tuesday	544	1,965	121	427
Wednesday	276	835	18	259
Thursday	350	1,201	106	251
Friday	23	122	23	0
Saturday	604	2,404	241	366
	2,103	7,607	604	1,516
Total:	3,687	18,730	2,190	1,516

		2007		
Day of	Number	Number	Boat	Shore
Week	Angl e rs	Angler Hours	Anglers	Anglers
Guided Anglers				
Sunday	119	823	119	0
Monday	230	1,477	230	0
Tuesday	281	1,820	281	0
Wednesday	113	813	113	0
Thursday	290	1,895	290	0
Friday	153	993	153	0
Saturday	370	2,644	369	ı
	1,556	10,464	1,555	1
Unguided Anglers				
Sunday	197	626	34	163
Monday	21	130	20	1
Tuesday	535	1,919	85	452
Wednesday	102	411	77	25
Thursday	486	1,564	57	430
Friday	101	339	29	72
Saturday	599	2,421	229	371
	2,041	7,408	531	1,514
Total:	3,597	17,872	2,086	1,515

Figure 10.- Creel survey data summary of guided and unguided boat anglers by day of week in the Kasilof River early-run king salmon fishery, 2004-2007.

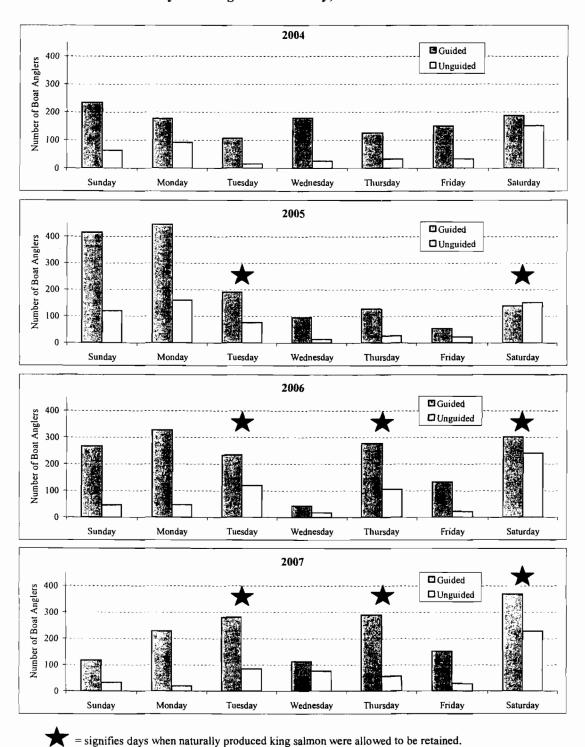


Table 11.- Early-run Kasilof River king salmon creel summary, estimated Chinook salmon catch, harvest, and effort by angler category, May 16 through June 30, 2007.

Angler	Hatchery	Hatchery	Wild	Wild	Angler	Number
<u>Category</u>	Catch	Harvest	Catch	Harvest	Hours	Anglers
Guided	1,214	1,123	1,635	758	30,930	4,659
SE	170	162	188	132	3,062	457
Proportion	0.738	0.788	0.711	0.707	0.546	0.378
Unguided	431	302	665	314	25,696	7,654
SE	63	41	116	40	3,353	1,180
Proportion	0.262	0.212	0.289	0.293	0.454	0.622
Total	1,645	1,425	2,300	1,072	56,626	12,313
Shore	248	148	430	161	17,376	6,003
SE	64	39	118	39	3,499	1,219
Proportion	0.151	0.104	0.187	0.150	0.307	0.488
Boat	1,397	1,277	1,870	911	39,250	6,310
SE	190	177	208	151	3,557	551
Proportion	0.849	0.896	0.813	0.850	0.693	0.512
Total	1,645	1,425	2,300	1,072	56,626	12,313
Guided-Shore	3	0	3	3	13	3
SE	2	0	2	2	11	2
Proportion	0.002	0.000	0.001	0.003	0.000	0.000
Guided-Boat	1,211	1,123	1,632	755	30,917	4,657
SE	170	162	188	132	3,061	457
Proportion	0.736	0.788	0.710	0.704	0.546	0.378
Unguided-Shore	245	148	427	158	17,363	6,001
SE	64	39	118	40	3,500	1,219
Proportion	0.149	0.104	0.186	0.147	0.307	0.487
Unguided-Boat	186	154	238	156	8,333	1,653
SE	36	29	37	30	1,083	197
Proportion	0.113	0.108	0.103	0.146	0.147	0.134
Total	1,645	1,425	2,300	1,072	56,626	12,314
SE	167	162	187	132	2,932	978

Figure 11.- Historic harvest and angler effort for the early-run Kenai River king salmon fishery between the Soldotna Bridge and the Warren Ames Bridge, 1977-2007.

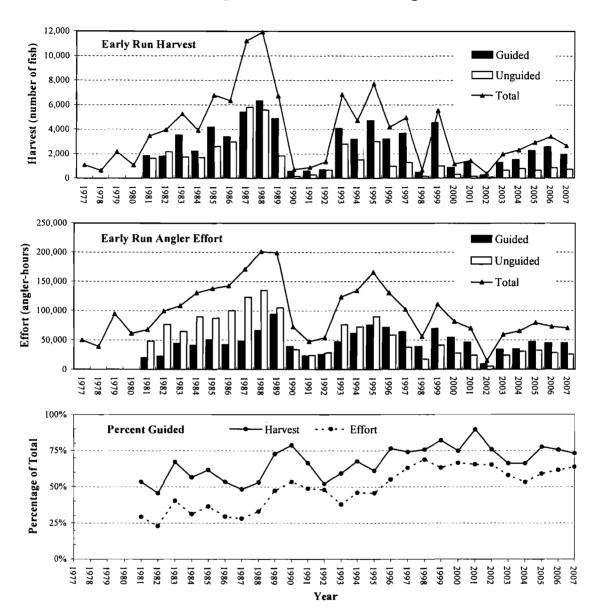


Figure 12.- Historic harvest and angler effort for the late-run Kenai River king salmon fishery between the Soldotna Bridge and the Warren Ames Bridge, 1977-2007.

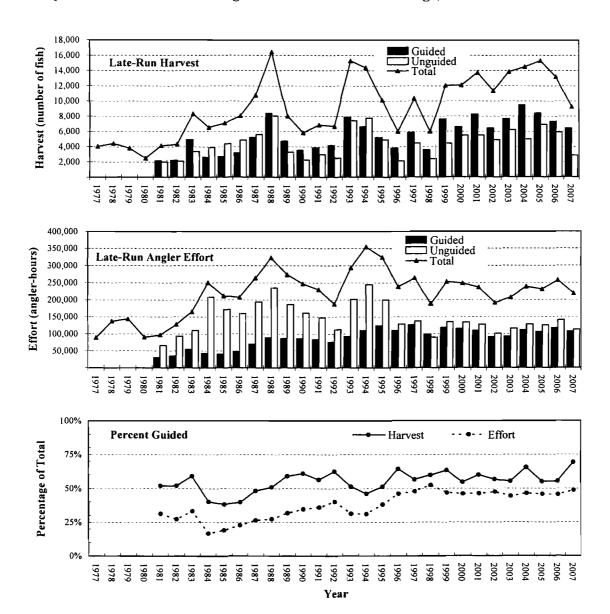


Table 12.- Summary of early and late-run Kasilof River king salmon catch, harvest and effort by angler category as estimated by the Statewide Harvest Survey, 1996-2006.

	Guided			Non-G	uided	SI	Shore Fishing		В	oat Fishir	ng	Total			
			Effort			Effort	•		Effort			Effort			Effort
Year	Catch	Harvest	(Days Fished)	Catch	Harvest	(Days Fished)	Catch	Harvest	(Days Fished)	Catch	Harvest	(Days Fished)	Catch	Harvest	(Days Fished)
Early Run															
1996	3,969	2,147	8,070	7,200	3,148	25,515	7,040	3,063	25,454	4,129	2,232	8,131	11,169	5,295	33,585
1997	4,739	2,616	7,418	8,530	3,011	24,869	7,292	2,443	22,341	5,977	3,184	9,946	13,269	5,627	32,287
1998	2,575	1,748	7,261	6,137	2,454	19,226	5,702	2,140	16,773	3,010	2,062	9,714	8,712	4,202	26,487
1999	4,977	3,200	8,091	10,023	4,397	32,172	8,701	3,494	28,650	6,299	4,103	11,613	15,000	7,597	40,263
2000	6,049	3,800	10,205	13,167	5,015	36,449	11,071	3,850	30,585	8,145	4,965	16,069	19,216	8,815	46,654
2001	6,252	4,206	10,246	10,237	3,282	28,788	8,761	2,552	25,129	7,728	4,936	13,905	16,489	7,488	39,034
2002	5,228	2,483	9,005	9,546	2,308	26,193	7,618	1,754	20,863	7,099	2,980	14,129	14,774	4,791	35,198
2003	4,116	1,380	7,054	10,251	1,710	23,771	8,709	1,269	18,773	5,609	1,798	11,780	14,367	3,090	30,825
2004	3,038	1,405	6,753	6,672	1,890	23,064	4,635	1,331	19,509	4,990	1,928	10,101	9,710	3,295	29,817
2005	4,175	1,725	8,214	5,240	1,743	22,190	3,752	1,079	18,994	5,509	2,277	11,028	9,415	3,468	30,404
2006	2,828	1,498	7,684	3,872	923	18,639	2,993	567	16,058	3,691	1,838	9,978	6,700	2,421	26,323
Mean	4,359	2,383	8,182	8,261	2,716	25,534	6,934	2,140	22,103	5,653	2,937	11,490	12,620	5,099	33,716
Late Run															
1996	540	181	8.070	1,804	652	25,515	1,398	364	25,454	946	469	8,131	2,344	833	33,585
1997	1,374	500	7,418	1,809	601	24,869	2,045	551	22,341	1,138	550	9,946	3,183	1,101	32,287
1998	616	448	7,261	434	189	19,226	167	112	16,773	883	525	9.714	1,050	637	26,487
1999	767	315	8,091	792	343	32,172	550	241	28,650	1,009	417	11,613	1,559	658	40,263
2000	789	461	10,205	1,722	625	36,449	1,278	480	30,585	1,233	606	16,069	2,511	1,086	46,654
2001	789	379	10,246	2,083	999	28,788	1,388	561	25,129	1,484	817	13,905	2,872	1,378	39,034
2002	474	300	9,005	1,924	151	26,193	874	140	20,863	1,524	311	14,129	2,398	451	35,198
2003	1,716	749	7.054	1,303	395	23,771	582	109	18,773	2,437	1,035	11,780	3,019	1,144	30,825
2004	1,298	532	6,753	1,699	506	23,064	1,439	297	19,509	1,522	729	10,101	2,997	1,038	29,817
2005	1,695	650	8,214	764	402	22,190	452	120	18,994	1,976	901	11,028	2,459	1,052	30,404
2006	994	659	7,684	447	224	18,639	128	43	16,058	1,297	824	9,978	1,441	883	26,323
Mean	883	417	8,419	1,484	494	27,123	1,035	320	23,571	1,332	591	11,911	2,367	911	35,542

Note: Angler effort is angler days for both early and late run Chinook and for all species for the entire year.

Deliberation Materials

Committee E

UCI BOF 2008

SF Division Soldotna

Category	Prop#	Proposal Intent/Effect	ADF&G Position	
Kasilof River - Salmon	225	Increase days allowed to retain naturally-produced king salmon in the	SUPPORT	Background Information Tables 1&2 (pp. 7&8)
Kasilof River - Salmon	226	Increase bag limit for hatchery stock king salmon on Kasilof River	SUPPORT	Figures 1&2 (pp. 6&9) Tables 1&2 (pp. 7&8)
Kasilof River - Salmon	227	Prohibit fishing after retaining a king salmon	OPPOSE	Figures 1&3 (pp. 6&9) See Staff Comments
Kasilof River - Salmon	228	Designate portion of Kasilof River as a king salmon spawning sanctuary	SUPPORT	Tables 3&4 (pp. 14&15)
Kasilof River - Salmon	229	Prohibit power boats on Kasilof River	OPPOSE	Figures 4-8 (pp. 10-14) See Staff Comments
Kasilof River - Salmon	230	Restrict motorized use on portion of Kasilof River	NEUTRAL	See Staff Comments
Kasilof River - Salmon	231	Prohibit fishing from boat July 1-Aug. 15 in upper portion of Kasilof	SUPPORT	Tables 3&4 (pp. 14&15)
Kasilof River - Salmon	232	River Allow motorized use during king salmon season on the Kasilof River	OPPOSE	Figures 4-8 (pp. 10-14) See Staff Comments
Kasilof River - Salmon				
	233	Allow anchoring of boats in portion of Kasilof River	NEUTRAL	Figure 9 (p.16)
Kasilof River - Salmon	234	Increase Kasilof River sockeye bag limit	NEUTRAL	Figures 10-11 (p.17)
Chickaloon River - Salmon	235	Open Chickaloon River to king salmon fishing	OPPOSE	Figure 12 (p.18)
Russian River	253	Close fishing from 100 yards above Ferry Cable to 25 yards below cable on Kenai River	OPPOSE	Figure 13 (p.19)
Russian River	254	Increase size of designated youth fishing area on the Kenai River	OPPOSE	Figure 13 (p.19)
Kenai River King Salmon	255	Increase size and bag limits for jack kings in Kenai River	OPPOSE	Tables 5-8 (pp. 21-28) Figures 14-27 (pp. 20-37)
Kenai River King Salmon	256	Delete bag limit for king salmon under 28 inches on Kenai River	OPPOSE	Tables 5-8 (pp. 21-28) Figures 14-27 (pp. 20-37)
Kenai River King Salmon	257	Increase size and bag limits for jack kings in Kenai River	OPPOSE	Tables 5-8 (pp. 21-28)
Kenai River King Salmon	258	Increase the jack king salmon size limit from 20" to 25" in Cook Inlet	OPPOSE	Figures 14-27 (pp. 20-37) Tables 5-8 (pp. 21-28)
Kenai River King Salmon	259	freshwaters Modify bag limit to allow retention of hatchery stock king salmon in the	OPPOSE	Figures 14-27 (pp. 20-37) See Staff Comments
Kenai River King Salmon	260	Kenai River drainage Modify bag limit to allow retention of hatchery stock king salmon in the	OPPOSE	See Staff Comments
Kenai River King Salmon	261	Kenai River drainage Eliminate Kenai River early-run king salmon slot limit	OPPOSE	Tables 5 & 6 (pp. 21& 24)
				Figures 14-18 & 20 & 28-30 (pp.20-26 & 30 & 38-40)
Kenai River King Salmon	262	Eliminate Kenai River early-run king salmon slot limit	OPPOSE	Tables 5 & 6 (pp. 21& 24)
				Figures 14-18 & 20 & 28-30 (pp.20-26 & 30 & 38-40)
Kenai River King Salmon	263	Amend the slot limit season for early-run king salmon on the Kenai River	OPPOSE	Tables 5 & 6 (pp. 21& 24) Figures 14-18 & 20 & 28-30 (pp.20-26 & 30 & 38-40)
Kenai River King Salmon	264	Extend early-run king salmon slot limit below the Soldotna Bridge through July 14	OPPOSE	Tables 5 & 6 (pp. 21 & 24) Figures 14-18 & 20 & 28-30 (pp. 20-26 & 30 & 38-40)
Kenai River King Salmon	265	Restrict altering harvested king salmon to allow for length assessment	SUPPORT	See Staff Comments
Kenai River King Salmon	266	Restrict use of bait for early-run kings on portion of Kenai River	OPPOSE	Tables 5 & 6 (pp. 21 & 24)
Kenai River King Salmon	267	Allow use of bait in the early run Kenai River king salmon fishery	OPPOSE	Figures 14 - 18 (pp. 20-26) Tables 5 & 6 (pp. 21 & 24)
Kenai River King Salmon	268	starting May 1 or June 1. Extend Funny River, Slikok Creek, and Lower Killey River sanctuary	OPPOSE	Figures 14 - 18 (pp. 20-26) Tables 5 & 6 (pp. 21& 24)
		closures through July 31		Figures 14-18 & 31-34 (pp. 20- 26 & 41-44)
Kenai River King Salmon	269	Extend Funny River, Slikok Creek, and Lower Killey River sanctuary closures through July 31 and expand Killey area	OPPOSE	Tables 5 & 6 (pp. 21& 24) Figures 14-18 & 31-34 (pp. 20- 26 & 41-44)
Kenai River King Salmon	270	Extend Kenai River king salmon season through August 7	OPPOSE	Table 6 (p. 24) Figures 17 & 18 & 35 (pp. 25 & 26 & 45)
Kenai River King Salmon	271	Extend late-run king salmon sport fishing season through August 10	OPPOSE	Table 6 (p. 24) Figures 17 & 18 & 35 (pp. 25 & 26 & 45)
Kenai River King Salmon	272	Increase escapement goal for Kenai River late-run king salmon	NO ACTION	Table 6 (p. 24) Figures 17 & 18 (pp. 25 & 26)
Kenai River King Salmon	273	Delete portions of Kenai River Late-Run King Salmon plan	NEUTRAL	Table 6 (p. 24) Figures 17 & 18 (pp. 25 & 26)
Kenai River King Salmon	274	Delete section (e) of Kenai River late-run king salmon management plan	NEUTRAL	Table 6 (p. 24) Figures 17 & 18 (pp. 25 & 26)
Kenai River King Salmon	275	Limit non-resident permits for king salmon on Kenai River	NEUTRAL	See Staff Comments
Kenai River King Salmon	276	Establish annual limits for salmon fishing by non-resident anglers	NEUTRAL	See Staff Comments
Kenai River King Salmon	277	Prohibit non-residents from exporting more than 125 pounds of fish	OPPOSE	See Staff Comments
Kenai River Sockeye and Coho	278	Allow retention of sockeye salmon unintentionally hooked in the Kenai,	OPPOSE	See Staff Comments
Kenai River Sockeye and Coho	279	Kasilof, and Russian Rivers Increase bag limit for coho salmon in Kenai Peninsula freshwater streams	OPPOSE	Tables 9-12 (pp. 46-53)
Kenai River Sockeye and Coho	280	Increase coho bag limit in Cook Inlet area rivers	OPPOSE	Figures 36-40 (pp. 47-52) Tables 9-12 (pp. 46-53)
Kenai River Sockeye and Coho	281	Increase bag limit for coho salmon in the Kenai River	OPPOSE	Figures 36-40 (pp. 47-52) Tables 9-12 (pp. 46-53)
Kenai River Sockeye and Coho	282	Extend the coho salmon fishing season through November on Lower	NEUTRAL	Figures 36-40 (pp. 47-52) Tables 9-12 (pp. 46-53)
		Kenai River and Skilak Lake		Figures 36-41 (pp. 47-53)

