Ocean sampling

Ocean test fishing

Annual summary of hatchery fractions

Hatchery fraction in PWS run

Estimating Run size

Derivation:
A) Run Size (H) = Catch (H) + Spawning Abundance (H)
B) Run Size (W) = Catch (W) + Spawning Abundance (W)
C) Run Size $(\mathrm{H})=$ Run Size \times Fraction comprised of hatchery salmon ($\equiv \mathrm{p}$)
D) Run Size (W) $=$ Run Size $\times(1-p)$
E) Spawning Abundance (H) = Spawning Abundance \times Fraction hatchery salmon ($\equiv \mathrm{q}$)
F) Spawning Abundance $(W)=$ Spawning Abundance $\times(1-q)$
G) Run Size $\times \mathrm{p}=$ Catch (H) + Spawning Abundance $\times \mathrm{q}$
H) Run Size $\times(1-p)=$ Catch (W) + Spawning Abundance $\times(1-q)$

Spawning Abundance $=$ Function of $C(H), C(W), p$, and q

Run Estimation

Key Metrics from Run Estimation

Harvest rate on natural-origin Pink and Chum Salmon:

Species	2013	2014	2015
Pink	52.6%	26.3%	40.2%
Chum	21.6%	21.3%	21.1%

Hatchery stray rate of Pink and Chum Salmon:

Species	2013	2014	2015
Pink	1.0%	1.7%	5.2%
Chum	1.6%	4.0%	1.1%

Manuscript accepted (with revisions)

- Knudsen, Rand, Gorman, Bernard, and Templin. Hatchery fish straying, run sizes, escapement, and harvest rates of adult pink salmon and chum salmon returning to Prince William Sound, Alaska in 2013-2015

2017 PWS Hatchery Wild Interaction Study Streams

Pedigree Streams

Live and Dead Counts

Spawner

 abundance- Greatest in Hogan and Stockdale, Erb intermediate, and Paddy and Gilmour low
- Odd year dominance
- Escapement increasing

AHRP Samples, By Year

Number of Samples

Pedigree
 Streams

- Hogan tends to attract hatchery fish.
- Hatchery fraction has been relatively low in recent years.

Prespawn Mortality in 2019

Proposed ecological studies

