Contemporary Population Structure of Pink Salmon from Prince William Sound, Alaska

Wei Cheng^{1,2}, Christopher Habicht¹, William D. Templin¹, Zachary D. Grauvogel¹, and Anthony J. Gharrett²

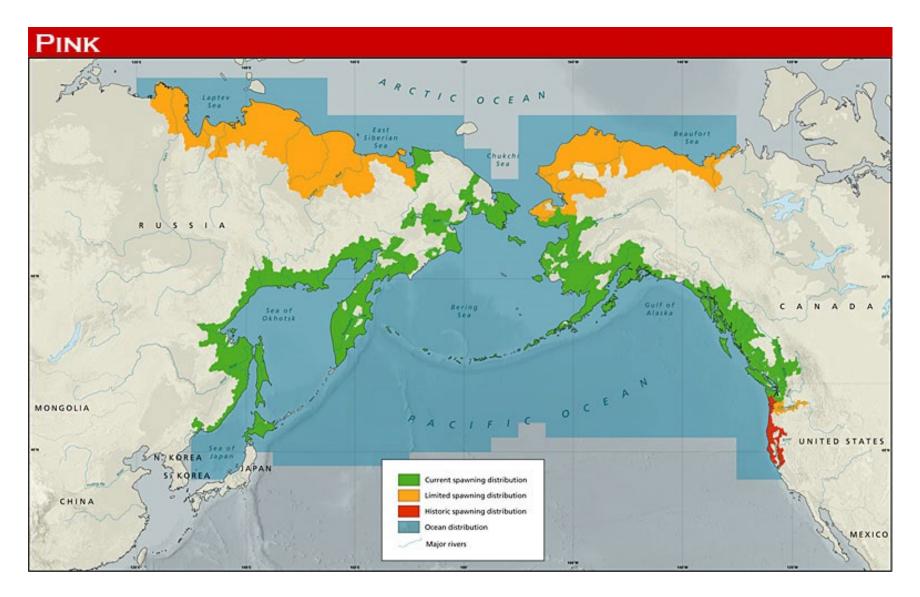
¹Alaska Department of Fish and Game Gene Conservation Laboratory

²University of Alaska Fairbanks College of Fisheries and Ocean Sciences

Alaska Hatchery Research Program Informational Meeting
March 9, 2022

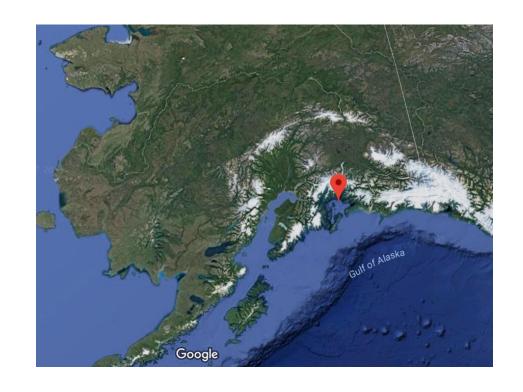
Alaska Hatchery Research Program

- 1) What is the genetic structure of pink and chum in PWS and SEAK?
- 2) What is the extent and annual variability of straying?
- 3) What is the impact on fitness (productivity) of natural pink and chum stocks due to straying hatchery pink and chum salmon?


Life History of Pink Salmon

- Two-year life cycle
 - Odd year
 - Even year
- Limited freshwater life history

https://www.n-sea.org/pink-salmon


Distribution of Pink Salmon

PWS Pink Salmon

- Number of streams in Prince William Sound (PWS)
 - Over 800 streams

 Variation in run timing across streams

Previous Studies: Pink Salmon in PWS

Genetic Characterization of Prince William Sound
Pink Salmon Populations

Ecology of Freshwater Fish 1999: 8: 122-140 Printed in Denmark · All rights reserved ECOLOGY OF FRESHWATER FISH ISSN 0906-6691

Report

to

Alaska Department of Fish and Game Feb. 15, 1977

by

Jim Seeb

and

Lisa Wishard

INFORMATIONAL LEAFLET NO. 181

SEPARATION OF SOME PINK SALMON (<u>Oncorhynchus gorbuscha</u> Walbaum)
SUB-POPULATIONS IN PRINCE WILLIAM SOUND, ALASKA BY LENGTH-WEIGHT
RELATIONSHIPS AND HORIZONTAL STARCH GEL ELECTROPHORESIS

By Richard B. Nickerson Allozyme and mitochondrial DNA variation describe ecologically important genetic structure of even-year pink salmon inhabiting Prince William Sound, Alaska