List of Tables

Table 1 Historical summary of Early Run Kasilof River/Crooked Creek Chinook
salmon stocks, 1996-20077
Table 2 Early-run Kasilof River creel summary, estimated Chinook salmon catch,
harvest, and effort by angler category, May 16 through June 30, 2007 8
Table 3 Estimated abundance of wild, age2+ Chinook salmon returning to the
Kasilof River after June 20, 2005, 2006, and 2007
Table 4 Historical summary of Late Run Kasilof River Chinook salmon harvest, 1996
- 2006
Table 5 Early-run Kenai River Chinook salmon population data, 1986-2006 21
Table 6 Late-run Kenai River Chinook salmon population data, 1986-2006 24
Table 7 Kenai River total early run Chinook salmon estimates by age class, 1986-
200728
Table 8 Early run Kenai River Chinook salmon percent less than or equal to total
length in inches in the run, 1986-2007
Table 9 Estimated sport harvest of Kenai River coho salmon by river section, 1977-
200647
Table 10 Estimated abundance of coho salmon in the Kenai River during selected
time intervals, 1999 through 2004, with estimates of escapement 50
Table 11 Estimates of total return, exploitation, and marine survival for coho salmon
from the Kenai River, 1999 through 2004
Table 12 Estimated harvest, total return and exploitation of Kenai River coho salmon
(2000-2004) with hypothetical effects of increasing the bag limit from 2 to 3
fish54
Table 13 Estimated daily harvest of Kenai River coho salmon in some Upper Cook
Inlet fisheries under differing fishery participation scenarios.a,b,c
miet invitation amont amont in interpretable bootiantonia, o, e

List of Figures

Figure 1 Kasilof River Chinook salmon fishery	6
Figure 2 Kasilof River escapement of early run naturally produced Chinook salmon 1999-2007.	, 9
Figure 3 Kasilof River escapement of early run hatchery produced Chinook salmon, 1999-2007.	9 9
Figure 4 Daily catch per unit effort (using drfit gill nets) of wild, age2+ Chinook salmon returning to the Kasilof River after June 20, 2005, 2006, and 2007	10
Figure 5 Kasilof River late run Chinook salmon spawning distribution, 2005	
Figure 6 Kasilof River late run Chinook salmon spawning distribution, 2006	
Figure 7 Kasilof River late run Chinook salmon spawning distribution, 2007	
Figure 8 Figure of estimated abundance with associated variance of wild, age2+ Chinook salmon returning to the Kasilof River after June 20, 2005, 2006,	10
	14
Figure 9 Map of the "Peoples Hole" on the Kasilof River near the confluence of Crooked Creek.	
Figure 10 Kasilof River sockeye salmon sonar counts, 1979-2007.	
Figure 11 Kasilof River sockeye salmon catch and harvest as determined by the	1 /
Statewide Harvest Survey, 1990-2006.	17
Figure 12 Map of the Chickaloon River drainage.	
Figure 13,- Map of the Russian River sockeye salmon recreational fishing areas and fishing access locations.	
Figure 14 Map of the Kenai River Chinook salmon fishery.	
Figure 15 Historic harvest and angler effort for the early-run Kenai River Chinook salmon fishery between the Soldotna Bridge and the Warren Ames Bridge	÷,
1977-2007.	22
Figure 16 Spawning escapements of early-run Kenai River Chinook salmon. Dashe lines indicate lower and upper values of the OEG range effective 2005	
Figure 17 Historic harvest and angler effort for the late-run Kenai River Chinook	
salmon fishery between the Soldotna Bridge and the Warren Ames Bridge 1977-2007.	;, 26
Figure 18 Spawning escapements of late-run Kenai River Chinook salmon. Dashed lines indicate lower and upper values of the OEG range in effect beginning in 1999.	g 27
Figure 19 Number (gray bars) and percent (lines) of early run Kenai River Chinook salmon aged 1.2 and 1.3 in the total return.	
Figure 20 Number (gray bars) and percent (lines) of early run Kenai River Chinook	
salmon aged 1.4 and 1.5 in the total return	
Figure 21 Age-length-sex frequency relationships for Kenai River early run Chinool salmon age 1.2 and 1.3, 1986-2007.	k 32
Figure 22 Funny River Chinook salmon weir counts, 2006 & 2007	33

Figure 23	Early run Kenai River tributary Chinook salmon average age and mean
E: 24	length
Figure 24	Age-length-sex frequency relationships for Kenai River early run Chinook salmon age 1.4 and 1.5, 1986-2007
Figure 25	Cumulative proportion of early-run Kenai River Chinook salmon that aged 1.4 that are smaller (solid line), and those aged 1.5 that are larger (dotted line), than each 1 inch increment between 40 and 60 inches in total length.40
Figure 26	Relative harvest selectivity by age for early run Kenai River Chinook salmon, pre- (1986-2002) and post-implementation (2003-2006) of the slot limit. Selectivity estimates less than 1 equate to no selectivity for that age class, 1 equates to no selectivity or neutral for that age class, and values greater than 1 equates to selectivity for that age class
Figure 27	Map of the Slikok Creek Chinook salmon sanctuary closure on the Kenai River
	Map of the Funny River Chinook salmon sanctuary closure on the Kenai River
	Map of the Killey River Chinook salmon sanctuary closure on the Kenai River
Figure 30	Map of the Kenai River Chinook salmon sanctuary closures
_	Historical Late Run Kenai River Chinook Salmon Passage Estimates, 1998-2007
Figure 32	Estimated sport harvest of coho salmon on the Kenai River, 1977-2006 48
	Various harvests of Kenai River coho salmon by fishery, 1993-2005 49
Figure 34	Kenai River fish wheel abundance index results, 2005-2007
Figure 35	Russian River weir coho salmon escapement through Sept. 4th, 1990-2007.
Figure 36	Kenai River coho salmon smolt abundance and Moose River smolt census, 1992-2007.
Figure 37	Analysis for extension of Kenai River mainstem coho salmon sport fishery season into November

Figure 1.- Kasilof River Chinook salmon fishery.

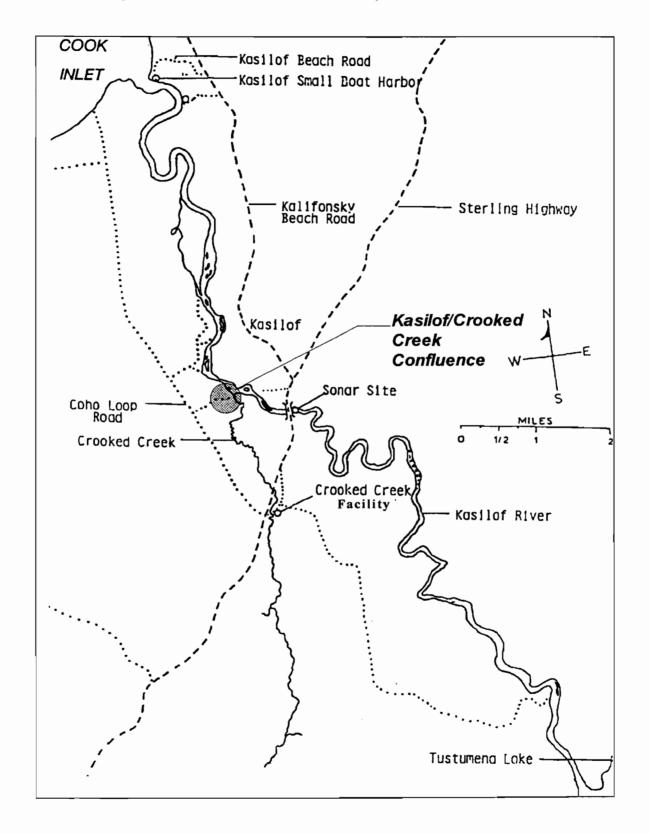


Table 1.- Historical summary of Early Run Kasilof River/Crooked Creek Chinook salmon stocks, 1996-2007.

	Harvest ^a			Retu	Return to the weir ^b			otal Return		Spawning Escapement ^b		
Year	Total	Natural	Hatchery	Total	Natural	Hatchery	Total	Natural	Hatchery	Total	Natural	Hatchery
1996	5,295	n/a	n/a	2,224	n/a	n/a	7,519	n/a	n/a	764	n/a	n/a
1997	5,627	n/a	n/a	d								
1998	4,202	n/a	n/a	ď								
1999	7,597	n/a	n/a	2,358	1,918	440	9,955	n/a	n/a	1,963	1,557	406
2000	8,815	n/a	n/a	1,416	1,183	233	10,231	n/a	n/a	1,074	896	178
2001	7,488	n/a	n/a	2,584	2,122	462	10,072	n/a	n/a	2,316	1,898	418
2002	4,791	0	4,791	3,303	2,506	797	8,094	2,506	5,588	2,674	1,906	768
2003	3,078	0	3,078	4,127	2,976	1,151	7,205	2,976	4,229	3,597	2,554	1,043
2004	2,421 '	0	2,421	4,873	2,641	2,232	7,294	2,641	4,653	4,356	2,196	2,160
2005	2,624 '	576	2,048	3,162	2,107	1,055	5,786	2,683	3,103	2,927	1,903	1,024
2006	2,461 '	1,055	1,406	2,645	1,589	1,056	5,106	2,644	2,462	2,568	1,516	1,052
2007	2,497 '	1,072	1,425	1,523	1,038	485	4,020	2,110	1,910	1,447	964	483
Mean	4,741			2,822	2,009	879	7,528	2,593	3,658	2,369	1,710	837

[&]quot;Data from Howe et al. (2001a), Walker et al. (2003) and Jennings et al. (2004, 2006 a-b, 2007, in prep).

Excludes age-.1 fish 1999-2007.

Numbers taken from an inseason creel survey.

d Weir not operational.

Table 2.- Early-run Kasilof River creel summary, estimated Chinook salmon catch, harvest, and effort by angler category, May 16 through June 30, 2007.

Angler	Hatchery	Hatchery	Wild	Wild	Angler	Angler
Category	Catch	Harvest	Catch	Harvest	Hours	Days
Guided	1,214	1,123	1,635	758	30,930	4,659
Proportion	0.738	0.788	0.711	0.707	0.546	0.378
Unguided	431	302	665	314	25,696	7,654
Proportion	0.262	0.212	0.289	0.293	0.454	0,622
Total	1,645	1,425	2,300	1,072	56,626	12,313
Shore	248	148	430	161	17,376	6,003
Proportion	0.151	0.104	0.187	0.150	0.307	0.488
Boat	1,397	1,277	1,870	911	39,250	6,310
Proportion	0.849	0.896	0.813	0.850	0.693	0.512
Total	1,645	1,425	2,300	1,072	56,626	12,313
Guided-Shore	3	0	3	3	13	3
Proportion	0.002	0.000	0.001	0.003	0.000	0.000
Guided-Boat	1,211	1,123	1,632	755	30,917	4,657
Proportion	0.736	0.788	0.710	0.704	0.546	0.378
Unguided-Shore	245	148	427	158	17,363	6,001
Proportion	0.149	0.104	0.186	0.147	0.307	0.487
Unguided-Boat	186	154	238	156	8,333	1,653
Proportion	0.113	0.108	0.103	0.146	0.147	0.134
Total	1,645	1,425	2,300	1,072	56,626	12,314

Figure 2.- Kasilof River escapement of early run naturally produced Chinook salmon, 2003-2007.

