Applying Genetic Data to Management Needs: Sockeye Salmon Returning to Bristol Bay Drainages

Christopher Habicht ${ }^{1}$, Joseph Miller ${ }^{2}$, Lowell Fair ${ }^{1}$, Carol Ann Woody ${ }^{3}$, Kristic S. Lardizabal M. Ramstad ${ }^{4}$, Richard Wilimot ${ }^{4}$, John H. H. Clark ${ }^{7}$, James Link ${ }^{5}$, Se Gina R. Johnston ${ }^{1}$, Katia L. Pronzati

Introduction

- Fishery managers benefit from understanding stock composition in mixture samples a. Target fishing on abundant stock
b. Estimating reter for maximum
sustained yield
- Here we highlight three on-going projects using genetic data to solve management needs (see figure 1).

Estimating stock composition in adults returning to Bristol Bay before they enter commercial fishing districts

Introduction/Methods. The test fishery conducted off Port Moller captures fish at samples fish 5 to 7 days before fish enter commercial fishing districts. Stock composition of the catch provided fishery confirmation of or alerts to deviations from preseason forecasts of stock-specific abundance. In 2005, nine in-season 4. hr turn around from the time samples arrived in the lab.

Results. Cumulative stock compositions over nine sampling periods grouped by station show some segregation by stock occurs at sea new finding (figure 2). Slocks are clockwise starting from the North Alaska Peninsula and ending in the Kuskokwim Bay. Note that fish closer to spawning tributaries (stocks on the (stations 20 to 40 miles off-shore) than fish destined for tributaries farther away Predicted stock strengths from this fishery in 2005 were generally in agreemen
strengths.

Updating and refining the baseline: Alagnak River as an example

Introduction: Ala

River experienced
unprecedented numbers starting in 2003 (figure 3; photo shows fish waiting for spawning habitat to open up in Moraine Creek in 2004). ldetifing all the stocks
within the Alagnak River improves the stock composition estimates used by fishery managers to target hese abundant stocks.

Figure 1. Sampling sites for spawning aggregates of sockeye salmon in Bristol Bay, Alaska, fish per site, which make up the genetic baseline for mixed stock analysis. Genetic data (13
microsatelites and 4 SNPs) are able to distinguish among the 16 stock represented microsatellites and 4 SNPs) are able to distinguish among the 16 stocks represented by different
colors. Locations of projects higlighted in colors. Locations of
further explanation.

Nanuktuk Creek and early and late and beach-spawning collections from previously sampled tributaries.
Results: Genetic data distinguishes between four stocks within the Alagnak drainage (figure 4). Note the tight clustering of Note the tight clustering of
collections at the four primary spawning sites. No variation was detected between years or
between collections made early between collections made early
and late within years or and late within years or spawners. The finding of three genetically identifiable stocks with similar life histories within one nursery lake
sockeye salmon.

figure 4. Multicimensional scaingot of cavalli-Storza and Edwards genetic
distances based on 13 microssatellites and 4 SNP loci of Alagnak River collection

Introduction: Lake Clark stocks o sockeye salmon are heavily used for subsistence and are at historically low levels. Lake Clark stocks migrate up the Kvichak River in the company of other
stocks. In-river stock composition estimates over time provide fishery managers with differences in the run timing among stocks. Stock-specific differences in run-timing may provide
fishery managers with a tool to target abundant stocks.

Sockeye salmon hung to dry

Results: Genetic data can be used to partition daily estimates of fish passing through the Kvichak River into stock-specific estimates
(figure 5). Note that some (figure 5). Note that some
stocks (Six-mile Lake) show tocks early while other show up late (lliamna tributary Late). Stock estimates were proided for days when 87% of the fish passed through the
Kvichak River. Proportion of sockeye salmon migrating up he Kvichak River destined for Lake Clark were highest second halfo of the run (figure 6). This pattern does not provide a clear tool for fishery managers to target more abundant stocks from the Kvichak River while avoiding
Lake Clark stocks. The project continues for two more years to determine if hese patterns are consistent from year to yea

Figure 5. Stock-specific daily estimates of fish migrating up

Figure 6 . Proportion of fish migrating up the Kvichak River
destined for Lake Clark in 2004

Future Work

- Determine the stock composition of district fisheries
on stock composition.
- Identify the migration patterns of stocks on the high seas

Acknowledgments

Funded by the North Pacific Research Board grants R0205 and R0303; U. S. Fish and Willilife Service, Office of Subsistence Management, Fisheries Resource Monitoring Study \# \# 0 -4111; a National Pa
Service, Cooperative Conservation Initititive Project; and the Bristol Bay Salmon Processors.