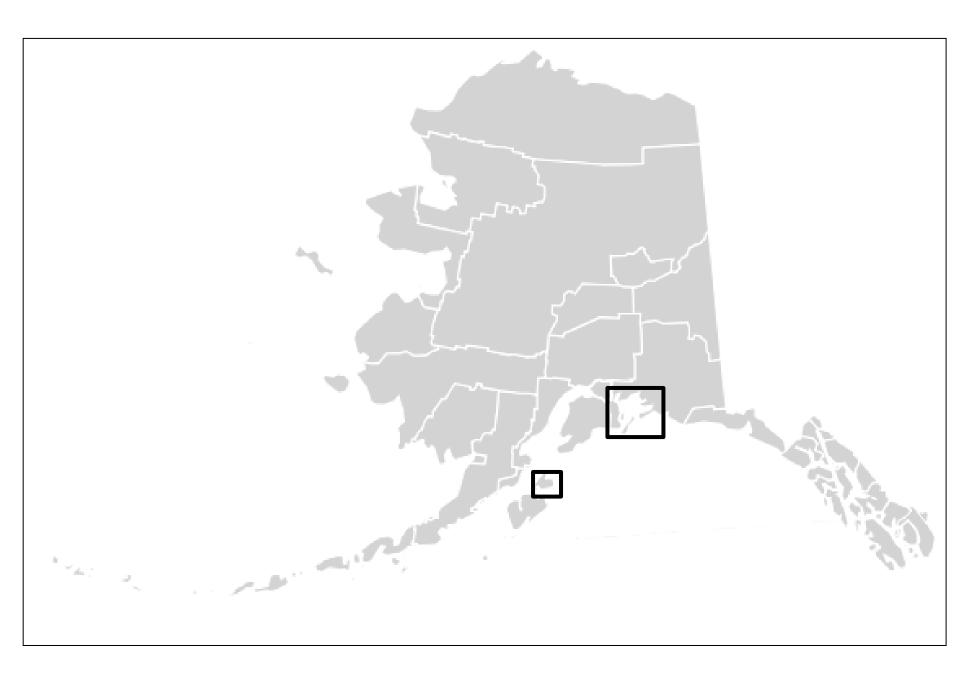
Seeb JE, Habicht C, Templin WD, Seeb LW, Shaklee JB, Utter FM. Allozyme and mitochondrial DNA variation describe ecologically important genetic structure of even-year pink salmon inhabiting Prince William Sound, Alaska.

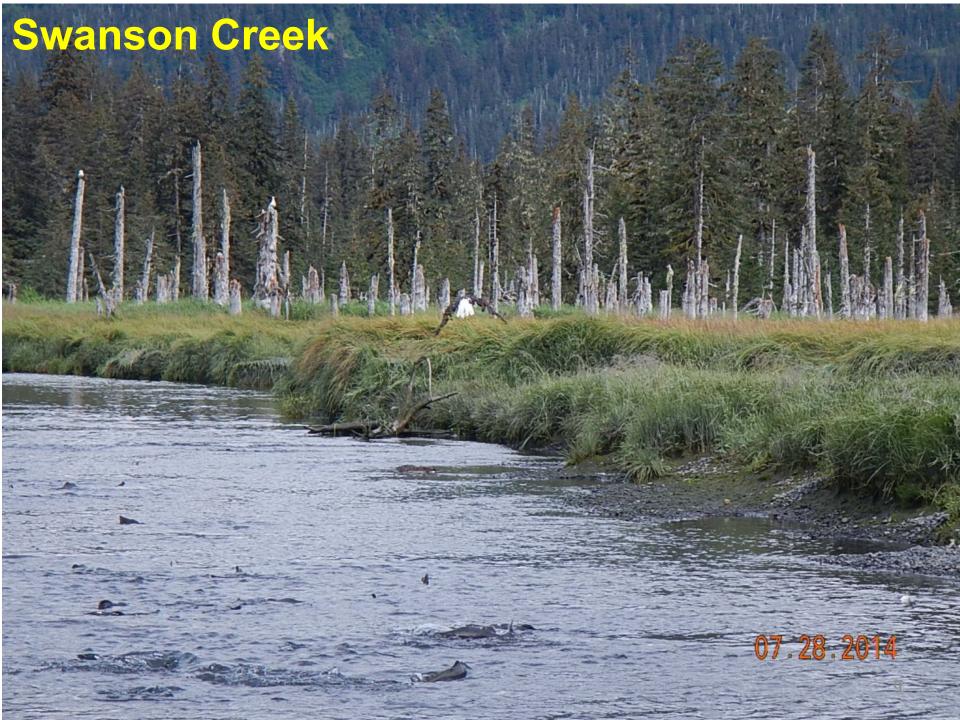
Ecology of Freshwater Fish 1999: 8: 122-140. © Munksgaard, 1999

Abstract - Allozyme and mitochondrial DNA (mtDNA) data were obtained from pink salmon throughout Prince William Sound, Alaska, from two hatchery, five upstream, and 20 tidal locations distributed among five management regions collected during 1994. Screening for allozymes included 66 loci for 92 to 100 fish per sample. Thirty-four loci had variant allele frequencies >0.01 in one or more collections and were used for population analyses. Eight haplotypes were detected after screening 40 fish per collection for variation at the ND5/ND6 region of mtDNA using six restriction enzymes. Significant and apparently stable differences detected by both data sets permit rejecting a null hypothesis of panmixia and support managing native populations in Prince William Sound at the regional level. Distinctions between upstream and tidal collections were detected within Lagoon Creek (allozymes) and Koppen Creek (mtDNA). Significant regional heterogeneity was detected within upstream (allozymes and mtDNA) and tidal (allozymes) collections; however, upstream collections were more divergent from each other than were tidal collections. The absence of distinction of Armin F. Koernig Hatchery from almost all regions was consistent with multiple origins of this stock. Conversely, Solomon Gulch Hatchery in the East Region was distinct from all regions but East, consistent with a more restricted origin and inJ. E. Seeb¹, C. Habicht¹, W. D. Templin¹, L. W. Seeb¹, J. B. Shaklee², F. M. Utter³

