Introduction
Little is known of the oceanic migration patterns and relative survival of individual stocks of Chinook salmon. Until recently, investigation of the effects of fluctuating marine conditions on the abundance and distribution of Chinook salmon has only been approachable through the sporadic collection of tagged
individuals and analysis of scale patterns. Here we present a baseline of genetic markers based on 45 single nucleotide polymorphisms (SNPs) surveyed in 172 populations across the species range in the North Pacific. This baseline provides the foundation for the application of genetic stock identification for high-resolution exploration of the distribution of Chinook salmon in marine waters. Initial results indicate that 15 of high seas samples, an increase in the available resolution.

Testing the Baseline

100% Simulations

The first step to investigate the precision and accuracy possib/ for mixed stock analysis using this baseline involves simula
mixtures of hypothetical salmon in which all the individuals mixtures of hypothetical salmon in which all the individuals
belong to a single reporting group. These 100% simulations repeated 1,000 times. If the mixed stock analysis works perfectly then 100% of mixture would be attributed to the correct
reporting group and any deviation would indicate error in the reporting group and any deviation would indicate error in the
estimation process. Generally, 90% mean correct assignmen indicates a high degree or geneticicidentifiabiility. Al 15 reporting
groups show correct allocations above the 90% thresh hold.
 accuracy possible involves removing individual
salmon from the baseline and using them to create a salmon from the baseline and using them to create a
mixture of real salmon. This is a more stringent test
than the simulations because the information in the than the simulations because the information in the
baseline is reduced and real (not hypothetical) genobaseine is reduced and real (not hypothetical) geno-
types are used. As reviously, these mixtures were
composed entirely of individiduals from the sam composed entirely of individuals from the same
reporting group. The results indicate that all grous reporting group. The results indicate that all groups
are identifiable at or above the 90% thresh hold. are identifiable at or above the 90% thresh hold.
Insufficient individuals were available from the Upper
Kuskokwim reporting group to allow for inclusion in Kuskokwim reporting group to allow for inclusion in
this test.

Conclusions

- The baseline of SNP markers demonstrates significant
geneaseline of SNP Amaritiomong Chinook salmon populations.
Genetic variation in Chinook salmon on a coastwide scale
closely associated with geographic features.
- Mixed stock analysis using genetic markers can identify 15

Acknowledgements
Laboratory analysis and support was provided by Judy Berger, Andrew Barclay,
Nick De Covich Zachary Grauvogel. Ericic Lardizabal Gina Rebinson and
 Funding for this analysis was provided by the Arctic Yukon Kuskokwim SustainFunding for this analysis was provided by the Arcit
able Salmon Intititive and the State of Alaska.

