## Coho Salmon Stock Status and Escapement Goals in Southeast Alaska

by
Leon Shaul
Kent Crabtree
Edgar Jones
Steve McCurdy
and

## Brian Elliott



## Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

| Weights and measures (metric) General |  |  |  | Mathematics, statistics all standard mathematical signs, symbols and abbreviations |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| centimeter | cm | Alaska Administrative |  |  |  |
| deciliter | dL | Code | AAC |  |  |
| gram | g | all commonly accepted |  |  |  |
| hectare | ha | abbreviations | e.g., Mr., Mrs., | alternate hypothesis | $\mathrm{H}_{\mathrm{A}}$ |
| kilogram | kg |  | AM, PM, etc. | base of natural logarithm | $e$ |
| kilometer | km | all commonly accepted |  | catch per unit effort | CPUE |
| liter | L | professional titles | e.g., Dr., Ph.D., | coefficient of variation | CV |
| meter | m |  | R.N., etc. | common test statistics | (F, t, $\chi^{2}$, etc.) |
| milliliter | mL | at | @ | confidence interval | CI |
| millimeter | mm | compass directions: east | E | correlation coefficient (multiple) | R |
| Weights and measures (English) |  | north | N | correlation coefficient |  |
| cubic feet per second | $\mathrm{ft}^{3} / \mathrm{s}$ | south | S | (simple) | r |
| foot | ft | west | W | covariance | cov |
| gallon | gal | copyright | © | degree (angular ) | - |
| inch | in | corporate suffixes: |  | degrees of freedom | df |
| mile | mi | Company | Co. | expected value | E |
| nautical mile | nmi | Corporation | Corp. | greater than | > |
| ounce | OZ | Incorporated | Inc. | greater than or equal to | $\geq$ |
| pound | lb | Limited | Ltd. | harvest per unit effort | HPUE |
| quart | qt | District of Columbia et alii (and others) et cetera (and so forth) | D.C. et al. etc. | less than | < |
| yard | yd |  |  | less than or equal to | $\leq$ |
|  |  |  |  | logarithm (natural) | $\ln$ |
| Time and temperature |  |  |  | logarithm (base 10) | $\log$ |
| day | d | (for example) | e.g. | logarithm (specify base) | $\log _{2}$, etc. |
| degrees Celsius | ${ }^{\circ} \mathrm{C}$ | Federal Information |  | minute (angular) |  |
| degrees Fahrenheit | ${ }^{\circ} \mathrm{F}$ | Code | FIC | not significant | NS |
| degrees kelvin | K | id est (that is) | i.e. | null hypothesis | $\mathrm{H}_{0}$ |
| hour | h | latitude or longitude | lat. or long. | percent | \% |
| minute | min | monetary symbols |  | probability | P |
| second | S | (U.S.) months (tables and | \$, ¢ | probability of a type I error (rejection of the null |  |
| Physics and chemistryall atomic symbols |  | figures): first three |  | hypothesis when true) | $\alpha$ |
|  |  | letters | Jan,...,Dec | probability of a type II error |  |
| alternating current | AC | registered trademark | ${ }^{\circledR}$ | (acceptance of the null |  |
| ampere | A | trademark | тм | hypothesis when false) | $\beta$ |
| calorie | cal | United States |  | second (angular) | " |
| direct current | DC | (adjective) | U.S. | standard deviation | SD |
| hertz | Hz | United States of |  | standard error | SE |
| horsepower | hp | America (noun) | USA | variance |  |
| hydrogen ion activity (negative log of) | pH | U.S.C. | United States Code | population sample | Var var |
| parts per million | ppm | U.S. state | use two-letter |  |  |
| parts per thousand | ppt, |  | abbreviations <br> (e.g. AK, WA) |  |  |
|  | \%o |  |  |  |  |
| volts | V |  |  |  |  |
| watts | W |  |  |  |  |

## SPECIAL PUBLICATION NO. 11-23

# COHO SALMON STOCK STATUS AND ESCAPEMENT GOALS IN SOUTHEAST ALASKA 

by<br>Leon Shaul and Kent Crabtree<br>Alaska Department of Fish and Game, Division of Commercial Fisheries, Douglas<br>Edgar Jones<br>Alaska Department of Fish and Game, Division of Sport Fish, Douglas<br>Steve McCurdy<br>Alaska Department of Fish and Game, Division of Sport Fish, Craig<br>and<br>Brian Elliott<br>Alaska Department of Fish and Game, Division of Sport Fish, Haines

Alaska Department of Fish and Game
Division of Sport Fish, Research and Technical Services 333 Raspberry Road, Anchorage, Alaska, 99518-1565

December 2011

[^0]The Special Publication series was established by the Division of Sport Fish in 1991 for the publication of techniques and procedures manuals, informational pamphlets, special subject reports to decision-making bodies, symposia and workshop proceedings, application software documentation, in-house lectures, and became a joint divisional series in 2004 with the Division of Commercial Fisheries. Special Publications are intended for fishery and other technical professionals. Special Publications are available through the Alaska State Library, Alaska Resources Library and Information Services (ARLIS) and on the Internet: http://www.adfg.alaska.gov/sf/publications/. This publication has undergone editorial and peer review.