¹Alaska Department of Fish & Game, Commercial Fisheries Division, Anchorage, Alaska, ²Washington Department of Fish & Wildlife, Olympia, ³School of Fisheries, University of Washington, Seattle, Washington, USA

Key words: allozyme; mtDNA; genetics; pink

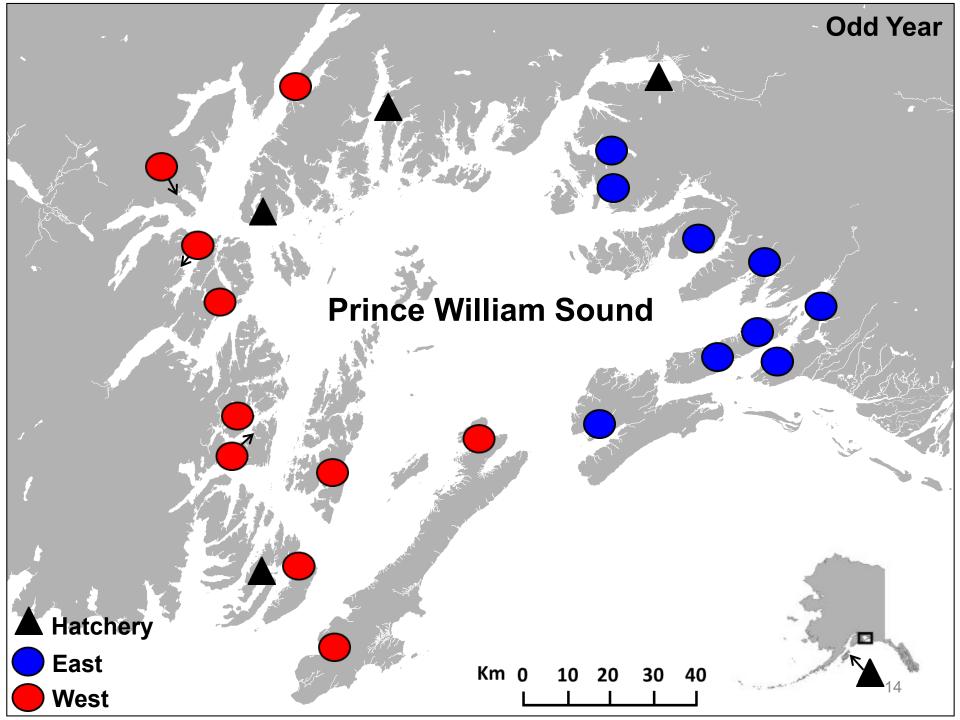

J. E. Seeb, Alaska Department of Fish & Game, Commercial Fisheries Division, Anchorage, AK 99518. USA

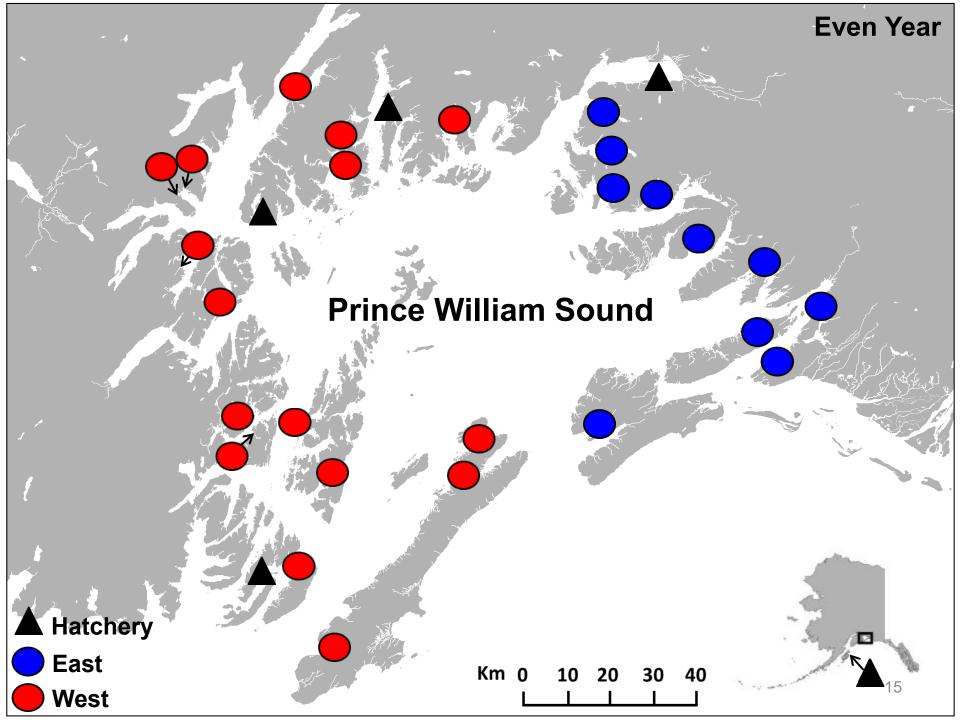

Accepted for publication April 9, 1999

Un resumen en español se incluye detrás del texto principal de este artículo.