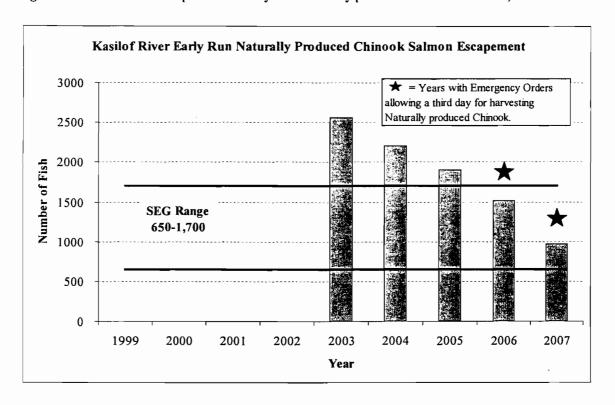
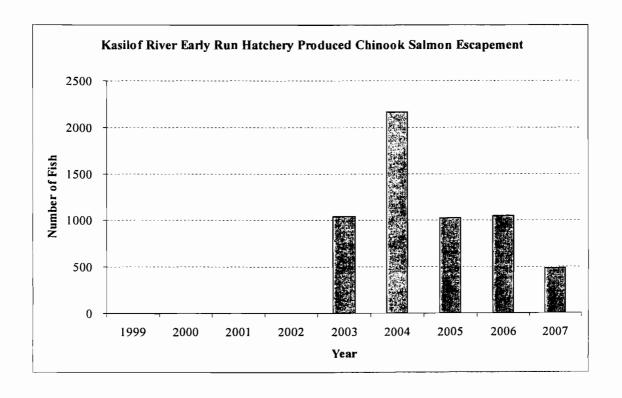
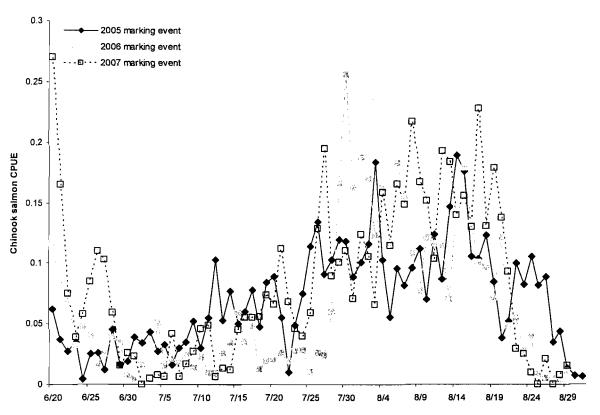
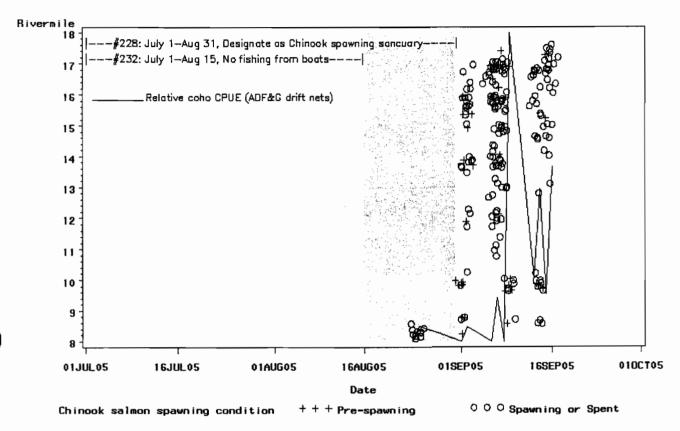


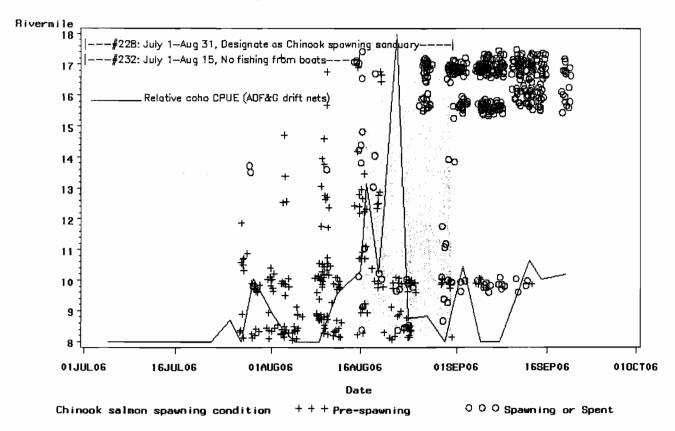
Figure 3.- Kasilof River escapement of early run hatchery produced Chinook salmon, 2003-2007.


Figure 4.- Daily catch per unit effort (using drift gill nets) of wild, age-.2+ Chinook salmon in the lower Kasilof River (rm 3-5) after June 20, 2005, 2006, and 2007.

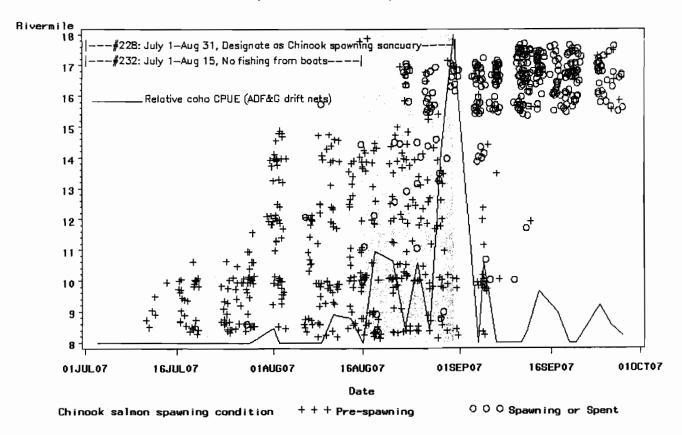
Note - includes a small number of naturally produced Crooked Creek bound Chinook Salmon in late June.

Figure 5.- Kasilof River late run Chinook salmon spawning distribution, 2005.


Kasilof River Chinook salmon spawning condition versus coho salmon CPUE

Data from Mark-recapture gillnet caught fish

Figure 6.- Kasilof River late run Chinook salmon spawning distribution, 2006.

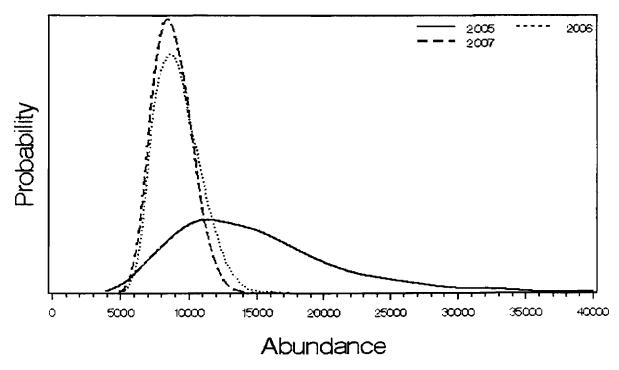

Kasilof River Chinook salmon spawning condition versus coho salmon CPUE

Data from Mark-recapture gillnet caught fish

Figure 7.- Kasilof River late run Chinook salmon spawning distribution, 2007.

Kasilof River Chinook salmon spawning condition versus coho salmon CPUE

Data from Mark-recapture gillnet caught fish


Table 3.- Estimated abundance of wild, age-.2+ Chinook salmon returning to the Kasilof River after June 20, 2005, 2006, and 2007.

Year	Abundance	80% interval ^b
2005	11,304	6,571 - 20,605
2006	8,653	6,944 - 10,945
2007	8,391	6,921 - 10,364

a - estimates are considered preliminary until published in an FDS report

Figure 8.- Figure of estimated abundance with associated variance of wild, age-.2+ Chinook salmon returning to the Kasilof River after June 20, 2005, 2006, and 2007

Probability distributions for abundance of wild, age.2+ Chinook salmon returning to spawn in the the Kasilot River after June 20, 2005–2007

Note - estimates are considered preliminary until published in an FDS report

b - 80% probability that the true abundace falls between these two values

Table 4.- Historical summary of Late Run Kasilof River Chinook salmon harvest, 1996 - 2006.

	Estimated		Commercia
Year	Abundance	Sport Harvest ^a	Harvest
1996		833	Unknown
1997		1,101	Unknown
1998		637	Unknown
1999		658	Unknown
2000		1,086	Unknown
2001		1,378	Unknown
2002		451	Unknown
2003		1,144	Unknown
2004		1,038	Unknown
2005	11,304	1,052	Unknown
2006	8,653	883	Unknown
2007	8,391	b	Unknown
Mean	_	961	

^a Data from Howe et al. (2001a), Walker et al. (2003) and Jennings et al. (2004, 2006 a-b, 2007, in prep).

b data will be available from the SWHS in fall 2008.

Figure 9.- Map of the "Peoples Hole" on the Kasilof River near the confluence of Crooked Creek.

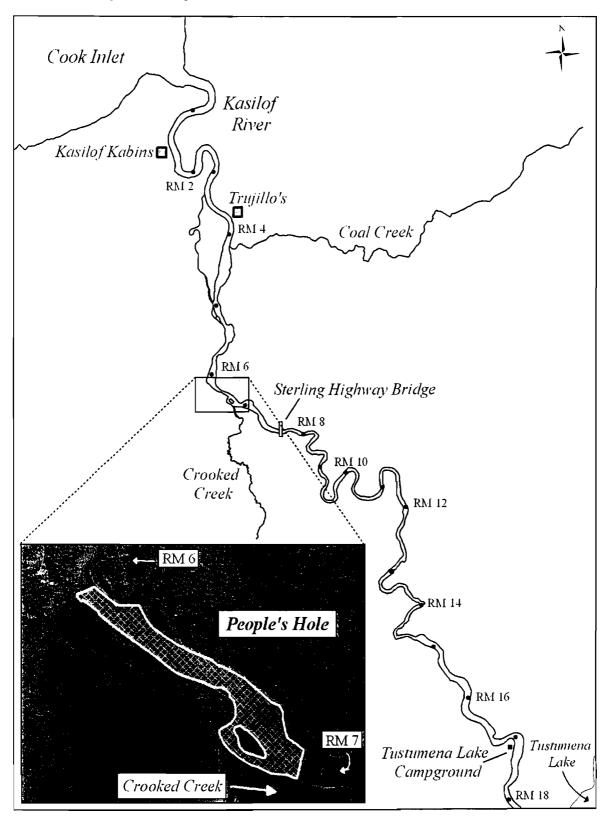


Figure 10.- Kasilof River sockeye salmon sonar counts, 1979-2007.

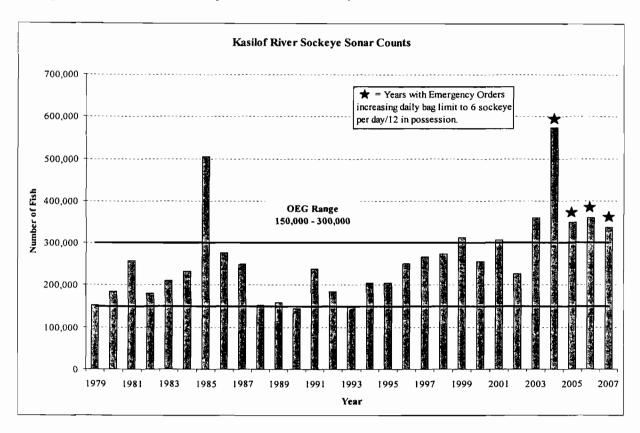


Figure 11.- Kasilof River sockeye salmon catch and harvest as determined by the Statewide Harvest Survey, 1990-2006.

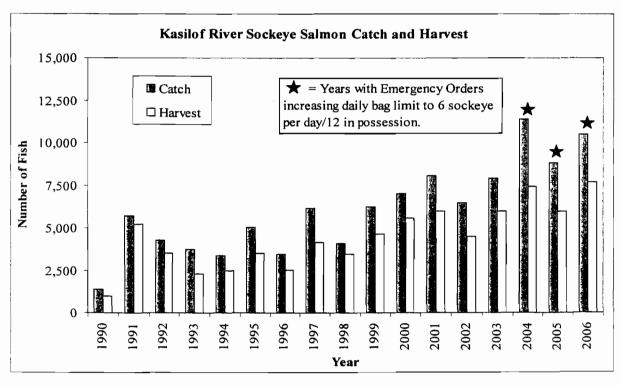


Figure 12.- Map of the Chickaloon River drainage.

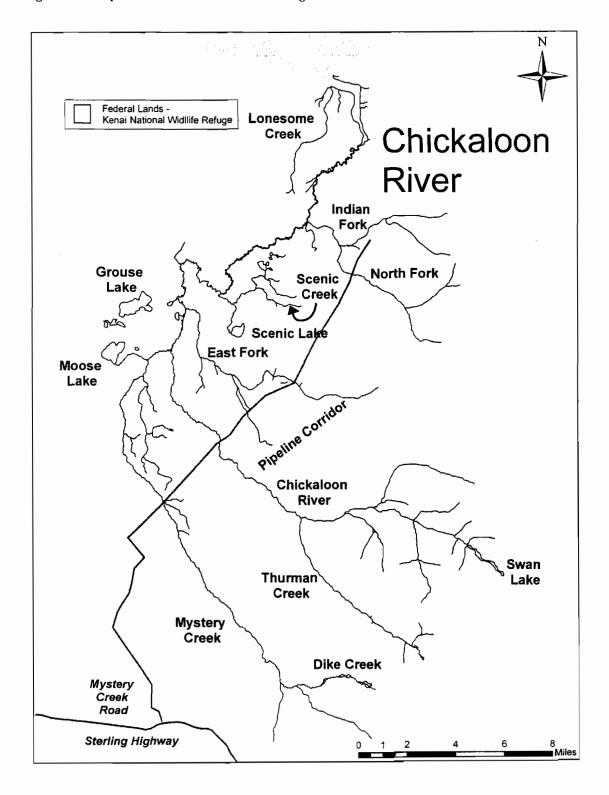


Figure 13,- Map of the Russian River sockeye salmon recreational fishing areas and fishing access locations.

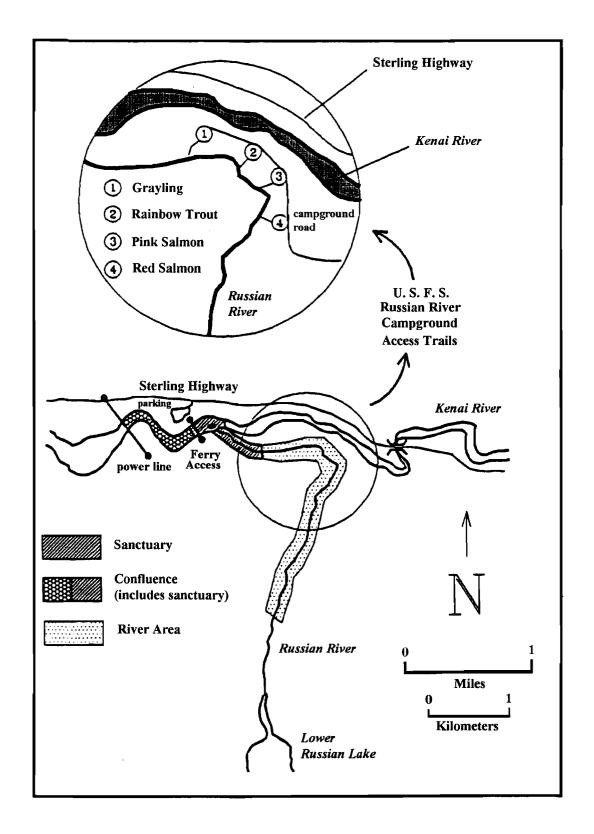


Figure 14.- Map of the Kenai River Chinook salmon fishery.