Leon Shaul and Kent Crabtree, Alaska Department of Fish and Game, Division of Commercial Fisheries $8023^{\text {rd }}$ St., Douglas, AK 99824, USA<br>Edgar Jones<br>Alaska Department of Fish and Game, Division of Sport Fish<br>$8023^{\text {rd }}$ St., Douglas, AK 99824, P.O. Box 110024, Juneau, AK 99811, USA<br>Steve McCurdy<br>Alaska Department of Fish and Game, Division of Sport Fish<br>Westwind Plaza 333 Cold Storage Rd, Suite 302, Craig, AK 99921, USA<br>and<br>Brian Elliott<br>Alaska Department of Fish and Game, Division of Sport Fish Mile 1 Haines Highway, Haines, AK 99827-0330, USA

This document should be cited as:
Shaul, L., K. Crabtree, E. Jones, S. McCurdy, and B. Elliott. 2011. Coho salmon stock status and escapement goals in Southeast Alaska. Alaska Department of Fish and Game, Special Publication No. 11-23, Anchorage.

The Alaska Department of Fish and Game (ADF\&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write:
ADF\&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526
U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203

Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240
The department's ADA Coordinator can be reached via phone at the following numbers:
(VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078
For information on alternative formats and questions on this publication, please contact:
ADF\&G Division of Sport Fish, Research and Technical Services, 333 Raspberry Road, Anchorage AK 99518 (907) 267-2375

## TABLE OF CONTENTS

Page
LIST OF TABLES ..... i
LIST OF FIGURES ..... iii
LIST OF APPENDICES ..... iv
ABSTRACT ..... 1
INTRODUCTION ..... 1
STOCK STATUS ..... 5
Full Indicator Stocks .....  7
Escapement Indicators ..... 8
Northern Inside Stocks .....  8
Sitka Area Stocks ..... 13
Southern Southeast Stocks ..... 13
Yakutat Stocks ..... 18
Smolt Production ..... 18
Marine Survival ..... 24
Hatchery Survival Rates ..... 24
Total Stock Abundance ..... 28
Regional Wild Abundance ..... 34
Exploitation Rates ..... 42
Length and Weight Trends ..... 55
Troll Fishery Average Weight ..... 55
Adult Coho Salmon Length ..... 58
Relationships with Coho Salmon Abundance ..... 62
Relationships with Pink Salmon Abundance ..... 62
Escapement Goal Development ..... 67
Accounting for Nomads ..... 69
Slanted Hockey Stick Model ..... 71
DISCUSSION ..... 74
REFERENCES CITED ..... 80
APPENDIX A ..... 85
LIST OF TABLES
Table Page

1. Estimated coho salmon escapements for systems with formal escapement goals in Southeast Alaska, 2005-2010 ..... 6
2. Southeast Alaska coho salmon escapement estimates and index counts, 1980-2010. ..... 9
3. Peak coho salmon escapement survey counts for Juneau roadside streams and the Berners and Chilkat rivers, mark-recapture estimates for the Taku and Chilkat rivers, and the total count of wild adult coho salmon at the Auke Creek weir, 1980-2010 ..... 11
4. Peak counts of coho salmon in the Sitka escapement survey index (sum of 5 streams), a helicopter survey count of the Black River escapement, and a combination of weir counts and mark-recapture estimates of the Ford Arm Creek escapement, 1982-2010 ..... 15
5. Peak coho salmon survey counts for 14 streams in the Ketchikan area and total adult coho salmon escapement to Hugh Smith Lake, 1987-2010 ..... 17

## LIST OF TABLES (Continued)

Table Page
6. Yakutat area coho salmon peak escapement survey counts and available total escapement estimates, 1972-2010. ..... 21
7. Total coho smolt and presmolt production estimates for 7 wild coho salmon-producing systems in Southeast Alaska by age-. 1 return year, 1980-2011. ..... 22
8. Estimated survival rate (percent) of coho salmon smolts and presmolts from 7 wild Southeast Alaska indicator stocks from the time of tagging until return to the fisheries, 1980-2010 ..... 26
9. Estimated harvest by gear type, escapement, and total run of coho salmon returning to Auke Creek, 1980-2010. ..... 36
10. Estimated harvest by gear type, escapement and total run of coho salmon returning to the Berners River, 1982-2010 ..... 37
11. Estimated harvest by gear type, escapement, and total run of coho salmon returning to Ford Arm Creek, 1982-2010. ..... 38
12. Estimated harvest by gear type, escapement, and total run of coho salmon returning to Hugh Smith Lake, 1982-2010. ..... 39
13. Estimated catch and escapement of coho salmon bound for the Taku River above Canyon Island, 1987-2010. ..... 40
14. Estimated harvest by gear type, escapement, and total run of coho salmon returning to the Chilkat River, 1987-2010. ..... 41
15. Estimated harvest by gear type, escapement, and total run of adult coho salmon returning to Chuck Creek, 1982, 1983, 1985, and 2003-2010, with escapement counts only for 2001 and 2002. ..... 42
16. Estimates of wild and hatchery commercial catch and troll catch, troll exploitation rate index, mean- average power troll wild coho CPUE, total troll effort, and total wild coho salmon abundance available in the Alaska troll fishery, in millions of fish, 1982-2010. ..... 43
17. Estimated harvest (by gear type) and escapement as a percent of the total Auke Creek coho salmon run, 1980-2010. ..... 49
18. Estimated harvest (by gear type) and escapement as a percent of the total Berners River coho salmon run, 1982-2010. ..... 50
19. Estimated harvest (by gear type) and escapement as a percent of the total Ford Arm Creek coho salmon run, 1982-2010. ..... 51
20. Estimated harvest (by gear type) and escapement as a percent of the total Hugh Smith Lake coho salmon run, 1982-2010. ..... 52
21. Estimated harvest (by gear type) and escapement as a percent of the total Taku River coho salmon run above Canyon Island, 1992-2010. ..... 53
22. Estimated harvest (by gear type) and escapement as a percent of the total Chilkat River coho salmon run, 2000-2010. ..... 54
23. Estimated Estimated harvest (by gear type) and escapement as a percent of the total Chuck Creek coho salmon run, 1982, 1983, 1985, and 2003-2010. ..... 54
24. A comparison of average mid-eye to fork length (mm) and associated average coefficient of variation of length for 4 wild coho salmon indicator stocks in Southeast Alaska during the periods 1982-1988 (excluding 1984) and 2005-2010, and the early and late-season mean-average weekly troll coho dressed weight for the same periods. ..... 61
25. Linear relationships between the commercial catch of pink salmon in Southeast Alaska in all years, even years only, and odd years only and the MEF length of age-. 1 adult male and female coho salmon sampled from escapements at 4 Southeast Alaska systems. ..... 65
26. A comparison of average MEF length of adult coho salmon from selected Southeast Alaska systems in even and odd years. ..... 66
27. Inter-system movement of tagged presmolt coho salmon in Lynn Canal and Stephens Passage, Southeast Alaska, showing minimum saltwater distances. ..... 69