Study Design

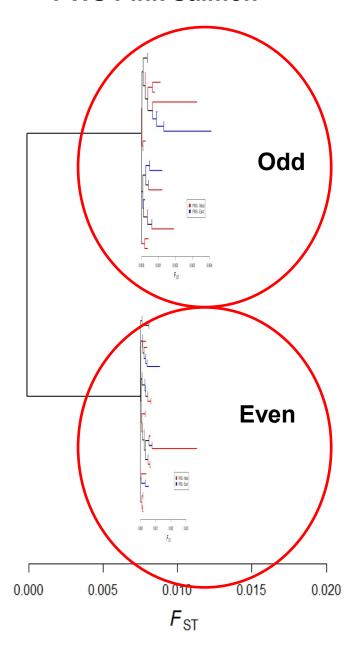
	Contemporary	Historical
Natural	1	1
Hatchery	1	1





Study Design

	Contemporary	Historical
Natural	1	
Hatchery	1	


Population Structure Analyses

Calculate genetic differences among collections

Test for significance of these differences

Visualize the relationships among collections

PWS Pink Salmon

Alaska Hatchery Research Group

Technical Document:1 #14

Title: Population Genetic Structure of Odd-Year Pink Salmon from Prince William Version: 1.0 Sound Based on a Single Year (2013)

Authors: W. Cheng, C. Habicht, W. D. Templin, Z. D. Grauvogel, S. D. Moffitt, R. E. Brenner, R. P. Josephson, and A. J. Gharrett Date: May 13, 2016

Abstract

Pink salmon (Oncorhynchus gorbuscha) are commercially and ecologically important. In Prince William Sound (PWS). Alaska, pink salmon are the most abundant salmon harvested and generating the highest total value. An understanding of their population genetic structure is useful for conservation and management, especially given the magnitude of the hatchery program in the sound. We analyzed the population genetic structure of pink salmon from four hatcheries and 19 natural spawning areas in PWS and one hatchery in Kodiak Management Area (KMA) by genotyping 16 microsatellite loci for nearly 3000 pink salmon sampled in 2013. Across all populations in PWS, the number of alleles observed per locus ranged from 11 (Ots7e) to 87 (Oki101), and the total for all loci was 726. The fixation index (F_{ST}) , a measure of population differentiation, was 0.002 over all loci and the F_{ST} of individual loci ranged from 0.001 to 0.003. Significant difference was detected among those populations from PWS, which means that pink salmon in PWS are not from a single large homogeneous population. The KMA collection was the most divergent. Within PWS, Solomon Gulch Hatchery in the northeastern PWS was distinct from all other collections and suggested that it had not received many migrants from other PWS areas. Early-run fish from Snug Harbor Creek were distinct from other samples.

Key words: Pink salmon, odd-year, Prince William Sound, population genetic structure, microsatellite.

Ecology of Freshwater Fish 1999: 8: 122-140

Population structure of odd-broodline Asian pink salmon and its contrast to the even-broodline structure

S. L. Hawkins*, N. V. Varnavskaya†, E. A. Matzak‡, V. V. Efremov¶, C. M. GUTHRIE III*, R. L. WILMOT*, H. MAYAMAŞ, F. YAMAZAKI AND A. J. GHARRETT#**

*National Marine Fisheries Service, Auke Bay Laboratory, 11305 Glacier Hwy, Juneau, AK 99801-8626, U.S.A., †Kamchatka Scientific Research Institute of Fisheries and Oceanography, KamchatNIRO, Petropavlovsk-Kamchatsky 683602, Kamchatka, Russia, Pacific Research Fisheries Centre (TINRO-CENTRE), 4 Shevchenko Alley, Vladivostok 690600, Russia, ¶Russian Academy of Sciences, Far East Branch, Institute of Marine Biology, Vladivostok 690041, Russia, §National Salmon Resources Center, Nakanoshima, Sapporo 062-0922, Japan, Hokkaido University, Laboratory of Genetics and Embryology, Faculty of Fisheries, Hakodate 041, Japan and #Division of Fisheries, University of Alaska Fairbanks, 11120 Glacier Hwy, Juneau, AK 99801, U.S.A.

(Received 6 June 2001, Accepted 28 November 2001)

Most of the variation (99%) of Asian odd-broodline pink salmon Oncorhynchus gorbuscha, based on data at 32 variable (46 total) allozyme loci from 35 populations, occurred within populations. The remaining interpopulation variation was attributable to: (1) differences between northern (the northern Sea of Okhotsk, eastern Kamchatka Peninsula and western Kamchatka Peninsula) and southern (Hokkaido Island, Kuril Islands and Sakhalin Island) populations; (2) differences between the southern areas; (3) low variation among populations within some areas. The pattern contrasted strongly with that observed for Asian evenbroodline populations, which had a strong structure, possibly related to geographic and oceanographic influences. Isolation-by-distance analyses of each of the two broodlines showed a stronger relationship (× 4·8) among even- than odd-broodline populations. Allele frequency differences between even- and odd-broodlines reflected the reproductive isolation of the broodlines. However, there were no fixed frequency differences which, considered with the differing population structures, suggests that migration-drift equilibrium has not yet obtained in one or both broodlines. The structural differences also suggest it is likely that the even- and odd-broodlines are of different ages and that one is derived from the other. Allozyme data do not provide a genealogical basis for identifying the ancestral lineage.