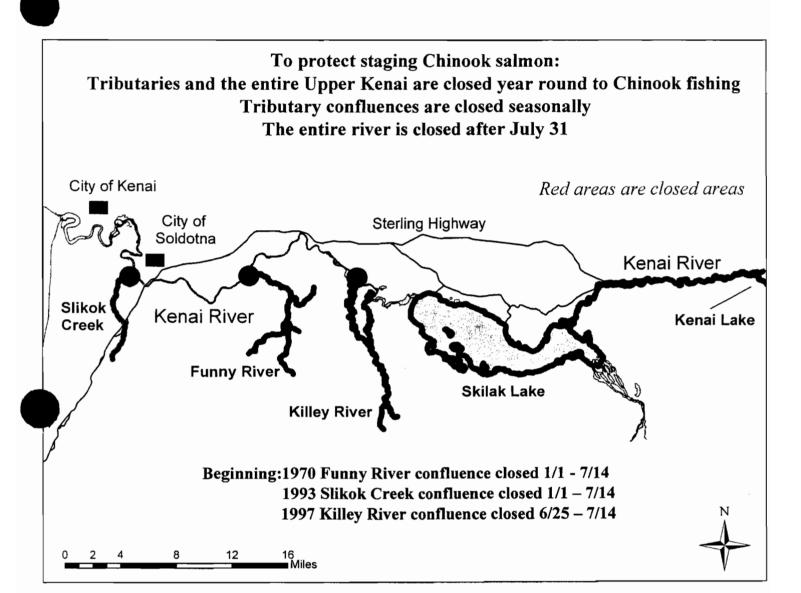


Table 5.- Early-run Kenai River Chinook salmon population data, 1986-2006.

-	Deep Creek	Eastside	Drift				Kenai River	Hook-and-	
	Marine	Set Net	Gillnet		Inriver	Total	Sport	Release	Spawning
Year	Harvest	Harvest	Harvest	Subsistence	Return	Return	Harvest	Mortality	Escapement
				_					
1986	Unknown	Closed	Closed		27,080	27,080	8,156	242	18,682
1987	Unknown	Closed	Closed		25,643	25,643	13,557	306	11,780
1988	Unknown	Closed	Closed		20,880	20,880	15,209	340	5,331
1989	Unknown	Closed	Closed	73	17,992	18,065	8,394	149	9,449
1990	Unknown	Closed	Closed	40	10,679	10,719	1,807	378	8,494
1991	Unknown	Closed	Closed	2	10,931	10,933	1,945	152	8,834
1992	Unknown	Closed	Closed	73	10,087	10,160	2,241	236	7,610
1993	Unknown	Closed	Closed	118	19,921	20,039	9,342	286	10,293
1994	Unknown	Closed	Closed	56	18,403	18,459	8,171	285	9,947
1995	Unknown	Closed	Closed	37	21,884	21,921	10,217	357	11,310
1996	Unknown	Closed	Closed	14	23,505	23,519	6,623	287	16,595
1997	Unknown	Closed	Closed	141	14,963	15,104	6,429	349	8,185
1998	Unknown	Closed	Closed	122	9,184	9,306	1,170	254	7,760
1999	Unknown	Closed	Closed	114	25,666	25,780	8,129	261	17,276
2000	Unknown	Closed	Closed	124	12,479	12,603	1,818	185	10,476
2001	Unknown	Closed	Closed	198	16,676	16,874	1,428	266	14,982
2002	Unknown	Closed	Closed	64	7,162	7,226	899	78	6,185
2003	Unknown	Closed	Closed	46	13,325	13,371	2,839	389	10,097
2004	Unknown	Closed	Closed	89	15,498	15,587	3,386	257	11,855
2005	Unknown	Closed	Closed	76	20,450	20,526	3,810	253	16,387
2006	Unknown	Closed	Closed	65	23,326	23,391	4,693	205	18,428
2007	Unknown	Closed	Closed		16,000	16,000	4,000		12,000

Figure 15.- Historic harvest and angler effort for the early-run Kenai River Chinook salmon fishery between the Soldotna Bridge and the Warren Ames Bridge, 1977-2007.

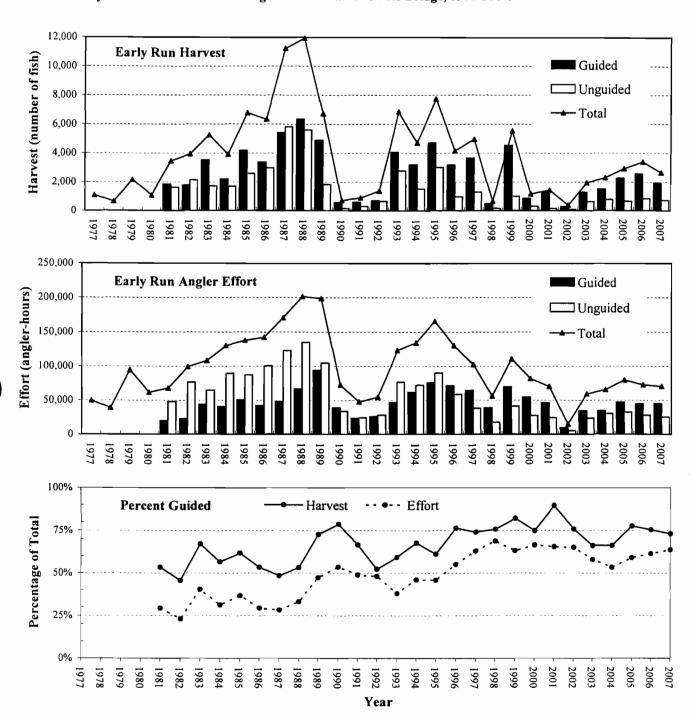


Figure 16.- Spawning escapements of early-run Kenai River Chinook salmon, with associated historical escapement goals.

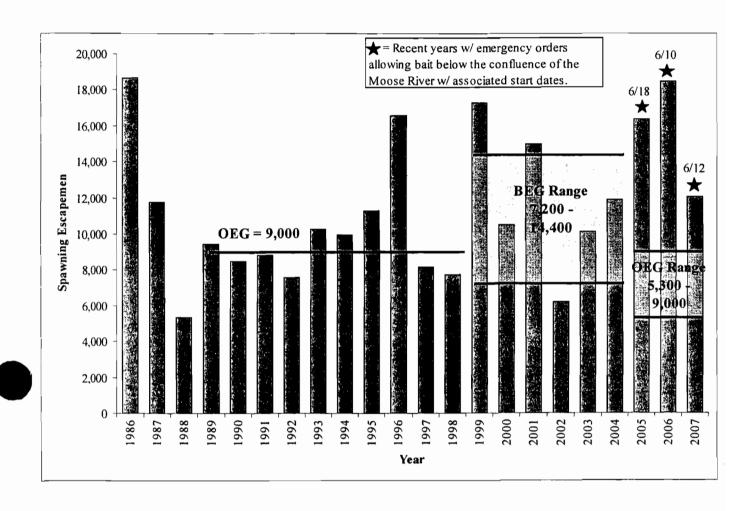


Table 6.- Late-run Kenai River Chinook salmon population data, 1986-2006.

	Deep						Sport		Sport		
	Creek	Set	Drift				Harvest		Harvest		
	Marine	Gillnet	Gillnet	Pers.			below	Total	above	Release	
Year	Harvest	Harvest	Harvest	Use	Subsist.	Sonar	sonar	Run	sonar	Mort.	Escapement
1986	630	19,810	1,834			57,563		79,837	9,872	316	47,375
1987	1,218	20,588	4,551			48,123		74,480	13,100	123	34,900
1988	1,487	12,870	2,217			52,008		68,582	19,695	176	32,137
1989	1,368	10,919	0		22	29,035		41,344	9,691	88	19,256
1990	1,605	4,139	621	91	13	33,474		39,943	6,897	69	26,508
1991	1,705	4,891	241	130	288	34,614		41,869	7,903	16	26,695
1992	2,115	10,718	543	50	402	30,314		44,142	7,556	234	22,524
1993	2,834	13,977	751	129	27	51,991		69,709	17,775	478	33,738
1994	1,869	15,885	460	13	392	53,474		72,093	17,837	572	35,065
1995	2,069	12,032	523	36	646	44,336		59,642	12,609	472	31,255
1996	2,038	11,521	365	45	294	39,356		53,619	8,112	337	30,907
1997	2,931	11,281	489	339	26	39,622		54,688	12,755	570	26,297
1998	1,784	5,039	332	271	2	34,878		42,306	7,515	595	26,768
1999	1,004	9,463	575	488	4	48,069	1,170	60,773	12,425	682	34,962
2000	1,052	3,684	270	410	6	44,517	8 31	50,770	14,391	499	29,627
2001	920	6,009	619	638	8	33,916	1,336	43,446	15,144	825	17,947
2002	427	9,478	415	606	6	41,807	1,929	54,668	10,678	665	30,464
2003	200	14,810	1,240	1,016	11	41,659	823	59,759	16,120	1,803	23,736
2004	1,660	21,683	1,526	792	10	56,205	2,386	84,262	14,988	1,019	40,198
2005	1,040	21,472	1,839	775	11	43,240	2,287	70,664	15,927	1,267	26,046
2006	938	8,696	1,051	1,034	11	37,743	3,322	52,795	12,490	830	24,423
2007	1,000	11,996	865	1,000	6	42,979	1,700	59,546	9,200	650	33,129

Үеаг	Deep Creek Marine Harvest ^a	Eastside Setnet Harvest ^h	Drift Gillnet Harvest ^d	Commercial Personal Use	Kenaitze Educational	Subsistence ^c	Personal Use ^f	Inriver Return	Kenai River Sport Harvest ^b	Hook-and- Release Mortality ^b	Spawning Escapement	Total Return
1986	630	19,824	1,834	_				57,563	9,872	316	47,375	79,837
1987	1,218	21,150	4,552				235	48,123	13,100	123	34,900	74,480
1988	1,487	12,859	2,237				0	52,008	19,695	176	32,137	68,582
1989	1,368	10,926	0 4	4			0	29,035	9,691	88	19,256	41,344
1990	1,605	4,139	621	91				33,474	6,897	69	26,508	39,943
1991	1,705	4,893	246	130		413		34,614	7,903	16	26,695	41,869
1992	2,115	11,841	615	50		621	0	30,314	7,556	234	22,524	44,142
1993	2,834	13,977	765	110			0	51,991	17,775	478	33,738	69,709
1994	1,869	15,563	464	13	1	797		53,474	17,837	572	35,065	72,093
1995	2,069	12,032	594	36	3	753	772	44,336	12,609	472	31,255	59,642
1996	2,038	11,521	389	43	1		295	39,356	8,112	337	30,907	53,619
1997	2,931	11,281	627	44	20		364	39,622 8	12,755	570	26,297	54,688
1998	1,784	5,039	335	48	2		254	34,878	7,515	595	26,768	42,306
1999	1,004	9,389	575	73	4		488	48,069	13,595	682	34,962	60,773
2000	1,052	3,651	270	33	6		410	44,517	15,222	499	29,627	50,770
2001	920	5,904	619	105	8		638	33,916	16,480	825	17,947	43,446
2002	427	9,468	415	14	6		606	41,807	12,607	665	30,464	54,668
2003	200	14,772	1,240	48	11		1,016	41,659	16,943	1,803	23,736	59,759
2004	1,660	21,683	1,526	255	10		792	56,205	17,374	1,019	40,198	84,195
2005	1,040	21,472	1,839	867	11		997	43,240	18,214	1,267	26,046	70,783
2006	938	8,696		47	11		1,034	37,743	15,811	830	24,423	52,795
2007	n/a	11,996	865	n/a	6	h	n/a	42,979	n/a	n/a	n/a	n/a

^a Source Hammarstrom and Timmons 2001b. Sport harvest includes Creel survey estimates for the area from Cook Inlet to the Soldotna Bridge and estimates from the statewide harvest survey for Soldotna Bridge to the outlet of Kenar Lake.

^h Some Harvest is below sonar and not counted against escapement.

Eastside set net personal use.

^d Total number of chinook salmon harvested in fishery. No commercial drift net fishery conducted in 1989 due to Exxon Valdez oil spill.

^e Source Brannian and Fox 1996.

^e Souce 1986-1993 Brannian and Fox 1996; 1995 Ruesch and Fox 1996; 1996-2000 are estimates from returned permits.

⁸ Sonar counts for 1996 and 1997 were 49,755 and 49,933, respectively (Burwen and Bosch 1998, Bosch and Burwen 1999). Escapement and total return estimates are calculated using radiotelemetry tagging estimates shown here (Hammarstrom and Timmons 2001b)

h Harvest estimate does not include Kasilof River terminal fishery.

Prelimary numbers.

Figure 17.- Historic harvest and angler effort for the late-run Kenai River Chinook salmon fishery between the Soldotna Bridge and the Warren Ames Bridge, 1977-2007.

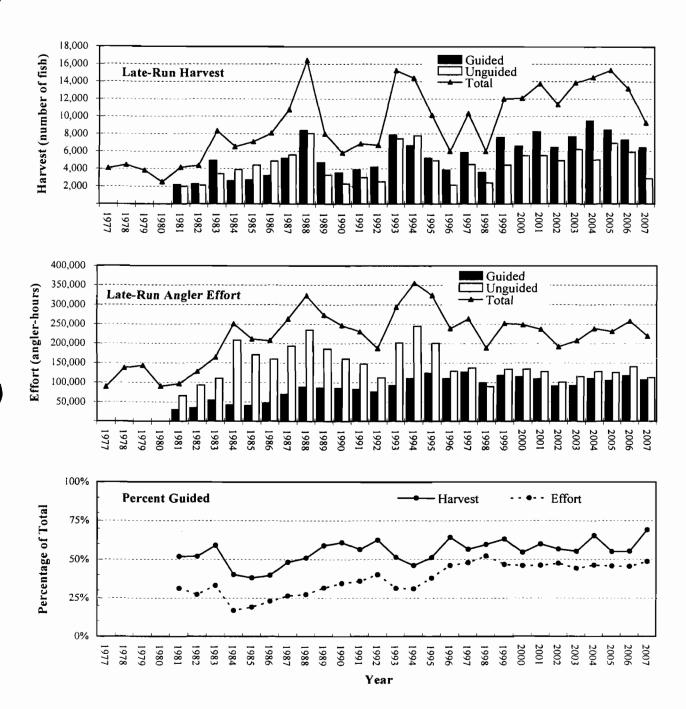


Figure 18.- Spawning escapements of late-run Kenai River Chinook salmon, with associated historical escapement goals.

