Contemporary Population Structure of Pink Salmon from Prince William Sound, Alaska

Wei Cheng ${ }^{1,2}$, Christopher Habicht ${ }^{1}$, William D. Templin ${ }^{1}$,
Zachary D. Grauvogel ${ }^{1}$, and Anthony J. Gharrett ${ }^{2}$

${ }^{2}$ University of Alaska Fairbanks
College of Fisheries and Ocean Sciences
Alaska Hatchery Research Program Informational Meeting
March 6, 2020

Alaska Hatchery Research Program

1) What is the genetic structure of pink and chum in PWS and SEAK?
2) What is the extent and annual variability of straying?
3) What is the impact on fitness (productivity) of natural pink and chum stocks due to straying hatchery pink and chum salmon?

Life History of Pink Salmon

- Two-year life cycle
- Odd year
- Even year
- Limited freshwater life history

https://www.n-sea.org/pink-salmon

Distribution of Pink Salmon

Pink

http://www.salmonnation.org/fish/meet_species.html

PWS Pink Salmon

- Number of streams in Prince William Sound (PWS)
- Over 800 streams
- Variation in run timing across streams

Previous Studies: Pink Salmon in PWS

Genetic Characterization of Prince William Sound Pink Salmon Populations

Report
to
Alaska Department of Fish and Game
Feb. 15, 1977
by
Jim Seeb
and
Lisa Wishard

INFORMATIONAL LEAFLET NO. 181

SEPARATION OF SOME PINK SALMON (Oncorhynchus gorbuscha Walbaum) SUB-POPULATIONS IN PRINCE WILLIAM SOUND, ALASKA BY LENGTH-WEIGHT RELATIONSHIPS AND HORIZONTAL STARCH GEL ELECTROPHORESIS

By
Richard B. Nickerson

Allozyme and mitochondrial DNA variation describe ecologically important genetic structure of even-year pink salmon inhabiting Prince William Sound, Alaska

Seeb JE, Habicht C, Templin WD, Seeb LW, Shaklee JB, Utter FM. Allozyme and mitochondrial DNA variation describe ecologically important genetic structure of even-year pink salmon inhabiting Prince William Sound, Alaska
Ecology of Freshwater Fish 1999: 8: 122-140. © Munksgaard, 1999
Abstract - Allozyme and mitochondrial DNA (mtDNA) data were obtained from pink salmon throughout Prince William Sound, Alaska, ained from pink salmon throughout Prince William Sound, Alaska rom two hatchery, five upstream, and 20 tidal locations distributed mong five management regions collected during 1994. Screening for allozymes included 66 loci for 92 to 100 fish per sample. Thirty-four loci had variant allele frequencies >0.01 in one or more collections and were used for population analyses. Eight haplotypes were detected after screening 40 fish per collection for variation at the NDS/ND6 region of mtDNA detected by both data sets permit rejecting a null hypothesis of panmixis and support manaing native populations in Prince Willis of panmixia and support managing native populations in Prince willam Sound at egird within Diso Creek (allozymes) and Koppen Creek (miDNA) ected within Lagoon Creek (allozymes) and Koppen Creek (mtDNA) Significant regional hetegen (alloze collections; ymes and midA) and eral (allozy mes) colletions, however, upstrea collens were more diveri from each oher han were tidal colleins. Th 1 with multe Cost all regions was Conversely, Solomon Guich Hatchery in the East Region was distinct from all regions but East, consistent with a more restricted origin and influence.
J. E. Seeb ${ }^{1}$, C. Habicht ${ }^{1}$, W. D. Templin ${ }^{1}$, L. W. Seeb ${ }^{1}$, J. B. Shaklee ${ }^{2}$, F. M. Utter ${ }^{3}$ Alaska Department of Fish \& Game, Commercial Fisheries Division, Anchorage, Alaska, ${ }^{2}$ Washington Department of Fish \& Widlife, Olympia, ${ }^{3}$ School of Fisheries, University of Washington, Seattle, Washington,
USA

[^0]Accepted for publication April 9,1999

Study Design

	Contemporary	Historical
Natural	$\sqrt{ }$	
Hatchery	$\sqrt{ }$	

Swanson Creek

A
n

1414, N. 4

 m

Study Design

Population Structure Analyses

- Calculate genetic differences among collections
- Test for significance of these differences
- Visualize the relationships among collections

PWS Pink Salmon

PWS Chum Salmon

PWS Pink Salmon

Titte: Population Genctic Stucture of Odd-Year Pink Salmon from Prince William Version: 1.0 Sound Basd ona Singll Year (2013)
Authors: W. Cheng. C. Ilabicht, W. D. Templin, Z. D. Grauugogl, S. D. Mofitt, R
E. Brenner, R.P. Josephson, and A.J. Gharett