Key words: Oncorhynchus gorbuscha; pink salmon; population structure; allozyme; isolation by

Copyright © Munksgaard 1999 ECOLOGY OF FRESHWATER FISH

Allozyme and mitochondrial DNA variation describe ecologically important genetic structure of even-year pink salmon inhabiting Prince William Sound, Alaska

Seeb JE, Habicht C, Templin WD, Seeb LW, Shaklee JB, Utter FM. Allozyme and mitochondrial DNA variation describe ecologically important genetic structure of even-year pink salmon inhabiting Prince William Sound, Alaska.

Ecology of Freshwater Fish 1999: 8: 122-140. © Munksgaard, 1999

Abstract - Allozyme and mitochondrial DNA (mtDNA) data were obtained from pink salmon throughout Prince William Sound, Alaska, from two hatchery, five upstream, and 20 tidal locations distributed among five management regions collected during 1994. Screening for allo zymes included 66 loci for 92 to 100 fish per sample. Thirty-four loci had variant allele frequencies >0.01 in one or more collections and were used for population analyses. Eight haplotypes were detected after screening 40 fish per collection for variation at the ND5/ND6 region of mtDNA using six restriction enzymes. Significant and apparently stable differences detected by both data sets permit rejecting a null hypothesis of panmixia and support managing native populations in Prince William Sound at the regional level. Distinctions between upstream and tidal collections were detected within Lagoon Creek (allozymes) and Koppen Creek (mtDNA). Significant regional heterogeneity was detected within upstream (allozymes and mtDNA) and tidal (allozymes) collections; however, upstream collections were more divergent from each other than were tidal collections. The absence of distinction of Armin F. Koernig Hatchery from almost all regions was consistent with multiple origins of this stock. Conversely, Solomon Gulch Hatchery in the East Region was distinct from all regions but East, consistent with a more restricted origin and inJ. E. Seeb1, C. Habicht1, W. D. Templin1, L. W. Seeb1, J. B. Shaklee², F. M. Utter³

¹Alaska Department of Fish & Game. Commercial Fisheries Division, Anchorage Alaska, 2Washington Department of Fish & Wildlife, Olympia, 3School of Fisheries, University of Washington, Seattle, Washington

Commercial Fisheries Division, Anchorage, AK 99518, USA Accented for publication April 9 1999

Key words: allozyme; mtDNA; genetics; pink J. E. Seeb, Alaska Department of Fish & Game

Abstract-Population structure of pink salmon (Oncorhynchus gorbuscha) from British Columbia and Washington was examined with a survey of microsatellite variation to describe the distribution of genetic variation. Variation at 16 microsatellite loci was surveyed for approximately 46,500 pink salmon sampled from 146 locations in the odd-year broodline and from 116 locations in the even-year broodline. An index of genetic differentiation, F_{ST} , over all populations and loci in the odd-year broodline was 0.005, with individual locus values ranging from 0.002 to 0.025. Population differentiation was less in the even-year broodline, with a F_{ST} value of 0.002 over all loci, and with individual locus values ranging from 0.001 to 0.005. Greater genetic diversity was observed in the odd-year broodline. Differentiation in pink salmon allele frequencies between broodlines was approximately 5.5 times greater than regional differentiation within

Genetic Interpretation of Broad-Scale Microsatellite Polymorphism in Odd-Year Pink Salmon

JEFFREY B. OLSEN*1 AND LISA W. SEEB

Alaska Department of Fish and Game, Genetics Program 333 Raspberry Road, Anchorage, Alaska 99518, USA

PAUL BENTZEN

Marine Molecular Biotechnology Laboratory, University of Washington 3707 Brooklyn Avenue Northeast, Seattle, Washington 98105-6715, USA