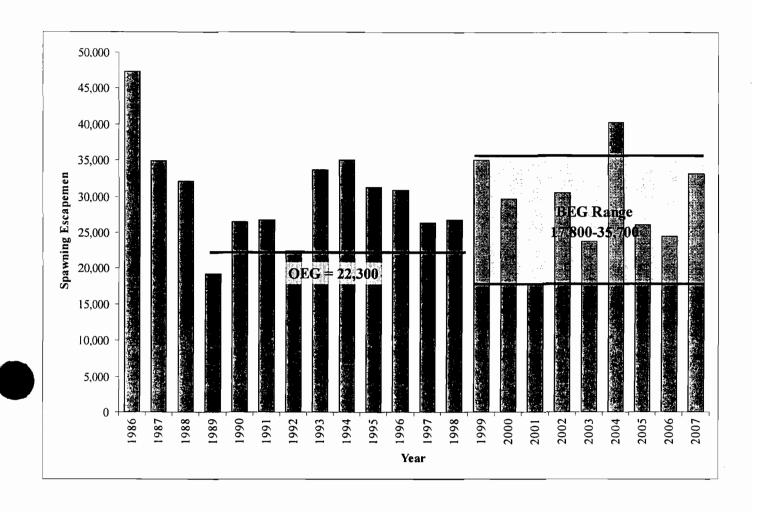
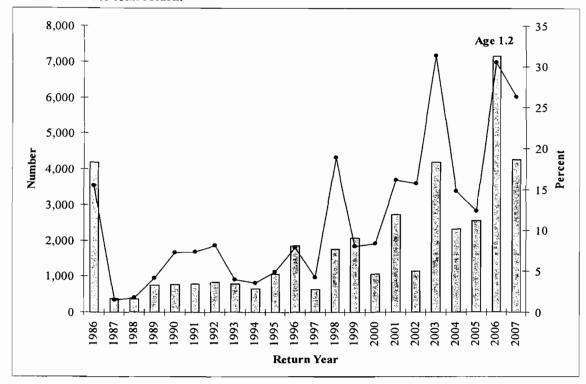


Table 7.- Kenai River early run Chinook salmon estimates by age class, 1986-2007.


Year					
	1.2	1.3	1.4	1.5	Total
1986	4,191	11,384	9,349	2,116	27,040
1987	393	9,859	14,683	577	25,512
1988	373	3,302	14,888	2,237	20,800
1989	749	2,791	12,819	1,706	18,065
1990	775	2,851	6,409	684	10,719
1991	801	2,451	7,116	566	10,933
1992	826	2,891	5,906	537	10,160
1993	792	5,604	12,669	731	19,795
1994	651	3,700	13,051	773	18,174
1995	1,072	4,482	15,296	974	21,824
1996	1,847	6,750	14,424	497	23,519
1997	638	5,260	9,046	159	15,104
1998	1,763	3,429	3,820	294	9,306
1999	2,069	13,845	9,707	80	25,700
2000	1,056	5,470	5,865	73	12,465
2001	2,727	4,687	8,948	341	16,704
2002	1,133	2,692	2,857	260	6,943
2003	4,192	2,641	6,261	129	13,223
2004	2,309	5,196	7,238	666	15,409
2005	2,541	6,196	10,829	726	20,293
2006	7,150	4,540	10,552	865	23,107
2007	4,264	4,492	7,005	457	16,217
Total Ave	1.093	5 205	9 488	702	₹\$17·319.

Total Avg. 1,923 5,205 9,488 702 77319 10 yr. Avg. 2,921 7,319 7,308 389 15,937 5 Yr. Avg. 4,091 4,613 8,377 569 17,650

Table 8.- Early run Kenai River Chinook salmon percent less than or equal to total length in inches in the run, 1986-2007.

	Α	ge		
Total length (inches)	1.2	1.3	1.4	1.5
19	0.1%	0.0%	0.0%	0.0%
20	0.4%	0.0%	0.0%:	0.0%
21	0.6%	0.0%	0.0%	0.0%
22	1.2%	0.0%	0.0%	0.0%
23	2.5%	0.0%	0.0%	0.0%
24	3.7%	0.0%	0.0%	0.0%
25	6.2%	0.0%	0.0%	0.0%
26	10.8%	0.0%	0.0%	0.0%
27	18.5%	0.1%	0.0%	0.0%
28	31.8%	0.4%	0.0%	0.0%
29	54.4%	1.1%	0.0%	0.0%
30	74.8%	2.4%	0.1%	0.0%
31	90.7%	4.4%	0.1%	0.0%
32	96.7%	8.2%	0.2%	0.0%
33	98.8%	15.7%	0.3%	0.0%
34	99.5%	25.2%	0.5%	0.0%
35	99.6%	38.1%	1.0%	0.0%
36	99.7%	51.9%	2.2%	0.0%
37	99.8%	66.9%	4.9%	0.0%
38	99.8%	79.3%	8.4%	0.0%
39	99.9%	86.2%	12.2%	0.4%
40	100.0%	91.8%	19.5%	1.3%
41	100.0%	95.1%	26.6%	1.9%
42	100.0%	97.7%	38.4%	3.9%
43	100.0%	98.8%	48.2%	7.1%
44	100.0%	99.3%	57.3%德拉	11.9%
45	100.0%	99.6%	67.0%	19.2%
46	100.0%	99.7%	73.9%	28.3%
47	100.0%	99.8%	82.5%	42.8%
48	100.0%	99.9%	87.7%	52.5%
49	100.0%	99.9%	91.9%	63.1%
50	100.0%	100.0%	95.1%	73.0%
51	100.0%	100.0%	97.8%	85.5%
52	100.0%	100.0%	98.8%	89.8%
53	100.0%	100.0%	99.5%	94.8%
54	100.0%	100.0%	99.8%	96.1%
55f (Magaza) (Bala)	100.0%	100.0%	99.9%	96.8%
56	100.0%	100.0%	100.0%	98.1%
57	100.0%	100.0%	100.0%	99.1%
58	100.0%	100.0%	100.0%	99.6%
59	100.0%	100.0%	100.0%	100.0%
60	100.0%	100.0%	100.0%	100.0%
61	100.0%	100.0%	100.0%	100.0%

Figure 19.- Number (gray bars) and percent (lines) of early run Kenai River Chinook salmon aged 1.2 and 1.3 in the total return.

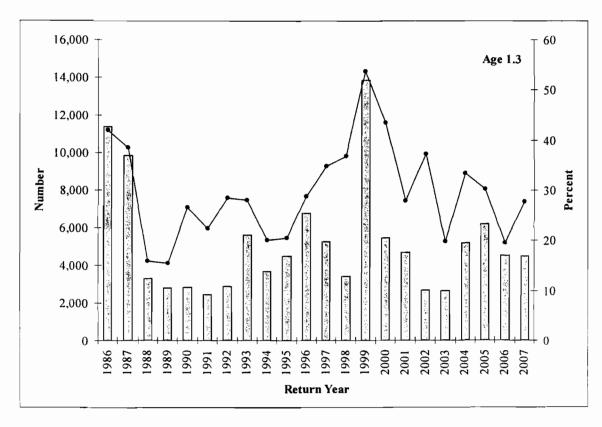
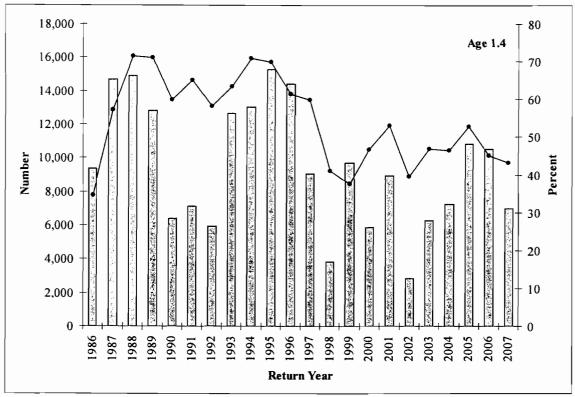



Figure 20.- Number (gray bars) and percent (lines) of early run Kenai River Chinook salmon aged 1.4 and 1.5 in the total return.

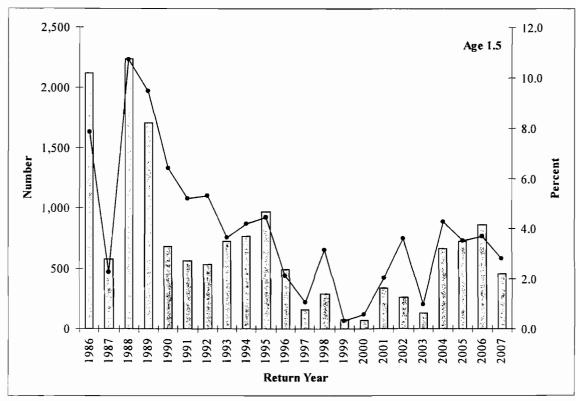


Figure 21.- Age-length-sex frequency relationships for Kenai River early run Chinook salmon age 1.2 and 1.3, 1986-2007.

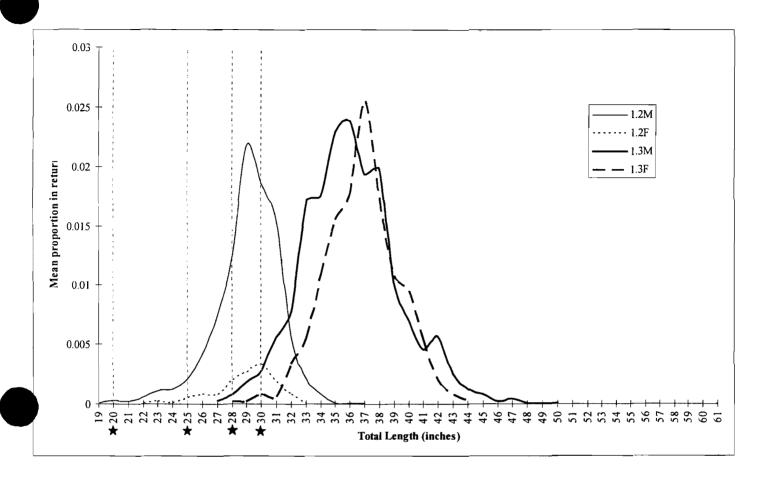


Figure 22.- Funny River Chinook salmon weir counts, 2006 & 2007.

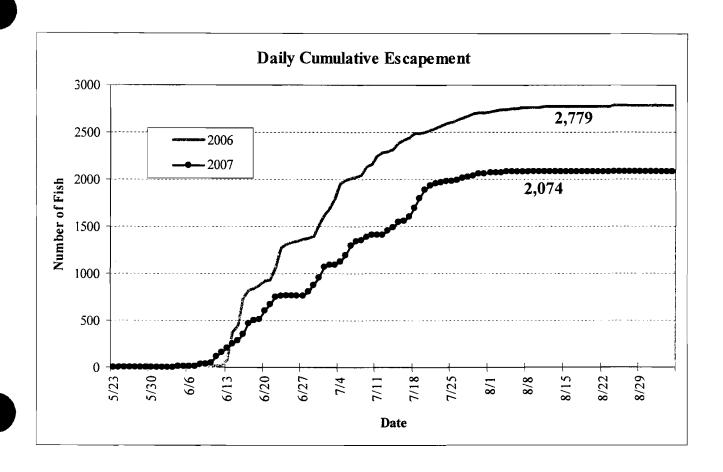
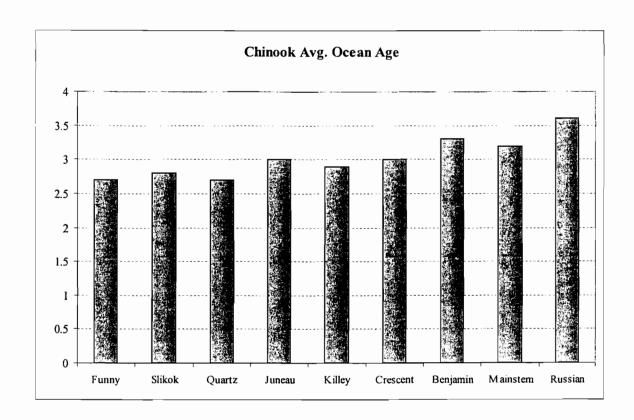



Figure 23.- Kenai River Chinook salmon average age and mean length.

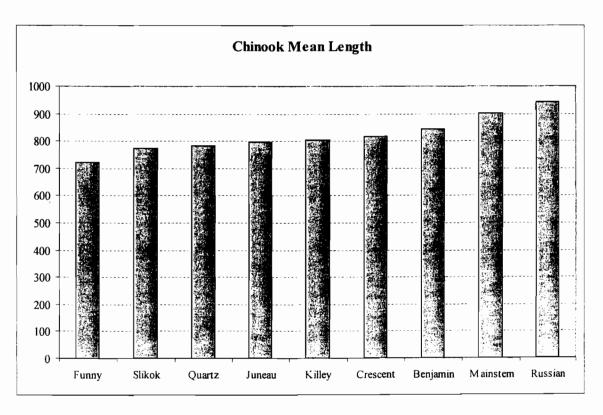


Figure 24.- Hindcast of early run 2-ocean Chinook salmon (</= 28") harvests on the Kenai River, 1986-2007.

							Actual % 2-ocean		Hindcast	of 2-ocean	
			Hindcast of additional		Actual	# above OEG of 5,300					
1	# 2-ocean	2-ocean fish	harvest at 50%	Actual 2-o	escapement	w/additional			% escape.	escape.	% escape.
Year	in run	<28" inriver	exploit.	harvest	(all ages)	harvest	Run	Escape.	/% run	w/50% expl	/% run
1986	4,191	1,318	659	583	18,682	12,723	15%	19%	1.2	16%	1.0
1987	393	124	62	116	11,780	6,418	2%	2%	1.5	2%	1.2
1988	373	117	59	291	5,331	-27	2%	1%	0.8	0%	0.2
1989	749	236	118	275	9,449	4,031	4%	5%	1.2	4%	0.9
1990	775	244	122	102	8,494	3,072	7%	8%	1.0	6%	0.9
1991	801	252	126	0	8,834	3,408	7%	9%	1.2	8%	1.0
1992	826	260	130	94	7,610	2,180	8%	9%	1.1	8%	1.0
1993	792	249	125	290	10,293	4,869	4%	5%	1.2	4%	0.9
1994	651	205	102	303	9,947	4,544	4%	3%	1.0	2%	0.7
1995	1,072	337	169	0	11,310	5,842	5%	9%	1.9	8%	1.6
1996	1,847	581	291	414	16,595	11,004	8%	8%	1.1	7%	0.9
1997	638	201	100	200	8,185	2,785	4%	5%	1.2	4%	0.9
1998	1,763	555	277	15	7,760	2,182	19%	22%	1.1	19%	1.0
1999	2,069	651	325	677	17,276	11,651	8%	8%	1.0	6%	0.8
2000	1,056	332	166	19	10,476	5,010	8%	10%	1.2	8%	1.0
2001	2,727	858	429	181	14,075	8,346	16%	16%	1.0	15%	0.9
2002	1,133	357	178	116	6,185	706	16%	16%	1.0	14%	0.9
2003	4,192	1,319	659	506	10,097	4,138	31%	35%	1.1	31%	1.0
2004	2,309	726	363	372	11,855	6,192	15%	16%	1.1	13%	0.9
2005	2,541	799	400	252	16,387	10,688	12%	14%	1.1	12%	0.9
2006	7,150	2,249	1,125	781	18,428	12,003	31%	34%	1.1	30%	1.0
2007	4,264	1,341	671	668	12,011	6,040	26%	30%	1.1	25%	1.0

Figure 25.- Hindcast of late run 2-ocean Chinook salmon (</= 28") harvests on the Kenai River, 1986-2007.