## LIST OF FIGURES

Figure Page

1. Commercial harvest of wild and hatchery coho salmon in Southeast Alaska, 1890-2010, with a 0.05 LOESS trend. ..... 2
2. Map of Southeast Alaska and northern British Columbia, showing the locations of recent coho salmon full indicator stock assessment projects. ..... 3
3. Sport harvest in salt water and fresh water of coho salmon in Southeast Alaska, 1977-2010 .....  5
4. Coho salmon escapement estimates and indices for streams in the Northern Inside area (districts 111 and 115), 1980-2010 ..... 10
5. Coho salmon escapement estimates and indices for streams in the Sitka area (District 113), 1982-2010. Also shown are 312 -year moving average "cycle" trends and escapement goal bounds ..... 14
6. Sum of peak coho salmon escapement survey counts for 14 streams in the Ketchikan area and coho salmon escapement counts and estimates for Hugh Smith Lake 1982-2010. ..... 16
7. Peak coho salmon escapement survey counts for 3 systems in the Yakutat area and the combined count for all 3 systems, 1972-2010 ..... 20
8. Berners River coho salmon smolt estimates and total July-November precipitation at the Juneau Airport in the prior year, 1989-2010 ..... 23
9. Estimated marine survival rate for wild coho salmon smolts from 4 systems in inside areas of Southeast Alaska and smolts from one system and presmolts from one system on the outer coast of Southeast Alaska, 1980-2010. ..... 25
10. Percent of variation in total adult run size attributed to freshwater influences and marine survival, 1980-2010 ..... 27
11. Releases of coho salmon from Southeast Alaska hatcheries, the percent of the troll catch comprised of fish of hatchery origin, and the number of hatchery fish contributed to the Alaska troll coho salmon catch, 1981-2010 ..... 29
12. Average marine survival estimates for long-term, consistent wild and hatchery release locations in northern and southern Southeast, 1983-2010 ..... 30
13. Ratio of the average hatchery to average wild marine survival rate for long-term wild indicator stocks and hatchery release locations within northern and southern Southeast Alaska with a 0.5 LOESS trend, 1983-2010. ..... 31
14. Ratio of the average marine survival rate in northern Southeast to the average for southern Southeast for long-term wild and hatchery indicator stocks in the 2 regions, with a 0.5 LOESS trend, 1983-2010 ..... 31
15. Total run size, catch, escapement, and biological escapement goal range for 4 wild Southeast Alaska coho salmon indicator stocks, 1982-2010 ..... 32
16. Total estimated run size, catch, and escapement of coho salmon bound for the Taku River (above Canyon Island) and the Chilkat and Berners rivers, 1987-2010. ..... 33
17. Total run size, catch, and escapement of adult coho salmon returning to Chuck Creek, 1982-2010 ..... 34
18. Estimates of Southeast Alaska wild coho salmon commercial catch, total wild abundance available to the Alaska troll fishery and mean-average power troll wild CPUE in statistical weeks 28-38, 1982- 2010. ..... 44
19. Linear relationship between estimated region total wild coho salmon abundance and mean-average power troll wild CPUE in statistical weeks 28-38, 1982-1995 and 1996-2010 ..... 45
20. Estimated exploitation rates by the Alaska troll fishery for 4 coded-wire-tagged Southeast Alaska coho salmon stocks, 1982-2010. ..... 46
21. Estimated total exploitation rates by all fisheries for 4 coded-wire-tagged Southeast Alaska coho salmon stocks, 1982-2010. ..... 47
22. Mean-average dressed weight of troll caught coho salmon landed during early July (weeks 27-28), early to mid-August (weeks 32-33) and mid-September (weeks 37-38), with 0.33 LOESS trends shown by dark solid lines ..... 56
23. Mean-Average weekly dressed weight of troll-caught coho salmon by statistical week of landing, 1970-1996 and 1997-2010 ..... 57
24. Mean percent increase in average weekly dressed weight of troll-caught coho salmon by statistical week of landing, 1970-1996 and 1997-2010 ..... 57
25. Ratio of the average weekly increase in mean dressed weight of Southeast Alaska troll-caught coho salmon in statistical weeks 34-38 compared with statistical weeks 28-33. ..... 58