JAMES E. SEEB

Alaska Department of Fish and Game, Genetics Program

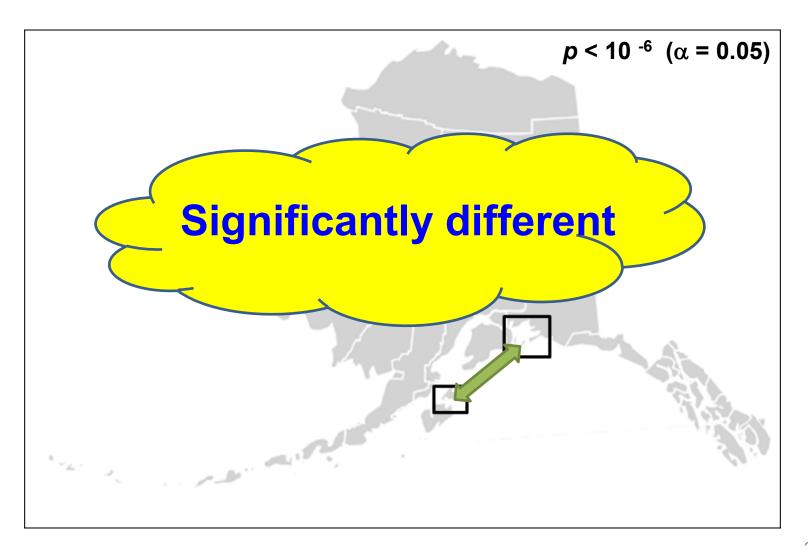
Abstract.—We examined genetic variation at five microsatellite loci in 12 odd-year populations and one even-year population of pink salmon Oncorhynchus gorbuscha from six geographic regions of North America. The degree of polymorphism varied widely among loci. The total number of alleles in the odd-year samples varied from 4 (Oneµ3) to 53 (Ssa85). A probability test revealed significant heterogeneity in allele frequencies among all odd-year samples and among pooled oddyear samples from six regions. We compared estimates of a standard index of population structure (θ) based on variance in allele frequency with a new index suggested for microsatellites (ρ_{ST}) based on variance in allele size. Our results suggest $\hat{\theta}$ is a better estimator of intralineage (oddyear \times odd-year) population structure, whereas $\hat{\rho}_{ST}$ is best suited for estimating interlineage (oddyear \times even-year) population structure. The difference in performance of $\hat{\theta}$ and $\hat{\rho}_{ST}$ for estimating intralineage and interlineage population structure suggests high migration rates and possibly recent low divergence times are dominant influences on genetic population structure in odd-year pink salmon. We showed statistical support for genetic isolation by distance and geographically correlated allele frequency clines, suggesting broad-scale gene flow is best described by a linear stepping-stone model. An analysis of molecular variation showed weak but significant regional structuring under two different population grouping schemes. Our results suggest broad-scale population aggregations of odd-year pink salmon are temporally stable but that differentiation is weak, presumably due to migration.

Population structure of pink salmon (Oncorhynchus gorbuscha) in British Columbia and Washington, determined with microsatellites

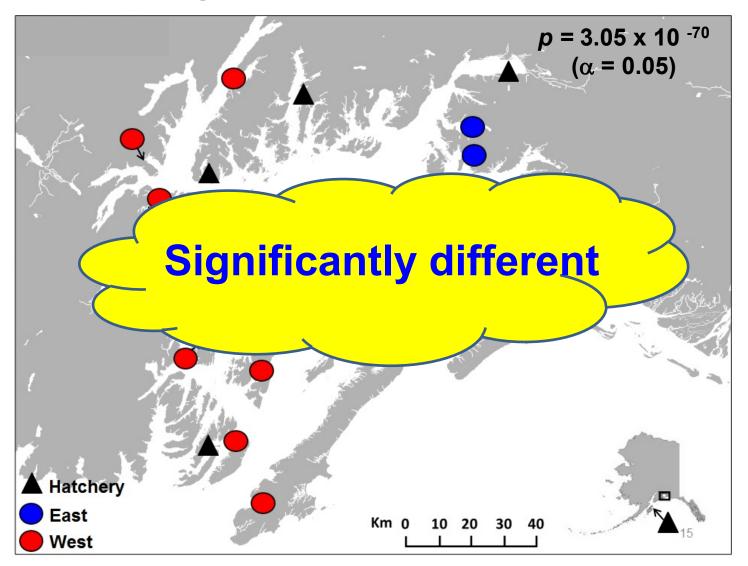
Terry D. Beacham (contact author)1 Brenda McIntosh¹ Cathy MacConnachie¹ Brian Spilsted² Bruce A. White3

E-mail address for contact author: Terry.Beacham@dfo-mpo.qc.c

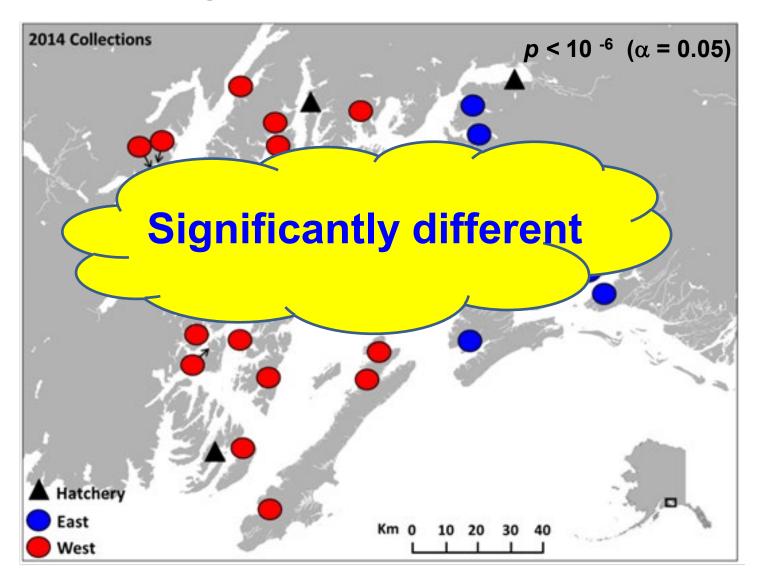
- ¹ Fisheries and Oceans Canada Pacific Biological Station 3190 Hammond Bay Road Nanaimo, B. C., Canada V9T 6N7
- ² Fisheries and Oceans Canada 417-2nd Avenue West Prince Rupert, B. C. Canada V8J 1G8
- ³ Pacific Salmon Commission 600-1155 Robson Street Vancouver, B. C., Canada V6E 1B5