							Actual % 2-ocean			Hindcast o	f 2-ocean
Year	# 2-ocean in run	2-ocean fish	Hindcast of additional harvest at 50% exploit.	Actual 2-0	Actual escapement (all ages)	# above OEG of 17,800 w/additional harvest	Run	Escape.	% escape. /% run	escape. w/50% expl	% escape.
1986	11,973	2,313	-		47,375	28,419	15%	13%	0.8	•	0.7
1987	4,229	298		3,466	34,900	,	6%	2%	0.4	2%	0.3
1988	2,284	220		1,668	r l	14,227	3%	2%	0.6		0.5
1989	4,655	989		1,771	19,256	-	11%	15%	1.3	13%	1.1
1990	5,686	1,361	680	2,248	26,508	8,028	14%	13%	0.9	11%	0.7
1991	4,045	854	427	1,856	26,695	8,469	10%	8%	0.8	7%	0.7
1992	3,840	677	338	1,962	22,524	4,386	9%	8%	0.9	7%	0.8
1993	6,148	1,376	688	2,363	33,738	15,250	9%	11%	1.3	9%	1.0
1994	5,213	983	491	2,603	35,065	16,774	7%	7%	1.0	6%	0.8
1995	13,287	3,276	1,638	4,449	31,255	11,817	23%	28%	1.3	24%	1.1
1996	5,436	1,000	500	2,926	30,907	12,607	10%	8%	0.8	7%	0.6
1997	3,470	544	272	2,171	26,297	8,225	7%	5%	0.8	4%	0.6
1998	6,718	1,721	860	2,514	26,768	8,108	16%	16%	1.0	13%	0.8
1999	8,949	1,978	989	4,415	34,962	16,173	15%	13%	0.9	10%	0.7
2000	2,331	577	288	1,024	29,627	11,538	5%	4%	1.0	3%	0.7
2001	7,256	1,349	674	5,075	17,947	-528	17%	12%	0.7	9%	0.5
2002	10,674	2,443	1,221	3,948	30,464	11,443	20%	22%	1.1	19%	0.9
2003	21,266	4,070	2,035	11,922	23,736	3,900	30%	39%	1.3	34%	1.1
2004	14,054	2,606	1,303	7,646	40,198	21,095	14%	16%	1.1	13%	0.9
2005	9,564	986	493	7,077	26,046	7,753	7%	10%	1.4	8%	1.1
2006	14,296	3,318	1,659	5,884	24,423	4,964	27%	34%	1.3	30%	1.1
2007	15,614	3,193	1,597	8,564	33,129	13,732	26%	26%	1.0	17%	0.7

Figure 26.- Proportion of 2-ocean fish in the escapement divided by the proportion of fish in the run, as a relative measure of the effect of harvest on the age composition of the escapement, early run Kenai River Chinook salmon, actual and hindcast with 50% exploitation on fish under 28". Estimates of 1 equate to an equal representation for that age class; values of less than 1 equate to an under-representation of the age class in the escapement; values greater than 1 equate to an over-representation of that age class in the escapement.

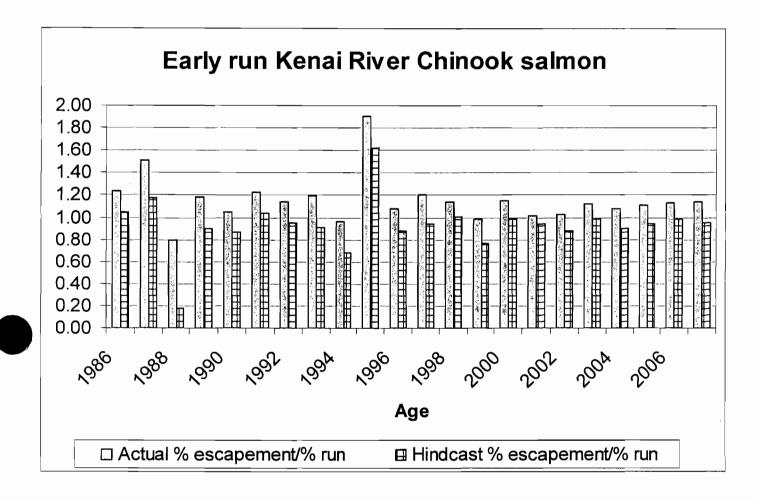


Figure 27.- Proportion of 2-ocean fish in the escapement divided by the proportion of fish in the run, as a relative measure of the effect of harvest on the age composition of the escapement, late run Kenai River Chinook salmon, actual and hindcast with 50% exploitation on fish under 28". Estimates of 1 equate to an equal representation for that age class; values of less than 1 equate to an under-representation of the age class in the escapement; values greater than 1 equate to an over-representation of that age class in the escapement.

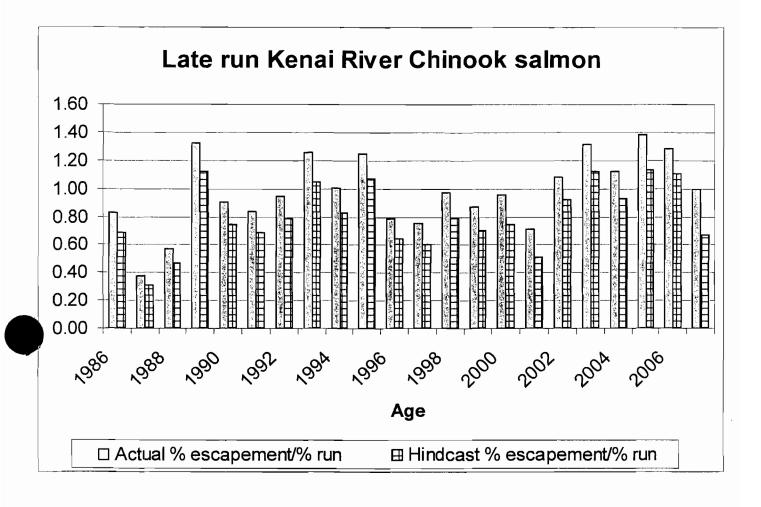


Figure 28.- Age-length-sex frequency relationships for Kenai River early run Chinook salmon age 1.4 and 1.5, 1986-2007.

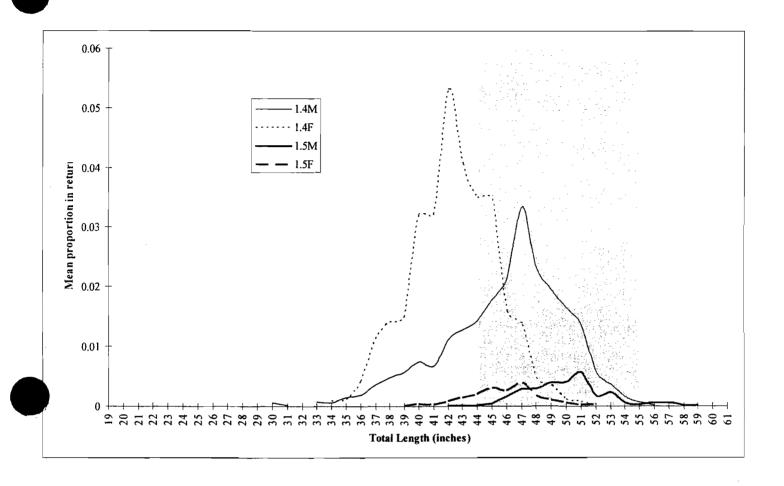


Figure 29.- Cumulative proportion of early-run Kenai River Chinook salmon that aged 1.4 that are smaller (solid line), and those aged 1.5 that are larger (dotted line), than each 1 inch increment between 40 and 60 inches in total length.

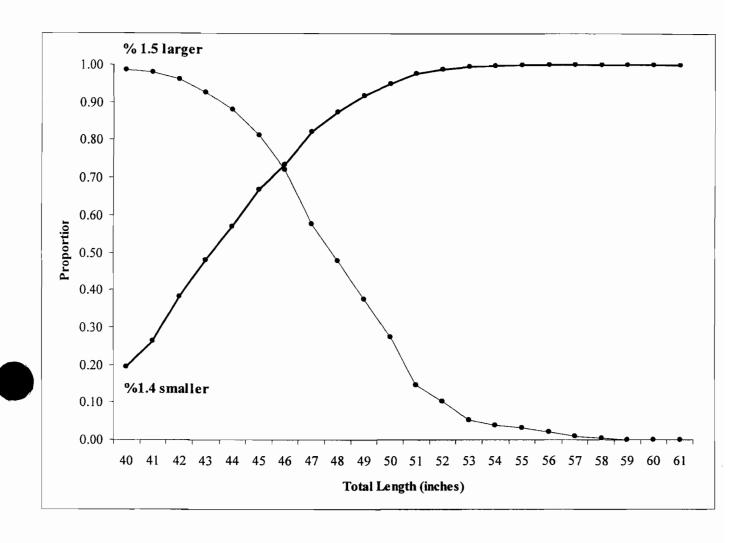


Figure 30.- Relative harvest selectivity by age for early run Kenai River Chinook salmon, pre-(1986-2002) and post-implementation (2003-2006) of the slot limit. Selectivity estimates less than 1 equate to no selectivity for that age class, 1 equates to no selectivity or neutral for that age class, and values greater than 1 equates to selectivity for that age class.

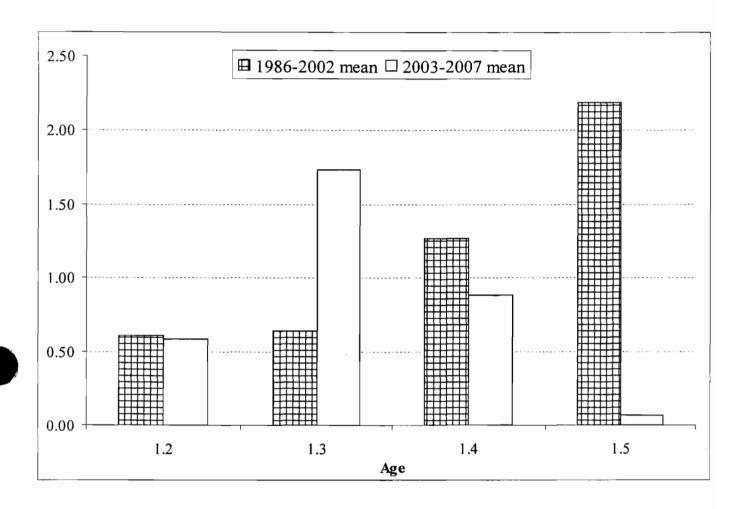


Figure 31.- Map of the Slikok Creek Chinook salmon sanctuary closure on the Kenai River.

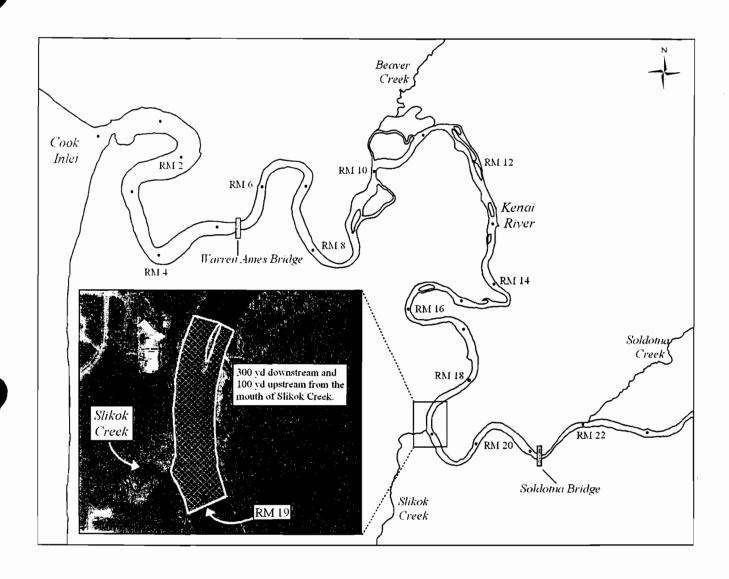


Figure 32.- Map of the Funny River Chinook salmon sanctuary closure on the Kenai River.

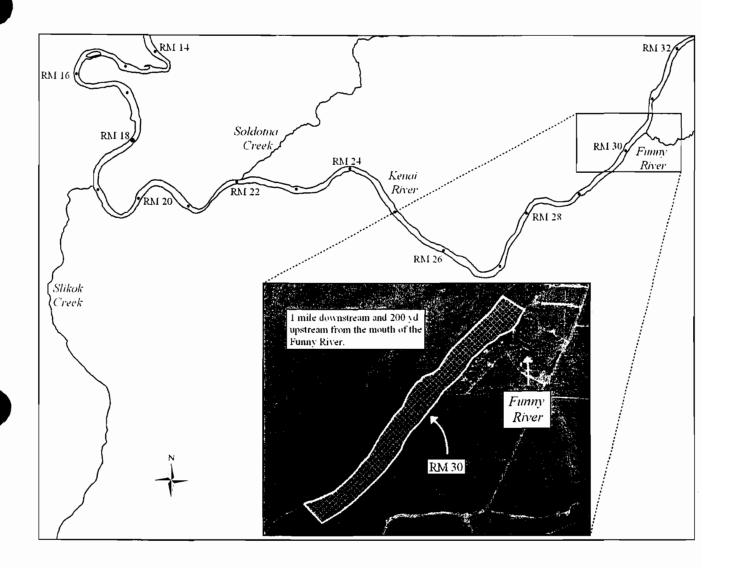


Figure 33.- Map of the Killey River Chinook salmon sanctuary closure on the Kenai River.

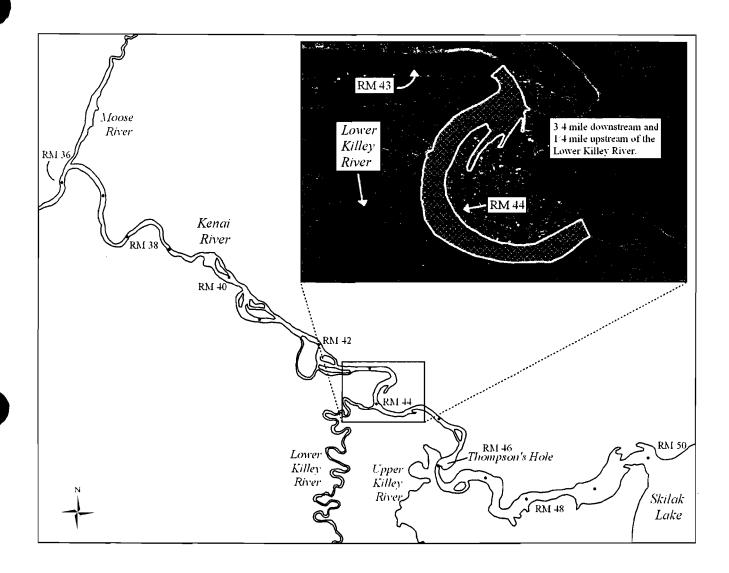


Figure 34.- Map of the Kenai River Chinook salmon sanctuary closures.