## LIST OF FIGURES (Continued)

Figure Page
26. Annual average mid-eye to fork length and 0.33 LOESS trend for age-. 1 male and female coho salmon sampled in Auke Creek, Berners River, Ford Arm Creek, and Hugh Smith Lake, 1982-2010. ..... 59
27. Coefficient of variation in the mid-eye to fork length and 0.33 LOESS trend for age- .1 male and female coho salmon sampled in Auke Creek, Berners River, Ford Arm Creek, and Hugh Smith Lake, 1982-2010. ..... 60
28. Linear relationships between the Southeast Alaska pink salmon catch and the dressed weight of troll- caught coho salmon early in the season and late in the season. ..... 63
29. Linear relationship between the commercial catch of pink salmon in Southeast Alaska and the mean- average dressed weight of troll-caught coho landed from late August through mid-September ..... 64
30. Linear relationship between the commercial catch of pink salmon in Southeast Alaska and the mean- average dressed weight of troll-caught coho landed from early July through early August ..... 64
31. Linear relationships between the commercial catch of pink salmon by fisheries in Southeast Alaska and the average weight ( kg ) of the pink salmon catch, 1982-1996 and 1997-2010 ..... 66
32. Beverton-Holt spawner-recruit relationships for Hugh Smith Lake coho salmon (1982-2004 brood years) and Ford Arm Lake coho salmon (1982, 1983, and 1985-2005 brood years) showing a 0.75 LOESS trend (heavy dashed line) and the escapement range estimated to produce $90 \%$ or more of maximum sustained yield ..... 68
33. Changes in the Sr:Ca ratio measured across an otolith from a coho salmon tagged in the Chilkat River between April 7 and June 2, 1999 and recaptured from the Berners River at a length of 126 mm on May 17, 2000 ..... 71
34. Conceptual slanted hockey stick (SHS) model based on average spawner-recruit parameters for the Ford Arm Creek stock and the Hugh Smith Lake stock, compared with the logistic hockey stick (LHS) model. Axis scales are shown as a percent of carrying capacity (K) indicated by the LHS model. ..... 73
35. Slanted hockey stock (SHS) spawner-recruit relationships for Hugh Smith Lake coho salmon (1982- 2004 brood years) and Ford Arm Lake coho salmon (1982, 1983, and 1985-2005 brood years) showing a 0.75 LOESS trend and the escapement range estimated to produce $90 \%$ or more of maximum sustained yield ..... 73
LIST OF APPENDICES
Appendix Page
A 1. Mean-average dressed weight (kg) of coho salmon during 3 periods of the Southeast Alaska summer troll season and the all-gear commercial catch of coho and pink salmon and round weight of commercially-caught pink salmon (kg), 1970-2010. ..... 86
A 2. Average and coefficient of variation of mid-eye to fork length ofmale and female adult age-. 1 coho salmon returning to Auke Creek and the Berners River, 1980-2010. ..... 87
A 3. Average and coefficient of variation of mid-eye to fork length ofmale and female adult age-. 1 coho salmon returning to Ford Arm Creek and Hugh Smith Lake, 1982-2010. ..... 88


#### Abstract

The status of coho salmon stocks in Southeast Alaska was assessed from information on escapement, smolt abundance, marine survival, and total abundance from coded-wire-tagged indicator stocks and from stocks returning to streams that were surveyed for escapement. Escapements to monitored streams remained within or above biological escapement goal ranges during 2008-2010. We identified no coho salmon stocks of concern in Southeast Alaska. Average returns during the period increased from the prior 3-year period, due in part to a rebound in average marine survival, which increased from $9.5 \%$ in $2005-2007$ to $12.8 \%$ in 2008-2010. During 2007-2010, there was a shift in marine survival of inside stocks in favor of those in southern Southeast compared with northern Southeast. Exploitation rates remained moderate during 2008-2010, with averages by stock of $59 \%$ for Chuck Creek, $62 \%$ for Ford Arm Creek, 50\% for Hugh Smith Lake, 57\% for Berners River, 45\% for Chilkat River, 49\% for Taku River, and $41 \%$ for Auke Creek (mean-average $=52 \%$ ). The hatchery contribution has remained nearly unchanged over the past 2 decades at about $20 \%$ of the common property commercial catch, despite a tripling of coho salmon releases from hatcheries in the region. Size data indicate increased spatial variability in marine growth, a probable decline in growth rates in outer coastal waters, and a potential shift in the food web toward prey species favored by pink salmon. Although escapements to 2 indicator systems averaged $142-150 \%$ of $E_{M S Y}$, realized harvests were estimated at over $90 \%$ of MSY. Recently updated spawner-recruit relationships show significant ( $\mathrm{p}<0.05$ ) positive linear relationships between escapement and production. We introduce a new spawner-recruit model consistent with our understanding of Southeast Alaska coho salmon life history that accounts for the contribution by marine-rearing nomads.


Key words: coho salmon, Oncorhynchus kisutch, escapement, escapement goals, smolts, nomads, marine survival, exploitation rates, weight, length, Auke Creek, Berners River, Taku River, Ford Arm Creek, Hugh Smith Lake, Chilkat River, Chuck Creek, Tsiu River, Situk River, Lost River.

