Progress on pink salmon genetic markers

Alaska Department of Fish & Game Gene Conservation Lab

University of Washington Seeb Lab for Ecological Genomics

March 2016 AHRP Meeting Anchorage, AK

• Need ~200 highly variable SNPs for parentage

- Need ~200 highly variable SNPs for parentage
- RAD sequencing best approach to develop SNPs

- Need ~200 highly variable SNPs for parentage
- RAD sequencing best approach to develop SNPs
- Selecting SNPs in context of a linkage map is useful as it maximizes informational value of data

- Need ~200 highly variable SNPs for parentage
- RAD sequencing best approach to develop SNPs
- Selecting SNPs in context of a linkage map is useful as it maximizes informational value of data
- Development contracted to UW, analysis by UW/ADF&G staff

30

HRP March 2016

ADF&G GC

Km

Sources: Esri, GEBCO, NOAA, National Geographic, DeLorme, HERE, Geonames.org, and other 3 contributors

Fitness Stream

Prince William Sound

10ntaque

Km

HRP March 2016

ADF&G G

Fitness StreamBird Creek (Map)

Prince William

Loncoque

Sources: E sri, GE BCO, NOAA, National Geographic, DeLorme, HERE, Geonames.org, and other 3 contributors

Km

RP March

ADF

Fitness Stream
Bird Creek (Map)
Hatchery Populations (Odd)
Hatchery Populations (Even)

Prince William

Sources: E sri, GE BCO, NOAA, National Geographic, DeLorme, HERE, Geonames.org, and other $_3$ contributors

Km

Fitness Stream
 Bird Creek (Map)
 Hatchery Populations (Odd)
 Hatchery Populations (Even)
 Natural Populations (Odd)
 Natural Populations (Even Early)
 Natural Populations (Even Late)

Prince William

contributors

Present in 4+ pops Global MAF > 0.05 Genotyped ½ fish within pops

ADF&G GCL - AHRP March 2016

40,617 Even / 37,542 Odd 51,406 Total (26,675 Common)

Present in 4+ pops Global MAF > 0.05 Genotyped ½ fish within pops

Missing call rates > ¼ fish *

18,358 Even / 15,347 Odd

40,617 Even / 37,542 Odd 51,406 Total (26,675 Common)

* Also filtered poor quality fish

Present in 4+ pops Global MAF > 0.05 Genotyped ½ fish within pops

Missing call rates > ¼ fish *

HWE *P* > 0.05 in ½ of pops Population MAF > 0.05 all pops

14,405 Even / 12,854 Odd

18,358 Even / 15,347 Odd

40,617 Even / 37,542 Odd 51,406 Total (26,675 Common)

* Also filtered poor quality fish

Present in 4+ pops Global MAF > 0.05 Genotyped ½ fish within pops

Missing call rates > ¼ fish *

HWE *P* > 0.05 in ½ of pops Population MAF > 0.05 all pops

Common

8,738

14,405 Even / 12,854 Odd

18,358 Even / 15,347 Odd

40,617 Even / 37,542 Odd 51,406 Total (26,675 Common)

* Also filtered poor quality fish

~70,000-80,000

Present in 4+ pops Global MAF > 0.05 Genotyped ½ fish within pops

Missing call rates > ¼ fish *

HWE *P* > 0.05 in ½ of pops Population MAF > 0.05 all pops

Common

Single SNP/RAD tag 7,721

8,738

14,405 Even / 12,854 Odd

18,358 Even / 15,347 Odd

40,617 Even / 37,542 Odd 51,406 Total (26,675 Common)

* Also filtered poor quality fish

~70,000-80,000

• \uparrow MAF = \uparrow power to resolve parentage

- \uparrow MAF = \uparrow power to resolve parentage
- Discovered many SNPs that pass filters and look useful for fitness study

- \uparrow MAF = \uparrow power to resolve parentage
- Discovered many SNPs that pass filters and look useful for fitness study
- Final selection:
 - Discount for variation among populations

- \uparrow MAF = \uparrow power to resolve parentage
- Discovered many SNPs that pass filters and look useful for fitness study
- Final selection:
 - Discount for variation among populations
 - Locate on map and select independent SNPs

- \uparrow MAF = \uparrow power to resolve parentage
- Discovered many SNPs that pass filters and look useful for fitness study
- Final selection:
 - Discount for variation among populations
 - Locate on map and select independent SNPs

- \uparrow MAF = \uparrow power to resolve parentage
- Discovered many SNPs that pass filters and look useful for fitness study
- Final selection:
 - Discount for variation among populations
 - Locate on map and select independent SNPs

Timeline

			2016			
Task	Funding	Q2	Q3	Q4		
Pink SNP Development	Funded	2	4	5		

Key:	Stages of completion	1	2	3	4	5
	SNP Development	Data collection	Data filtering	Location on map	SNP selection	Optimization