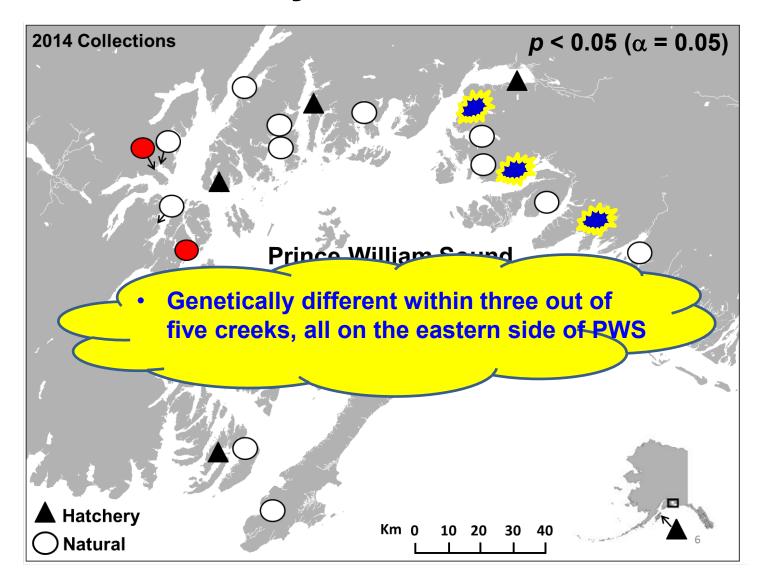

Un resumen en español se incluye detrás del texto principal de este artículo.