## INTRODUCTION

Coho salmon (Oncorhynchus kisutch) are important to a variety of commercial, sport, and subsistence users in Southeast Alaska. Trollers have accounted for over $60 \%$ of the commercial catch, on average, but coho salmon are also important to seine, drift gillnet, and set gillnet fisheries. Recreational fisheries occur in both fresh and saltwater areas and have constituted an increasing component of the harvest in recent years. Directed subsistence fisheries have been very limited, but regulations allowing directed subsistence fishing for coho salmon have been recently expanded under federal rules in many freshwater areas. This report updates an earlier assessment (Shaul et al. 2008) of the stocks that support these fisheries through the 2010 return.

Full development of a troll fishery targeting coho salmon occurred around 1940, and the commercial catch (Figure 1) provides an indication of the trend in coho salmon abundance after that time. Stocks recovered in the early 1980s from a prolonged period of low abundance extending for over $21 / 2$ decades. Whereas low marine survival was likely a major factor driving poor catches from 1956 to 1981, improved marine survival has been an important factor influencing larger wild stock catches since 1982. The commercial catch reached a peak during 1990-1996 at an average of 2.86 million wild fish ( 3.46 million total fish), before following a lower but relatively level trend during 1997-2005 around an average of about 2.0 million wild fish and 2.5 million total fish. During 2006 and 2007, however, the catch declined to 1.52-1.58 million wild fish (1.84-1.91 million total fish). A recent rebound to $1.82-1.99$ million wild fish and 2.29-2.38 million total fish in 2009-2010 suggests that the post-1981 pattern of high average survival and abundance remains intact.

Excellent coho salmon habitat occurs throughout Southeast Alaska (Figure 2). In addition to wild stocks within Southeast Alaska, important contributions to the region's total harvest are made by
local hatchery stocks, several transboundary rivers, and by natural systems and hatcheries on the northern British Columbia coast. Coho salmon are produced by thousands of streams and by 13 hatcheries in Southeast Alaska. Many of the streams are small producers about which little is known.

During 2001 to 2010, hatcheries contributed an average of $19 \%$ (range 14-24\%) of the Southeast Alaska commercial catch. The proportionate contribution by hatcheries remained relatively unchanged from the prior decade (1991-2000) when the hatchery contribution also averaged $19 \%$ (range 13-22\%), despite an increase of $73 \%$ in the average total non-fry coho salmon release from Southeast Alaska hatcheries from 9.1 million fish annually during 1990-1999 to 15.8 million fish in 2000-2009. During recent years, about $99 \%$ of the hatchery contribution to the Southeast Alaska catch was produced by Alaskan facilities.


Figure 1.-Commercial harvest of wild and hatchery coho salmon in Southeast Alaska, 1890-2010, with a 0.05 LOESS trend.
The Alaska Department of Fish and Game implemented an improved stock assessment program in the early 1980s to better understand and manage coho salmon stocks. New assessment projects were implemented to monitor population and fishery parameters for indicator stocks (Shaul 1994; Shaul and Crabtree 1998). In addition, a systematic escapement survey program was developed. These programs have bettered the understanding among fishery researchers and managers of the status of Southeast Alaska coho salmon stocks and have formed the basis for improved management.


Figure 2.-Map of Southeast Alaska and northern British Columbia, showing the locations of recent coho salmon full indicator stock assessment projects.

The principal management objective for Southeast Alaska fisheries for coho salmon is to achieve maximum sustained yield (MSY) from wild stocks. Hatchery contributions and natural production are identified inseason in key fisheries using coded wire tags. Fisheries directed primarily at coho salmon are managed based on wild stock fishery performance to achieve adequate escapement while harvesting the surplus. Escapement goal ranges have been established for a number of wild indicator stocks and surveyed systems.

A secondary management objective is to achieve long-term commercial gear-type allocations that were established by the Alaska Board of Fisheries (board) in 1989. These allocations preserve a 1969 to 1988 historical base distribution of $61 \%$ for troll gear, $19 \%$ for purse seine gear, $13 \%$ for drift gillnet gear, and $7 \%$ for set gillnet gear.

The broad distribution of coho salmon production across thousands of small stream systems necessitates that much of the harvest occur in highly mixed-stock fisheries where the stocks intermingle. Except for years of strong deviations from average abundance, commercial trollers fish a relatively stable season and harvest a relatively stable proportion of the total runs. This pattern of fishing results in a more even distribution of the troll harvest across all stocks in the region, thereby realizing some harvest from all stocks, while ensuring that more heavily exploited inside stocks are able to support some harvest in inside fisheries while still maintaining escapement. Most active management to harvest surpluses and achieve escapements is conducted in gillnet fisheries, based on returns to single major systems or local concentrations of productive systems. Nearly all of the harvest of many small to medium stocks on the outer coast and along inside passages occurs in the commercial troll and marine sport fisheries, with a small incidental harvest by purse seine fisheries targeting pink salmon.

The commercial fisheries are managed under specific management plans for each fishery. The troll management plan for coho salmon contains several decision points that potentially trigger early or midseason closures for conservation and allocation, and/or an extension of the troll coho season for up to 10 days after the regulatory closing date of September 20. Most provisions of the plan were written in the late 1970s and 1980s when direct information on coho stocks was very limited, aside from fishery catch and effort. In recent years, fishery managers have tried to balance the specific provisions of the management plan with increasing capability to assess stocks and their escapement needs. Inseason management has increasingly focused on escapement goals that produce MSY as a specific priority objective.

