Changes to the number of sampled years and fitness streams in PWS and SEAK to maximize statistical power

Kyle Shedd
Gene Conservation Laboratory
Alaska Department of Fish and Game AHRP Informational Meeting March 6, 2020

Alaska Hatchery Research Program

1) What is the genetic structure of pink and chum in PWS and SEAK?
2) What is the extent and annual variability of straying?
3) What is the impact on fitness (productivity) of natural pink and chum stocks due to straying hatchery pink and chum salmon?

AHRP Fitness Study: PWS Pink Salmon

Original Pran s es						
Stream	2013	2014	2015	2016	2017	2018
Short	P	P	P, O	P, O	O,G	O,G
Spring	P	P	P, O	P, O	O,G	0,G
Stockdale	P	P	P, O	P, O	O,G	O,G
Hogan	P	P	P, O	P, O	O,G	O,G
Paddy	P	P	P, O	P, O	O,G	O,G
Erb	P	P	P, O	P, O	O,G	O,G

P - parents
O - offspring
G - grand-offspring

Odd-lineage
Even-li̊neage

Proposed Study Design

- Erb Creek Stockdale Creek

Spring Creek
Cordova

Paddy Creek

Gilmour Creek

- Pedigree Stream

Proposed Study Design

Short Creek

Wally Noerenberg

Whittier

Paddy Creek

- Erb Creek

$$
\begin{aligned}
& 3 \text { Low Stray } \\
& (<15 \%)
\end{aligned}
$$

Armin F. Koernig

Pedigree Stream
Hatchery
City

Proposed Study Design

Spring Creek

Cordova
तamunt teme

Stockdale Creek
(~50\%)
Solomon Gulch

Short Creek.
3 Low Stray
(<15\%)
3 High Stray

Paddy Creek

Erb Creek

Hogan Bay ${ }^{\bullet}$

Armin F. Koernig

Pedigree Stream
Hatchery
City

Proposed Study Design

Short Creek

Selection
 - Run size
 - Stray rate
 - Logistics

Paddy Creek

Solomon Gulch
Cannery Creek .

Gilmour Creek
arcas

Spring Creek
Cordova
तamunz fored

Proposed Study Design

Short Creek

Paddy Creek

- Erb Creek

Sample 500-1000/yr

Gilmour Creek

- Pedigree Stream
\Leftrightarrow Hatchery
- City

Proposed Study Design

> Wally Noerenberg

Whittier

Paddy Creek

- Erb Creek

Short Creek

Solomon Gulch
Cannery Creek

Sample 500-1000/yr Escapement ~3000/yr

Stockdale Creek Gilmour Creek

Proposed Study Design

Paddy Creek

- Erb Creek

Wally Noerenberg Hogan Bay ${ }^{\bullet}$

Solomon Gulch
Cannery Creek

Assume $\mathrm{RRS}_{\mathrm{H} / \mathrm{N}} \leq 0.5$

Gilmour Creek

Armin F. Koernig

- Pedigree Stream
\Leftrightarrow Hatchery
City

Power:

How often we expect to detect an effect

Power:

How often we expect to detect an effect

Power increases with...

- In our control
- \uparrow Number families
- Stray rate > 10\%
- 个 Proportion offspring
- Out of our control
- Distribution of RS
- \uparrow Mean
- \uparrow Dispersion
- \downarrow True RRS

Depends on:

- Number parents $\left(F_{0}\right)$ sampled
- Hatchery ~f(stray)
- Natural
- Proportion offspring $\left(F_{1}\right)$ sampled
- Distribution of RS (productivity)
- Mean
- Dispersion
- RRS
- Difference between H and N
- Benchmark RRS $=0.5$

Original Plan

Stream	2013	2014	2015	2016	2017	2018
Short	P	P	P, O	P, O	O, G	O, G
Spring	P	P	P, O	P, O	O, G	O, G
Stockdale	P	P	P, O	P, O	O, G	O, G
Hogan	P	P	P, O	P, O	O, G	O, G
Paddy	P	P	P, O	P, O	O, G	O, G
Erb	P	P	P, O	P, O	O, G	O, G

P - parents
O - offspring
G - grand-offspring

Oddllinneage
Even-lioneage

Revised Plan

Stream	2013	2014	2015	2016	2017	2018	2019	2020
Short	P	Too few hatchery strays						
Spring	P	P	P, O	Too few hatchery s			rays	
Stockdale	P	P	P, O	P, O	P,O,G	O,G	O,G	
Hogan	P	P	P, O	P, O	P,O,G	O,G	O,G	
Paddy	P	P	P,O	P,O	O,G	P,O,G		O,G
Erb	P	P	P, O	P, O	O,G	P,O,G		O,G
Gilmour		P	Replace Short P,O			O,G	O,G	

P - parents
O - offspring
G - grand-offspring
Odd-Iineage
Even-lineage

Future Analyses

AHRP Fitness Study: SEAK Chum Salmon

Map of SEAK Chum fitness streams

Study plan

Statistical power of study plan

- Need minimum ~100 parents of each sex/origin
- Ideally a high proportion of parents
- Hogan Bay 2013/2015
- Low sampling rate = few parent-offspring assignments
- Sample high proportion of offspring
- Consistent proportion for all return years
- Differences in age at return?

Samples by origin, stream, and year

Questions?