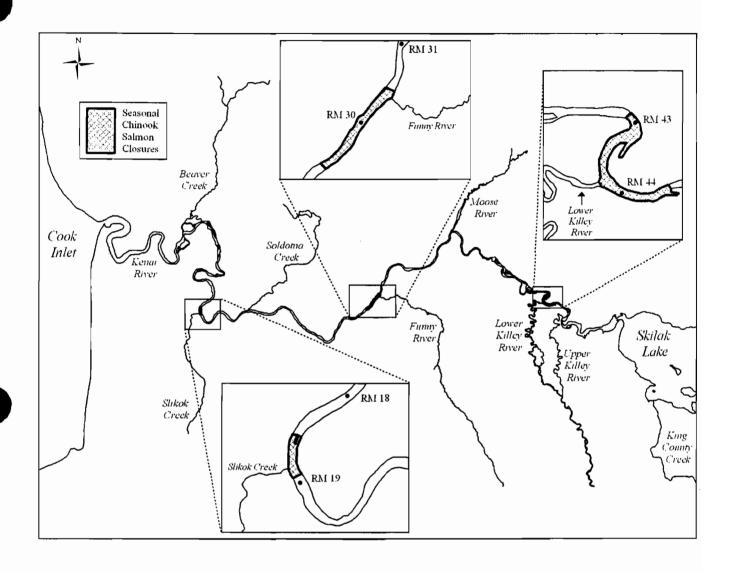


Figure 35.- Historical Late Run Kenai River Chinook Salmon Passage Estimates, 1998-2007.

Historical Late Run Kenai River Chinook Salmon Passage Estimates

ĺ	19	98	19	99	2	000	20	01	20	002	20	03	20	04	2	005	20	006	2	007
Date	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum
7/1	491	491	453	453	461	461	697	697	563	563	727	727	1,167	1,167	1,283	1,283	580	580	609	609
7/2	597	1,088	612	1,065	373	834	766	1,463	1,596.	2,159	735	1,462	1,125	2,292	1,109	2,392	343	923	401	1,010
7/3	480	1,568	486	1,551	370	1,204	1,075	2,538	2,456	4,615	982	2,444	1,053	3,345	1,204	3,596	269	1,192	450	1,460
7/4	45()	2,018	396	1,947	488	1,692	714	3,252	1,855	6,470	1,212	3,656	715	4,060	778	4,374	844	2,036	501	1,961
7/5	606	2,624	369	2,316	787	2,480	676	3,928	1,949	8,419	1,684	5,340	842	4,902	1,454	5,828	953	2,989	506	2,467
7/6	612	3,236	683	2,999	778	3,258	645	4,573	1,205	9,624	1,462	6,802	1,231	6,133	1,020	6,848	718	3,707	510	2,977
7/7	660	3,896	936	3,935	1,020	4,278	887	5,460	1,241	10,865	1,322	8,124	1,932	8,065	863	7,711	828	4,535	578	3,555
7/8	462	4,358	1,030	4,965	1,713	5,991	751	6,211	1,069	11,934	1,666	9,790	1,287	9,352	882	8,593	1,269	5,804	1,051	4,606
7/9	480	4,838	1,047	6,012	1,632	7,623	568	6,779	1,618	13,552	1,183	10,973	815	10,167	1,687	10,280	814	6,618	601	5,207
7/10	45()	5,287	717	6,729	1,461	9,084	908	7,687	1,533	15,085	1,880	12,853	757	10,924	1,616	11,896	446	7,064	5()()	5,707
7/11	171	5,459	1,059	7,788	1,038	10,122	858	8,545	1,369	16,454	1,693	14,546	1,061	11,985	1,475	13,371	310	7,374	927	6,634
7/12	192	5,651	560	8,348	1,506	11,628	575	9,120	1,245	17,699	1,289	15,835	1,208	13,193	2,557	15,928		7,805	710	7,344
7/13	262	5,912	401	8,749	2,327	13,955	1,148	10,268	1,288	18,987	1,227	17,062	2,567	15,760	1,643	17,571	376	8,181	527	7,871
7/14	368	6,280	969	9,718	2,709	16,664	1,448	11,716	1,034	20,021	697	17,759	2,577	18,337	1,203	18,774	644	8,825	1,037	8,908
7/15	1,118	7,398	636	10,354	2,808	19,472	1,338	13,054	450	20,471	1,212	18,971	1,943	20,280	1,427	20,201	1,925	10,750	1,282	10,190
7/16	1,416	8,814	927	11,281	2,264	21,735	1,201	14,255	1,253	21,724	1,107	20,078	2,718	22,998	1,811	22,012	2,266	13,016	667 776	10,857
7/18	1,424	10,238	3,558 2,784	14,839	1,915	23,650	2,415	16,670	1,481	23,205	1,482	21,560	2,262	25,260	1,710	23,722	1,116	14,132	1,729	11,633
7/19	1,146	11,876	1,869	17,623 19,492	2,154 1,919	25,804 27,722	2,065	18,735	1,001 9 1 5	24,206	1,731	23,291	2,008 1,753	27,268 29,021	1,786	26,650	1,207 1,307	16,646	1,754	15,362
7/19	741	13,763	3,471	22,963		28,877	1,568 994	20,303	964	25,121	1,773	25,064		30,587	1,780	27,741	1,575	18,221	2,153	17,269
7/21	1,608	15,370	3,354	26,317	1,155 933	29,810	786	22,083	970	26,085 27,055	1,384	26,448 27,601	1,566 1,757	32,344	847	28,588	1,373	19,480	1,677	18,946
7/22	1,411	16,781	1,998	28,315	702	30,512	497	22,580	845	27,900	2,159	29,760	1,401	33,745	752	29,340	1,017	20,497	2,751	21,697
7/23	808	17,590	1,875	30,190	760	31,272	526	23,106	1,637	29,537	1,693	31,453	1,812	35,557	712	30.052	933	21,430	1,901	23,598
7/24	933	18,523	1,748	31,939	1,868	33,140	529	23,635	1,175	30,712	1,774	33,227	2,044	37,601	662	30,714	639	22,069	3,008	26,606
7/25	542	19,065	1,937	33,875	1,761	34,901	676	24,311	974	31,686	1,525	34,752	1,107	38,708	782	31,496	958	23,027	3,490	30,096
7/26	723	19,788	1,098	34,973	1,034	35,935	667	24,978	930	32,616	1,149	35,901	941	39,649	1,050	. ,	874	23,901	2,659	32,755
7/27	807	20,595	3,066	38,039	992	36,927	776	25,754	591	33,207	1,449	37,350	2,277	41,926	985	33,531	1,073	24,974	3,357	36,112
7/28	954	21,549	1,358	39,398	999	37,926	1,069	26,823	707	33,914	909	38,259	1,540	43,466	814	34,345	1,291	26,265	1,779	37,891
7/29	1,255	22,803	1.185	40,583	1,029	38,955	929	27,752	406	34,320	808	39,067	1.724	45,190	989	35,334	1,602	27,867	859	38,750
7/30	1,556	24,360	969	41,551	577	39,533	508	28,260	571	34,891	691	39,758	1,523	46,713	1,059	36,393	1,225	29,092	922	39,672
7/31	1,344	25,704	1,308	42,859	549	40,082	883	29,143	540	35,431	751	40,509	1,480	48,193	819	37,212	762	29,854	1,340	41,012
8/1	909	26,613	591	43,450	695	40,777	455	29,598	642	36,073	377	40,886	1,078	49,271	689	37,901	669	30,523	866	41,878
8/2	1,512	28,125	468	43,919	421	41,198	459	30,057	553	36,626	394	41,280	688	49,959	682	38,583	605	31,128	330	42,208
8/3	1,006	29,130	642	44,561	294	41,492	504	30,561	752	37,378	379	41,659	722	50,681	660	39,243	576	31,704	397	42,605
8/4	1,131	30,261	444	45,005	453	41,945	840	31,401	995	38,373			754	51,435	587	39,830	769	32,473	374	42,979
8/5	1,094	31,355	436	45,44()	489	42,434	581	31,982	575	38,948			940	52,375	464	40,294	1,632	34,105		
8/6	864	32,219	654	46,094	5()4	42,938	417	32,399	754	39,702			1,009	53,384			912	35,017		
8/7	843	33,062	678	46,772	366	43,304	618	33,017	676	40,378			905	54,289			880	35,897		
8/8	750	33,812	804	47,576	417	43,721	467	33,484	636	41,014			854	55,142						
8/9	570	34,382	328	47,904	399	44,120	232	33,716	456	41,470			611	55,754						
8/10	496	34,878	165	48,069	397	44,517	200	33,916	337	41,807			451	56,205						
8/11	\Box																			
8/12																				
8/13																				
8/14	\rightarrow																			
8/15																				
Total		34,878		48,069		44,517		33,916		41,807		41,659		56,205		40,294		35,897		42,979

Table 9.- Estimated sport harvest of Kenai River coho salmon by river section, 1977-2006.

									_				Kenai I	River Re	ach Not			
	Low	er Section	on ^a	Mid	ddle Sec	tion ^a	Up	per Sect	ion ^a	1	Inter-Lal	ke ^d		Specified	r	/	All Secti	ons
		Late		Early	Late		Early	Late		Early	Late	_	Early	Late		Early	Late	
Year	Early Run	Run	Total	Run	Run	Total	Run	Run	Total	Run	Run	Total	Run	Run	Total	Run	Run	Total
1977						-												9,537
1978																		10,823
1979																		15,276
1980																		26,838
1981			12,280			3,326			6,178			540						22,324
1982			26,582			3,904			7,200			1,729						39,415
1983			12,231			4,007			4,867			1,573						22,678
1984			40,173			7,596			8,065			3,810						59,644
1985			22,579			6,781			12,774			2,401						44,535
1986			38,338			10,336			8,348			3,088						60,110
1987			19,612			6,222			4,077			3,299						33,210
1988			34,690			4,863			5,714			3,427						48,694
1989			36,668			7,921			8,236			2,434						55,259
1990			40,567			8,446			7,281			4,031						60,325
1991			49,499			13,438			9,520			3,699						76,156
1992			33,175			7,579			7,547			4,009						52,310
1993			29,135			9,677			6,771			4,955						50,538
1994			46,345			15,249			12,286			12,831						86,711
1995	20,031	11,808	31,839	4,842	1,131	5,973	2,785	2,794	5,579	2,065	727	2,792				29,723	16,460	
1996	17,551	5,010	22,561	8,347	2,076	10,423	4,371	1,682	6,053	2,457	799	3,256				32,726	9,567	
1997	5,570	1,293	6,863	2,858	1,319	4,177	1,752	1,330	3,082	1,587	455	2,042				11,767	4,397	
1998	9,955	5,506	15,461	3,667	1,430	5,097	2,373	1,833	4,206	1,764	439	2,203				17,759	9,208	
1999	14,413	6,029	20,442	4,732	654	5,386	1,268	1,812	3,080	1,951	778	2,729				22,364	9,273	
2000	22,392	8,444	•	8,185	1,880	10,065	3,894	1,159	5,053	1,652	913	2,565				36,123	12,396	•
2001	23,501	8,977	32,478	7,381	1,947	9,328	3,565	1,986	5,551	1,672	753	2,425				36,119	13,663	. ,
2002	27,062	9,641	36,703	8,220	2,630	10,850	2,663	2,406	5,069	3,965	886	4,851	1,552	625	2,177	43,462	16,188	
2003	20,093	5,963		8,961	2,029	10,990	3,160	1,517	4,677	2,690	490	3,180	1,367	352	1,719	36,271	10,351	
2004	29,606	12,010	-	9,145	4,055	13,200	3,492	2,234	5,726	2,733	868	3,601	1,135	637	1,772	46,111	19,804	,
2005	17,331	7,810		10,793	3,563	14,356	1,697	2,739	4,436	2,310	2,103	4,413	1,699		2,065	33,830	16,581	
2006	13,817	7,132	20,949	4,800	2,331	7,131	1,890	2,939	4,829	2,638	890	3,528	797	405	1,202	23,942	13,697	37,639
Mean	18,444	7,469	28,955	6,828	2,087	8,320	2,743	2,036	6,393	2,290	842	3,439	1,310	477	1,787	30,850	12,632	43,206

All data from Statewide Harvest Survey (Mills 1979-1980, 1981 a-b. 1982-1994, Howe et al. 1995, 1996, 2001a-d; Walker et al. 2003; Jennings et al. 2004, 2006 a-b. 2007, in prep).

[&]quot; Cook Inlet to Soldotna Bridge.

b Soldotna Bridge to Moose River.

[&]quot; Moose River to Skilak Lake.

[&]quot; Skilak Lake to Kenni Lake.

^{*}Kenai River Reach Not Specified. Adopted by the SWHS beginning in 2002.

Figure 36.- Estimated sport harvest of coho salmon on the Kenai River, 1977-2006.

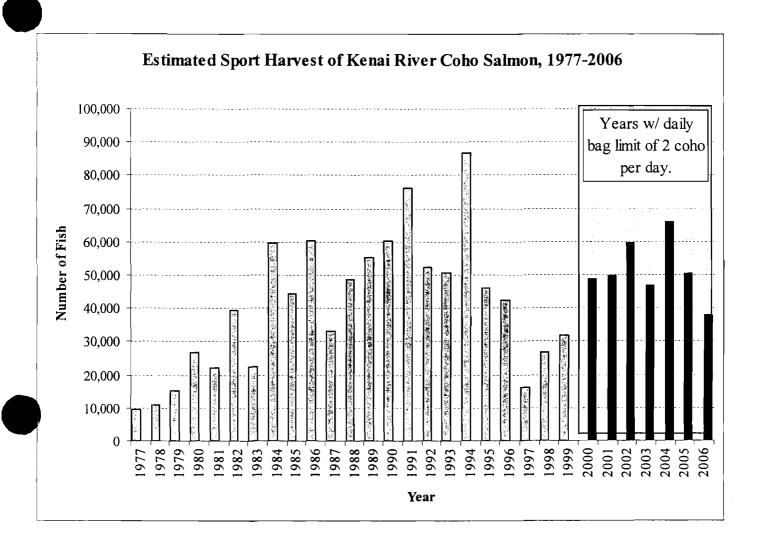


Figure 37.- Various harvests of Kenai River coho salmon by fishery, 1993-2005.