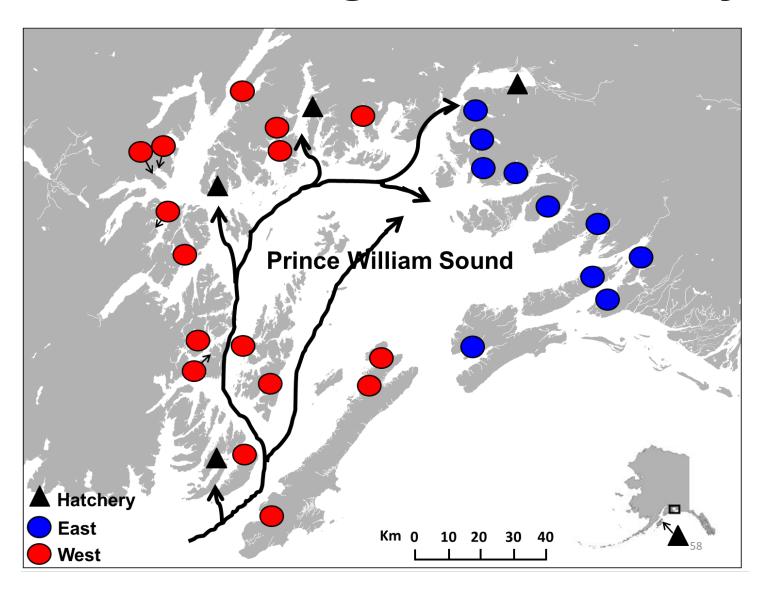
Population Structure Analyses

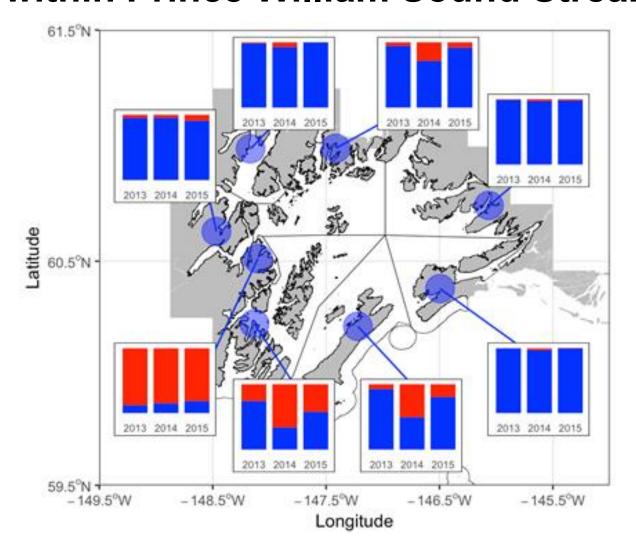

Calculate genetic differences among collections

Test for significance of these differences


Testing for Difference: Kodiak vs. Prince William Sound


Testing for Differences: among Prince William Sound


Testing for Differences: among Prince William Sound


Testing for Differences: Between Early and Late Collections

Assumed Migration Pathway

Estimated Hatchery Pink Salmon Fraction within Prince William Sound Streams

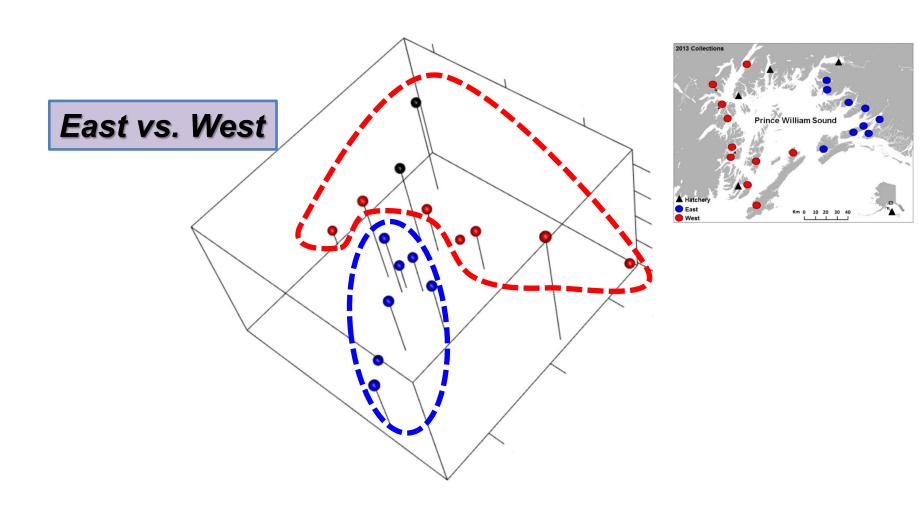
Knudsen, E.E., Rand, P.S., Gorman, K.B., Bernard, D.R. and Templin, W.D., 2021. Hatchery-Origin Stray Rates and Total Run Characteristics for Pink Salmon and Chum Salmon Returning to Prince William Sound, Alaska, in 2013–25 2015. *Marine and Coastal Fisheries*, 13(1), pp.41-68.

Population Structure Analyses

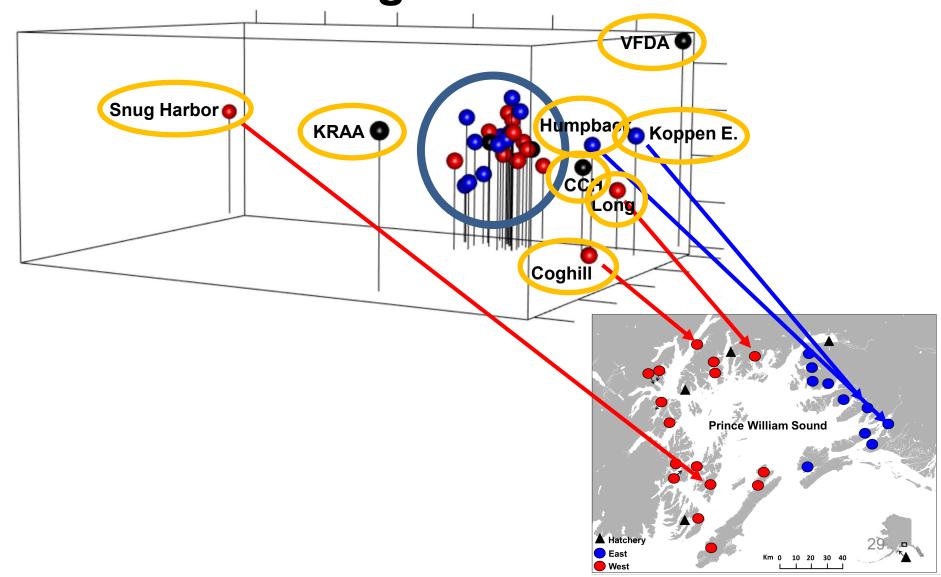
Calculate genetic differences among collections

Test for significance of these differences

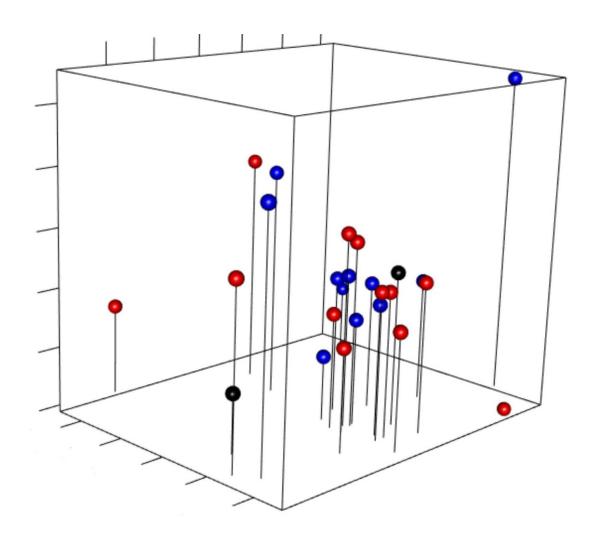
Visualize the relationships among collections


Odd Year

Visualizing the Relationships among Collections



Odd Year


Visualizing Relationships Among Collections – Zooming In

Visualizing the Relationships among Collections

Visualizing the Relationships among Collections

Summary to date

- > Kodiak vs. Prince William Sound (PWS)
 - ✓ Significantly different in both lineages
- Genetic variation among pink salmon populations in PWS is very small
 - ✓ Odd year small
 - ✓ Even year even smaller
- > Within lineage patterns
 - ✓ Odd year:
 - ✓ East vs. West
 - ✓ Early vs. Late?
 - ✓ Even year:
 - ✓ Early vs. Late (eastern side only)

Future Work

- > Historical samples
 - **√**1991 1997
 - ✓ No otolith information

➤Investigate the mechanisms driving the structure

Acknowledgements

- Alaska Hatchery Research Program Science Panel
- Hatcheries
 - PWSAC, VFDA, KRAA
- Prince William Sound Science Center
- Fisheries and Oceans Canada
 - Pacific Biological Station
- Alaska Department of Fish and Game
- University of Alaska Fairbanks Juneau Center