In addition to provisions specified in the management plans, the Pacific Salmon Treaty (PST) contains provisions for the conservation of northern British Columbia coho stocks. The PST provisions are essentially the same as board management plan provisions for potential early and midseason troll fishery closures. However, the PST also contains provisions that trigger a closure of the troll fishery in boundary areas of southern Southeast Alaska and in northern British Columbia when abundance of northern British Columbia stocks is indicated to be low based on fishery performance thresholds.
Marine sport fisheries, which accounted for an average of $90 \%$ of the total recreational harvest during 1996-2010, are managed primarily under a 6 -fish bag limit. The same bag limit applies in most freshwater systems, except for some more accessible streams where the bag limit is 2 fish. The sport fishery has accounted for a small, but generally increasing, component of the harvest, reaching a peak estimated harvest of 409,300 fish in 2005 (Figure 3).

Concurrent with expansion of the charter industry, sport harvest accounted for an increasing share of the all-fishery harvest from the mid-1970s until the early 2000s, peaking during 20002009 at a range of $10-13 \%$ (average $11 \%$ ) before declining to $8 \%$ in 2010. Although emergency inseason management actions have been less frequent in the recreational fisheries, seasons have been closed or bag limits reduced in both marine and freshwater fisheries in response to inseason indicators of low abundance. Bag limits were increased in some locations to harvest the very large 1994 return.
Directed subsistence fishing for coho salmon occurs in a few streams in the region, while small catches of the species are also taken incidentally to sockeye salmon in both subsistence and personal use fisheries. The 2001-2010 combined subsistence and personal use harvest, as reported on returned permits, averaged only 2,432 fish.


Figure 3.-Sport harvest in salt water and fresh water of coho salmon in Southeast Alaska, 1977-2010.

## STOCK STATUS

Status of coho salmon stocks in the Southeast Region was judged by trends in abundance and escapement of indicator stocks relative to established goals. Overall, 14 systems or groups of systems have goals, including 10 with biological escapement goals (BEG), 3 with sustainable escapement goals (SEG), and one (Taku River) with a management threshold (Table 1).

Table 1.-Estimated coho salmon escapements for systems with formal escapement goals in Southeast Alaska, 2005-2010.

| System | Escapement Data | Type | Escapement Goal | Year Established | Escapement |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 |
| Hugh Smith Lake | Weir | BEG | 500-1,600 | 2008 | 1,732 | 891 | 1,244 | 1,741 | 2,282 | 2,878 |
| Taku River ${ }^{\text {a }}$ | MR | Mgt. Threshold | >35,000 | 1995 | 135,558 | 121,778 | 74,326 | 95,360 | 104,321 | 126,830 |
| Auke Creek | Weir | BEG | 200-500 | 1994 | 450 | 581 | 352 | 600 | 360 | 417 |
| Montana Creek | FS, IE | SEG | 400-1,200 | 2005 | 351 | 1,110 | 324 | 405 | 698 | 630 |
| Peterson Creek | FS, IE | SEG | 100-250 | 2005 | 139 | 439 | 226 | 660 | 123 | 467 |
| Ketchikan Survey Index | HS | BEG | 4,250-8,500 | 2005 | 14,840 | 6,912 | 4,488 | 16,680 | 8,226 | 4,656 |
| Sitka Survey Index | FS, IE | BEG | 400-800 | 2005 | 1,668 | 2,647 | 1,066 | 1,117 | 1,156 | 1,273 |
| Ford Arm Lake | Weir | BEG | 1,300-2,900 | 1994 | 4,257 | 4,737 | 2,567 | 5,173 | 2,181 | 1,610 |
| Berners River | MR | BEG | 4,000-9,200 | 1994 | 5,220 | 5,470 | 3,915 | 6,870 | 4,230 | 7,520 |
| Chilkat River Escapement | MR | BEG | 30,000-70,000 | 2005 | 34,575 | 79,050 | 24,770 | 56,369 | 47,911 | 84,909 |
| Chilkat Survey Index | AS/FS-IE | BEG | 950-2,200 | 2005 | 977 | 2,399 | 758 | 1,706 | 1,453 | 2,650 |
| Lost River | FS,IE | SEG | 2,200 | 1994 | 1,241 | 3,500 | 2,542 | NA | 3,581 | 2,393 |
| Situk River | BS,IE | BEG | 3,300-9,800 | 1994 | 2,514 | 7,950 | 5,763 | NA | 5,814 | 11,195 |
| Tsiu/Tsivat Rivers | AS,IE | BEG | 10,000-29,000 | 1994 | 16,600 | 14,500 | 14,000 | 25,200 | 28,000 | 11,000 |

[^1]Escapement goal classifications are defined in the Policy for the Management of Sustainable Salmon Fisheries (5 AAC 39.222) under Section (f):
"(3) "biological escapement goal" or "(BEG)" means the escapement that provides the greatest potential for maximum sustained yield;" and
"(36) "sustainable escapement goal" or "(SEG)" means a level of escapement, indicated by an index or an escapement estimate, that is known to provide for sustained yield over a 5 to 10 year period, used in situations where a $B E G$ cannot be estimated or managed for."

Coho salmon stocks are very widely distributed and are believed to be present in over 2,500 primary anadromous streams; however, it is practical and feasible to conduct stock assessment projects on only a small fraction of those streams. Most direct assessment of the stocks occurs at 2 levels: full indicator stock and escapement indicator.