Date: May 13,2016

Abstract

Pink salmon (Oncorhnchus gorbuscha) are commercially and coologically important. In Prince William Sound PWS), Alaska, pink salmon are the most abundant salmon harvested and generating the highest total value. An understanding of their population genctic structure is usfful for conservation and management, espcially given the magnitude of the hatchery program in the sound. We analyzed the popolation genctic staucture of pink salmon from four hatchenies and 19 natural spawning areas in PWS and onc hatchery in Kodiak Managennent Area (KMA) by genotyping 16 microsatellite loci for nearly 3000 pink salmon sampled in 2013. Across all popalations in PWS, the sumber of allcles observed per locus ranged from $11(01 s 7 e)$ to 87 ((killOI), and dhe total for all loci was 726 . The fixation index ($F_{S T}$) a measure of population differentiation, was 0.002 over all loci and the F_{5} of individual loci ranged from 0.001 to 0.003 . Significant difference was detected among those populations from PWS, which mans that pink salmon in PWS are not from a single large homogescocos population. The KMA collation was the most divergent. Within PWS, Solomon Gulch Hatchrery in the northasatem PWS was distinet from all other colleations and suggested that it had not texeived many migrants from other PWS areas. Early-nun fish from Snug Harbor Creek were distinct from ober samples

Key words: Pirik salmon, odd-year, Prince William Sound, population genatic structure, microsatellite.

Population structure of odd-broodline Asian pink salmon and its contrast to the even-broodline structure
S. L. Hawkins*, N. V. Varnavskayat, E. A. Matzak $\$$, V. V. Efremovf C. M. Guthrie III*, R. L. Wilmot*, H. Mayama§, F. Yamazaki||and A. J. Gharreti\#**

National Marine Fisheries Service, Auke Bay Laboratory, 11305 Glacier Hwy, Juneau, AK 99801-8626, U. S. A., †Kamchatka Scientific Research Institute of Fisheries and Oceanography, KamchatNIRO, Petropavlovsk-Kamchatsky 683602, Kamchatka, Russia
\pm Pacific Research Fisheries Centre (TINRO-CENTRE), 4 Shevchenko Alley Vladivostok 690600, Russia, \uparrow Russian Academy of Sciences, Far East Branch, Institute of Marine Biology, Vladivostok 690041. Russia, §National Salmon Resources Center. Nakanoshima, Sapporo 062-0922, Japan, Hokkaido University, Laboratory of Genetics and Embryology, Faculty of Fisheries, Hakodate 041, Japan and \#Division of Fisheric

(Received 6 June 2001, Accepted 28 November 2001)

Most of the variation (99\%) of Asian odd-broodline pink salmon Oncorhyncchus gorbuscha.
based on data at 32 variable (46 total) allozyme loci from 35 populations, occurred within based on data at 32 variable (46 total) allozyme loce from 33 populations, oocurred within populations. The remaining interpopulation variation was attribuable to: (1) differences
between northern (the northern Sea of Okhotsk. castern Kamchatka Peninsula and western Kamchatka Peninsula) and southern (Hokkaido Island, Kuril Islands and Sakhalin Istand populations: (2) differences between the southern areas; (3) low variation among populations
within some areas. The pattern contrasted strongly with that observed for Asian even within some areas. The pattern contrasted strongly with that observed for Asian even-
broodline populations, which had a strong structure. possibly related to geographic and oceanographic influvences. Isolation-by-distance analyses of each of the two broodines showed
a stronger relationship $(\times 4$.8) among even than odd-broodline populations. Allele frequency asstronger relationship ($\times 4$ 4. amonong even- than oddd.broodline populations. Allele frequency
differences between even- and odd-broodlines reflected the repoructive isolation of the differences between even- and odd-broodlines reflected the reproductive isolation of the
broodlines. However. there were no fixed frequency differences which, considered with the broodines. However, there were no fixed frequuncy diferences which, considecece with the
differing population structures, suggests that migration-drif equilibrium has not yet obtained in one or both broodlines. The structural differeneess also suggest it is likely that the even- and
odd-broodlines are of different ages and that one is derived from the other. Allozyme data do not provide a genealogical basis for identifying the ancestral lineage.
Key words: Oncorlynchus gorbuscha; pink salmon; population structure; allozyme; isolation by distance.