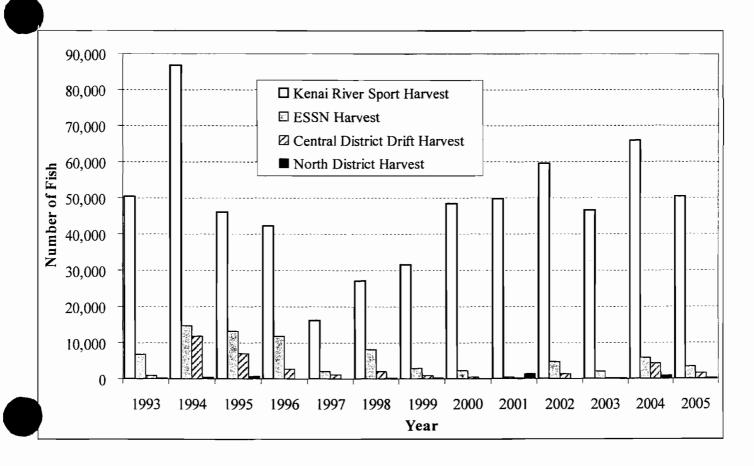


Table 10.- Estimated abundance of coho salmon in the Kenai, 1999 through 2004, with estimates of escapement.

Year ¹	Estimate Type	Estimate Interval ²	Estimated Total Abundance at Fish Wheels	Standard Error	Estimated Capture/ Tagging Mortality ³	Standard Error	Discounted Fish Count	Estimated Live Abundance at Fishwheels	Standard Error	Estimated Upstream Sport Harvest ^{3,6}	Standard Error	Estimated Escapement	Standard Error
1999	Pooled Petersen	8/6-9/30	23,001	5,154	175	18	18	22,808	5,157	15,112	1,171	7,696	5,288
2000	Pooled Petersen	8/1-10/6	89,918	9,295	515	93	40	89,363	9,322	16,621	1,165	72,742	9,395
2001	ML Darroch	8/ 2 - 9/30	93,524	16,502	528	88	12	92,984	16,502	17,862	1,540	75,122	16,574
2002	ML Darroch	8/2-9/30	156,960	20,256	942	235	26	155,992	20,255	22,380	1,442	133,612	20,306
2003	ML Darroch	8/4-9/30	99,309	36,085	190	74	19	99,100	36,085	19,185	1,372	79,915	36,111
2004	ML Darroch	8/1-9/30	120,489	9,008	2,097	372	9	118,383	9,000	22,989	2,692	95,394	9,394

Estimates of abundance pertain to the riverkilometer 31 capture location in 1999 and riverkilometer 45 in 2000-2004.

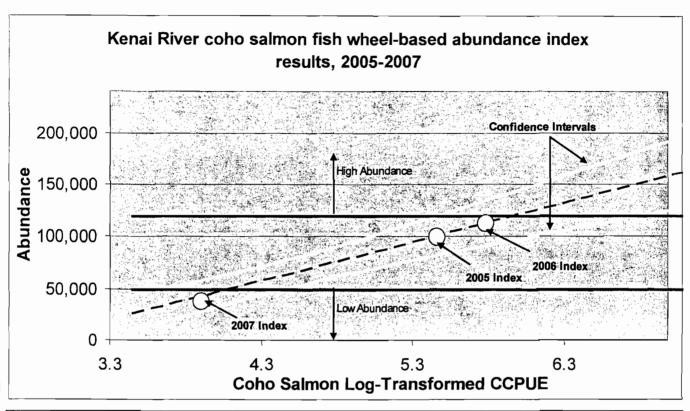
Table 11.- Estimates of total return, exploitation, and marine survival for coho salmon from the Kenai River, 1999 through 2004.

Year	Estimated Total Abundance at Fish Wheels ¹	Standard Error	Estimated Downstream Sport Harvest ^{2,3}	Standard Error	Estimated Personal Use Harvest	Standard Error	Estimated Commercial Harvest ⁴	Standard Error	Estimated Total Run	Standard Error	Estimated Grand Total Harvest ⁵	Standard Error	Estimated Exploitation Rate	Standard Error
1999	23,001	5,154	20,442	1,454	1,009	801	3,894	326	48,346	5,366	40,457	1,898	0.84	0.05
2000	89,918	9,295	35,868	1,740	1,449	62	2,965	255	130,200	9,460	56,903	2,110	0.44	0.02
2001	93,524	16,502	37,142	1,878	1,555	105	1,934	176	134,155	16,610	58,493	2,438	0.44	0.04
2002	156,960	20,256	43,724	2,516	1,721	96	6,115	499	208,520	20,418	73,940	2,934	0.35	0.02
2003	99,309	36,085	32,759	1,908	1,332	68	2,578	263	135,978	36,137	55,854	2,366	0.41	0.09
2004	120,489	9,008	49,576	10,577	2,661	66	11,149	1,232	183,875	13,948	86,375	10,984	0.47	0.02

Repeated from Table 28 for convenience

² Estimates of abundance pertain to this temporal interval.

^{\(^1\)} Estimated number of all larged fish that did not migrate upstream into the recupture reach based on fates of radio-tagged fish (\(^4M(1-p^4))\).\(^4A\) (typically injured/stressed fish or adipose finelipped secrificed fish (from Appendices A3, B3, C3, D3, and E3); these fish were excluded from model data.


Source: Statewide hurvest Survey. Sport harvest occurring upstream from the locations to which the abundance estimates pertain (in 1999, sum of SWHS estimates upstream of Soklotna Bridge including Skilak Lake, Hidden Lake, and Russian River; in 2000-20 "Source: Statewide Harvest Survey. In 2002 and 2003, an "unspecified river reach" category was added to the SWHS for the Kenai River. Prior to calculating the sport harvest upstream from river kilometer 45, the estimates for this unspecified category

Source: Statewide Harvest Survey. Northarvest occurring downstream from the locations to which the abundance estimates pertain (in 1999, sum of SWHS estimates downstream of Solidona Bridge; in 2000-2003, 1/2 of the SWHS estimate for the river section. Source: Statewide Harvest Survey. In 2002 and 2003, an "unspecified river reach" category was added to the SWHS for the Kena River. Prior to calculating the sport harvest downstream from river kilometer 45, the estimates for this category were apportance. Sources: 1999-Mossengill In Prep. at 2000 and 2001-Massengill and Carlon 2004 at and b; 2002 and 2003-Massengill and Carlon In Prep. b and c; 2004-Massengill In Prep. b.

Aggregate of all harvest estimates from Tables 28 and 29 (sport, commercial, and personal-use/subsistence); repeated for convenience.

(Estimated Total Harvest) / (Estimated Total Return).

Figure 38.- Kenai River fish wheel abundance index results, 2005-2007.

A Kenai River fish wheel-based coho salmon abundance index was conducted during 2005-2007, the index estimated abundance to be average (between 50K and 120K) in 2005 and 2006 and low (>50K) in 2007. Confidence in the index is poor.

Figure 39.- Russian River weir coho salmon escapement through Sept. 4th, 1990-2007.

Cumulative Russian River Coho Salmon Escapement on September 4, 1990 - 2007

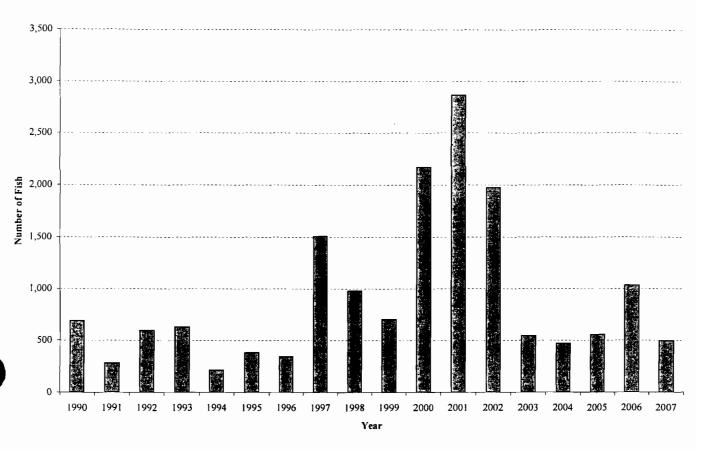
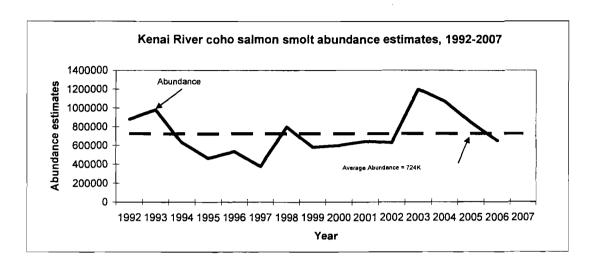



Figure 40.- Kenai River coho salmon smolt abundance, 1992-2007.

Kenai River coho salmon smolt estimates, 1992-2007.

	Drainage-wide
Year	Smolt Abundance
1992	879,290
1993	977,964
1994	628,909
1995	465,075
1996	534,323
1997	374,255
1998	797,798
1999	578,355
2000	601,236
2001	641,693
2002	626,335
2003	1,196,310
2004	1,066,324
2005	841,876
2006	648,400
2007	not avail.
Average	723,876

Table 12.- Estimated harvest, total return and exploitation of Kenai River coho salmon (2000-2004) with hypothetical effects of increasing the bag limit from 2 to 3 fish.

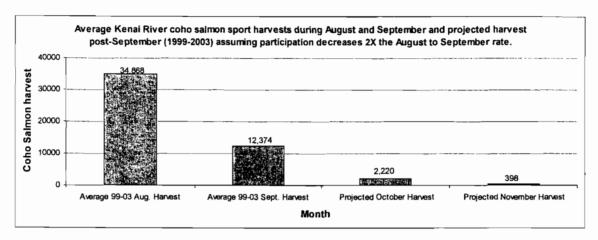
						Average number of	Average 2000-2004
Run Component	2000	2001	2002	2003	2004	fish	percent of total run
Escapement ^b	72,742	75,122	133,612	79,915	95,394	91,357	57.6%
Research mortality and discounted fish	555	540	968	209	2,106	876	0.6%
Sport harvest: two fish limit ^c	52,489	55,004	66,104	51,944	72,565	59,621	37.6%
Personal use harvest	1,449	1,555	1,721	1,332	2,661	1,744	1.1%
Commercial harvest ^d	2,965	1,934	6,115	2,578	11,149	4,948	3.1%
Total run ^e	130,200	134,155	208,520	135,978	183,875	158,546	
Total harvest	56,903	58,493	73,940	55,854	86,375	66,313	
Average 2000-2004 exploitation rate	e ^f						42.2%
1999 exploitation rate ^{r,g}					_		83.7%
Average 1999-2004 exploitation rate ^{f.g}							49.1%
Additional harvest due to bag limit increase (entire season)	8,032	8,417	10,115	7,949	11,104	9,123	5.8%
Additional harvest due to bag limit increase (Sept. only)	2,206	2,311	2,778	2,183	3,049	2,505	1.6%

Note: 1991-1993 and 1998 Kenai River coho salmon creel data was used to calculate the effect of increasing the bag limit from 2 to 3 fish, only boat angler interviews/data were selected for use for 1991-1993 due to the lack of data from shore anglers; sho

a Kenai River coho salmon total returns ere estimated during 1999-2004, 1999 was not included here because it appears the run was atypically low.

b Sources: Carlon and Evans 2007, Massengill and Evans 2007.

c Source: Statewide Harvest Survey.


d Sources: Massengill and Carlon 2004 a,b; Massengill and Carlon 2007 a,b; Massengill 2007.

e Aggregate of all harvest estimates (sport, commercial, and personal-use/subsistence).

f (Estimated Grand Total Harvest) / (Estimated Total Return).

g 1999 exploitation was 84% and is included here to show how a exploitation on a weak return.

Figure 41.- Analysis for extension of Kenai River mainstem coho salmon sport fishery season into November.

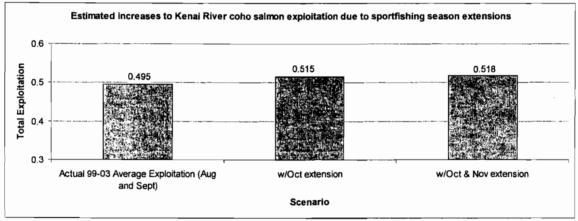


Table 13.- Estimated daily harvest of Kenai River coho salmon in some Upper Cook Inlet fisheries under differing fishery participation scenarios.a,b,c.

	Scenario in participation 1990s ave	on is similar to	Scenario if August participation is similar to 05-07average			
	Average	Daily	Average	Daily		
Upper Cook Inlet	Daily	exploitation	Daily	exploitation		
Fisheries	harvest	increase	harvest	increase		
ESSN Set Net ^d	1,976	1.25%	1,205	0.76%		
Regular drift ^e	295	0.19%	186	0.12%		
Corridor only drift ^f	52	0.03%	33	0.02%		
Combined Fisheries	_		original services of the servi			
Regular drift and ESSN	2,271	1.43%	1,392	0.88%		
Corridor and ESSN	2,028	1.28%	1,238	0.78%		

^{*} Note: The actual number of days during an extension when fishing is allowed is unknown, but is calculated by multiplying the average daily harvest of all

b Commercial coho salmon harvest data source: ADF&G Commercial Fish Division Fish Ticket Database for Salmon (Zephyr) 1993-1999.

c Source data for Kenai River coho salmon contribution rates: Carlon and Hasbrouck 1994-1998; Carlon 2000 and 2003.

d ESSN = Statistical areas 24421, 24422, 24431, 24432, 24441 and 24442

e Regular Drift = Statistical areas 24450, 24460, 24470, 24570, 24580, and 24590.

f Corridor Drift = Statistical areas 24451, 24455 and 24461.

RC37

Statement to BOF on January 30, 2008 By Dave Carey, Soldotna Mayor

Good Afternoon:

As Mayor of Soldotna, I wish to welcome each of you to Soldotna and express my appreciation for your presence here today. As you know, many of the Board of Fish proposals deal with the Kenai Peninsula and your decisions will influence the livelihoods of many of us and well as our economic future and that of our children.

I also represent the City of Soldotna on the Kenai River Special Management Area Board of which I am currently President.

For many people, the Kenai River and associated waterways and habitat are the reason we choose to live here. The quality of life we wish to enjoy is critically linked to the sustainability and health of the Kenai River. Last year's ice damage and floods cost many of us a great deal and we continue to restore the damage done.

Most importantly though, is the recent decision to list the Kenai River as an impaired water body. Without specific and direct mitigation, we could see the federal government use this determination as the reason for the feds taking over control of the Kenai River. We do not need people in Washington, D.C. making decisions for us about our resource and our livelihood. Please adopt proposals that will reasonably correct the hydrocarbon issue. July is obviously the critical month and now is the time to set in motion real and specific remedies.

For our local Peninsula people, the Kenai River is the single most important economic engine we have. For the City of

Soldotna, over 90% of our tax revenue comes from Sales Taxes and the economic influence from tourism, related to all types of fishing, is the single stronger driver of that engine. You should not and must not restrict that engine of economic wellbeing.

At the same time, please assure local and state residents access to the River and it's resources. We are the ones committed to a healthy, sustainable resource. We are the ones who take care of the River and we are the ones who should be allowed to enjoy it the most frequently.

In the past year alone, the City of Soldotna has spent or budgeted \$1,265,000 on the River. It is our most valuable resource and all of us must prudently protect it and assure it's sustainability.

Thank you again for coming down here.

Dave Carey, Mayor