## FULL INDICATOR STOCKS

Full indicator stocks are marked as smolts or presmolts with coded wire tags, which makes it possible to estimate their smolt production (from the marked rate-at-return) and contribution to the fisheries by systematically sampling fishery harvests and escapements. These programs have been expanded in recent years and are now well established in 7 systems in the region (Figure 2). The data series extends from the early 1980s for 4 systems (Auke Creek, Berners River, Ford Arm Creek, and Hugh Smith Lake). Programs were expanded in the 1990s to include the Taku River, Chilkat River, Slippery Creek, Unuk River, and Nakwasina River. The latter 3 projects were discontinued in 2003, 2005, and 2008, respectively. Chuck Creek, which was added as an indicator stock in 2001, has total run estimates for 3 earlier years (1982, 1983, and 1985).
Full indicator stock programs provide detailed population information needed to establish and manage for BEGs. Specific parameters that are estimated for these stocks include: total adult abundance, spawning escapement (including age, size, and sex), smolt production (abundance, age, and size), marine survival, fishery contributions by area, gear type and time, and exploitation rates. Over time, these parameters are used to evaluate the relationship between spawning escapement and production and to establish BEGs that produce MSY. One major advantage of the smolt estimation programs associated with coho indicator stocks is that they make it possible to filter out variation in return abundance caused by variation in marine survival and to improve resolution of the relationship between escapement and brood-year production.
In 1994, BEGs were established for the 4 long-term indicator stocks based on Ricker stockrecruit relationships (Clark et al. 1994). The goal established for the Hugh Smith Lake stock of $500-1,100$ spawners was later revised to $500-1,600$ spawners (Shaul et al. 2009). A recent review of the Ford Arm stock based on many more years of data, more appropriate spawnerrecruit models, and more informed scale aging concluded that the original goal of 1,300-2,900 spawners remains appropriate (Shaul et al. in prep). The original goals for Auke Creek and the Berners River have not been revised. Analysis of an appropriate goal for the Berners River has been confounded by a recent steep decline in smolt production for reasons that, while poorly understood, do not appear related to a change in parent escapement (Shaul et al. 2008). A BEG of 30,000-70,000 spawners was developed for the Chilkat River based on Ricker analysis (Ericksen and Fleischman 2006). Also, for the Taku River, a minimum inriver abundance goal of 38,000 spawners is specified in the 1999 PST. In practical terms, this management threshold upriver of
the U.S./Canada border translates into an escapement goal of about 35,000 fish after inriver harvests by commercial, food, and test fisheries, without directed inriver fishing.

## ESCAPEMENT INDICATORS

Foot or helicopter surveys have been systematically carried out on sets of streams in the Juneau, Haines, Sitka, Ketchikan, and Yakutat areas. These projects provide greater coverage at a much lower level of resolution compared with full indicator stocks. Freshets resulting from high and variable rainfall in the fall months make it difficult to obtain consistent surveys. In the Juneau area, repetitive foot surveys are conducted on Montana and Peterson creeks, which have individual goals (Clark 2005). In the Haines area, surveys are conducted on 4 tributaries of the Chilkat River. These counts are expanded to total system escapement using an average expansion factor based on 5 years of paired counts and mark-recapture estimates. Ericksen and Fleischman (2006) developed goals for both peak and expanded survey counts. In the Sitka area, 5 local streams have been surveyed on foot most years since 1985, and the Black River north of Sitka has been surveyed by helicopter since 1984. In the Ketchikan area, surveys have been conducted by helicopter on 14 streams since 1987. BEGs for the aggregate survey counts in the Ketchikan and Sitka areas were developed by Shaul and Tydingco (2006). Goals for the Situk, Lost, and Tsiu rivers near Yakutat were developed by Clark and Clark (1994).

Only peak survey counts that met standards for timing, survey conditions, and completeness were included in the indices. Interpolations were made for missing counts under the assumption that the expected value is determined for a given stream and year in a multiplicative way (i.e., counts across streams for a given year are multiples of counts for other years, and counts across years for a stream are multiples of counts for other streams). The estimated expected count for a given stream in a given year is then equal to the sum of all counts for the year, times the sum of all counts for the stream, divided by the sum of counts over all streams and years. If there is more than one missing value, an iterative procedure, as described by Brown (1974), must be used since the sums change as missing counts are filled in at each step. Most of the consistent indicators of coho salmon escapement were established in the early to mid-1980s (Table 2).

## Northern Inside Stocks

Escapement to Auke Creek, a stream with a weir on the Juneau road system, has been consistently within or above its $B E G$ since the early 1980s (Figure 4, Table 3). In the Juneau roadside area, Clark (2005) recommended the current SEGs of 400-1,200 spawners for Montana Creek and 100-250 spawners for Peterson Creek. The goal for Peterson Creek has been met or exceeded annually since surveys were initiated in 1981. The lower goal bound for Montana Creek was not met in 7 years out of 30, but has been consistently met in the 3 most recent years (2008-2010). All 3 Juneau roadside stocks are harvested primarily in highly mixed-stock troll, seine, and sport fisheries, with light exploitation in inside gillnet fisheries.
The Berners River in lower Lynn Canal, the Chilkat River in upper Lynn Canal, and the Taku River south of Juneau all had relatively strong escapements at or above goal during 1998-2006, with a peak in 2002 (Figure 4; Table 3). Escapements in both the Berners and Chilkat rivers were below goal in 2007, but have been within or above goal in 2008-2010. All 3 of these systems have similar mainland valley rearing habitat, including wetlands, ponds, and sloughs, and their coho salmon runs are targeted by drift gillnet fisheries in addition to the troll fishery.