Abstract—Population structure of pink salmon (Oncorhynchus gorbus cha) from British Columbia and Wash ington was examined with a survey f microsatellite variation to describ the distribution of genetic variation Variation at 16 microsatellite loci wa surveyed for approximately 46,50 pink salmon sampled from 146 loca tions in the odd-year broodline and from 116 locations in the even-yea broodline. An index of genetic differ entiation, $F_{S T}$, over all populations and loci in the odd-year broodine was .005, with indiar locus value ranging from 0.002 to 0.025 . Popula tion differentiation was less in the ven-year broodline, with a $F_{S T}$ valu 0.002 ver all loci, wh whid ual locus values ranging from 0.001 0.005 . Greater genetic diversity as obed 1. ne. Diferentiation in pink salmo llele frequencies be 5.5 broodline was approximately 5.5 times greate
than regional differentiation within

Genetic Interpretation of Broad-Scale Microsatellite Polymorphism in Odd-Year Pink Salmon

Jeffrey B. Olsen*1 and Lisa W. Seeb
333 Department of Fish and Game, Genetics Program 333 Raspberry Road, Anchorage, Alaska 99518, USA

Paul Bentzen

307 Brooklyn Avenue Northeast, Seattle. Washington 98105-6715, US

James E. Seeb

Alaska Department of Fish and Game, Genetics Program
Abstract--We examined genetic variation at five microsatellite loci in 12 odd-year populations and one even-year population of pink salmon Oncorhynchus gorbuscha from six geographic regions ollerth America. The degree of polymorphism varied widely among loci. The total numbere
ald-year samples varied from 4 (One $\mu .3$) to 53 (Ssa85). A probability test revealed significant heterogeneity in allele frequencies among all odd-year samples and among pooled oddyear samples from six regions. We compared estimates of a standard index of population structure (日) based on variance in allele frequency with a new index suggested for microsatellites (P st
based on variance in allele size. Our results suggest $\hat{\theta}$ is a better estimator of intralineage (odd year \times odd-year) population structure, whereas ${ }_{\text {St }}$ is best suited for estimating interlineage (oddyear \times even-year) population structure. The difference in performance of θ and pss $^{\text {s }}$ for estimatin intralineage and interlineage population structure suggests high migration rates and possibly recent low divergence times are dominant influences on genetic population structure in odd-year pin salmon. We showed statistical support for genetic isolation by distance and geographically cor related allele frequency clines, suggesting broad-scale gene flow is best described by a linear
stepping-stone model. An analysis of molecular variation showed weak but significant regional structuring under two different population grouping schemes. Our results sugest broad-scal population ageregations of odd-year pink salmon are temporally stable but that differentiation is weak, presumably due to migration.

Population structure of pink salmon (Oncorhynchus gorbuscha) in British Columbia and Washington, determined with microsatellites

Terry D. Beacham (contact author)

Brenda McIntosh ${ }^{1}$

Cathy MacConnachie

Brian Spilsted ${ }^{2}$

Bruce A. White ${ }^{3}$

E-mail address for contact author: Terry.Beacham@dfo-mpo.gc.c
Fisheries and Oceans Canada
Pacific Biological Station
3190 Hammond Bay Road
Nanaimo, B. C., Canada V9T 6N7
Fisheries and Oceans Canad
417-2nd Avenue West
Prince Rupert, B. C. Canada V8J 1 G8
Pacific Salmon Commission
600-1155 Robson Street
Vancouver, B. C., Canada V6E 1B5

Population Structure Analyses

Calculate genetic differences among collections

- Test for significance of these differences

Testing for Difference: Even Year Kodiak vs. Prince William Sound

$$
p<10^{-6}(\alpha=0.05)
$$

Significantly different

Testing for Differences: among Prince William Sound

Testing for Differences: among Prince William Sound

Testing for Differences: Between Early and Late Collections

Assumed Migration Pathway

Estimated Hatchery Pink Salmon Fraction within Prince William Sound Streams

Population Structure Analyses

Calculate genetic differences among collections

- Test for significance of these differences
- Visualize the relationships among collections

Visualizing the Relationships among Collections

Visualizing the Relationships among Collections - Zooming in

Visualizing the Relationships among Collections

Summary to date

$>$ Genetic variation among pink salmon populations in PWS is very small
\checkmark Odd year - small
\checkmark Even year - even smaller
$>$ Kodiak vs. Prince William Sound (PWS)
\checkmark Significantly different in both lineages

Summary to date

$>$ Genetic difference within PWS
\checkmark Significantly different in both lineages
$>$ Within lineage patterns
\checkmark Odd year:
\checkmark East vs. West
\checkmark Early vs. Late?
\checkmark Even year:
\checkmark Early vs. Late (eastern side only)

Future Work

$>$ Historical samples
$\checkmark 1991$ - 1997
\checkmark No otolith information
$>$ Investigate the mechanisms driving the structure

Acknowledgements

- Hatcheries
- PWSAC, VFDA, KRAA
- Prince William Sound Science Center
- Fisheries and Oceans Canada
- Pacific Biological Station
- Alaska Department of Fish and Game
- Alaska Hatchery Research Program Science Panel
- University of Alaska Fairbanks - Juneau Center

[^0]: Key words: allozyme; mtona; genetics; pink salmon
 J. E. Seeb, Alaska Department of Fish \& Game, Commercial Fisheries Division, Anchorage,
 AK 99518, USA