Table 2.-Southeast Alaska coho salmon escapement estimates and index counts, 1980-2010.

| Year | Auke Creek | Montana Creek | Peterson Creek | Berners River | Chilkat River | Taku River | Ford Arm Creek | Black <br> River | Sitka <br> Survey Index ${ }^{\text {a }}$ | Hugh <br> Smith <br> Lake | Ketchikan |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  | Survey Index ${ }^{\text {b }}$ | Chuck Creek |
| 1980 | 698 | - | - | - | - | - | - | - | - | - | - | - |
| 1981 | 646 | 227 | 219 | - | - | - | - | - | - | - | - | - |
| 1982 | 447 | 545 | 320 | 7,505 | - | - | 2,655 | - | 1,545 | 2,144 | - | 1,017 |
| 1983 | 694 | 636 | 219 | 9,840 | - | - | 1,931 | - | 457 | 1,487 | - | 1,238 |
| 1984 | 651 | 581 | 189 | 2,825 | - | - | - | 425 | 2,063 | 1,407 | - | - |
| 1985 | 942 | 810 | 276 | 6,169 | - | - | 2,324 | 1,628 | 1,246 | 903 | - | 956 |
| 1986 | 454 | 60 | 363 | 1,752 | - | - | 1,552 | 312 | 702 | 1,782 | - | - |
| 1987 | 668 | 314 | 204 | 3,260 | 37,432 | 55,457 | 1,694 | 262 | 293 | 1,117 | 4,933 | - |
| 1988 | 756 | 164 | 542 | 2,724 | 29,495 | 39,450 | 3,119 | 280 | 403 | 513 | 5,007 | - |
| 1989 | 502 | 566 | 242 | 7,509 | 48,833 | 56,808 | 2,176 | 181 | 576 | 433 | 6,761 | - |
| 1990 | 697 | 1,711 | 324 | 11,050 | 79,807 | 72,196 | 2,192 | 842 | 566 | 870 | 3,533 | - |
| 1991 | 808 | 1,415 | 410 | 11,530 | 84,517 | 127,484 | 2,761 | 690 | 1,510 | 1,836 | 5,721 | - |
| 1992 | 1,020 | 2,512 | 403 | 15,300 | 77,588 | 84,853 | 3,866 | 866 | 1,899 | 1,426 | 7,017 | - |
| 1993 | 859 | 1,352 | 112 | 15,670 | 58,217 | 109,457 | 4,202 | 764 | 1,716 | 832 | 7,270 | - |
| 1994 | 1,437 | 1,829 | 318 | 15,920 | 194,425 | 96,343 | 3,227 | 758 | 1,965 | 1,753 | 8,690 | - |
| 1995 | 460 | 600 | 277 | 4,945 | 56,737 | 55,710 | 2,446 | 1,265 | 1,487 | 1,781 | 8,627 | - |
| 1996 | 515 | 798 | 263 | 6,050 | 37,331 | 44,635 | 2,500 | 385 | 1,451 | 950 | 8,831 | - |
| 1997 | 609 | 1,018 | 186 | 10,050 | 43,519 | 32,345 | 4,718 | 686 | 809 | 732 | 5,063 | - |
| 1998 | 862 | 1,160 | 102 | 6,802 | 50,758 | 61,382 | 7,049 | 1,520 | 1,242 | 983 | 7,070 | - |
| 1999 | 845 | 1,000 | 272 | 9,920 | 57,140 | 60,844 | 3,800 | 1,590 | 776 | 1,246 | 8,038 | - |
| 2000 | 683 | 961 | 202 | 10,650 | 84,843 | 64,700 | 2,304 | 880 | 803 | 600 | 8,634 | - |
| 2001 | 865 | 1,119 | 106 | 19,290 | 107,697 | 104,394 | 2,209 | 1,080 | 1,515 | 1,580 | 11,475 | 1,350 |
| 2002 | 1,176 | 2,448 | 195 | 27,700 | 204,805 | 219,360 | 7,109 | 1,194 | 1,868 | 3,291 | 12,223 | 2,189 |
| 2003 | 585 | 808 | 203 | 10,110 | 133,045 | 183,038 | 6,789 | 1,055 | 1,101 | 1,510 | 11,859 | 614 |
| 2004 | 416 | 364 | 284 | 14,450 | 67,053 | 129,327 | 3,539 | 380 | 1,124 | 840 | 9,904 | 606 |
| 2005 | 450 | 351 | 139 | 5,220 | 34,575 | 135,558 | 4,257 | 160 | 1,668 | 1,732 | 14,840 | 646 |
| 2006 | 581 | 1,110 | 439 | 5,470 | 79,050 | 121,778 | 4,737 | 1,100 | 2,647 | 891 | 6,912 | 409 |
| 2007 | 352 | 324 | 226 | 3,915 | 24,770 | 74,326 | 2,567 | 745 | 1,066 | 1,244 | 4,488 | 425 |
| 2008 | 600 | 405 | 660 | 6,870 | 56,369 | 95,360 | 5,173 | 500 | 1,117 | 1,741 | 16,680 | 309 |
| 2009 | 360 | 698 | 123 | 4,230 | 47,911 | 104,321 | 2,181 | 590 | 1,156 | 2,281 | 8,226 | 776 |
| 2010 | 417 | 630 | 467 | 7,520 | 84,909 | 126,830 | 1,610 | 452 | 1,273 | 2,878 | 4,656 | 814 |
| Goal Range |  |  |  |  |  |  |  |  |  |  |  |  |
| Lower | 200 | 400 | 100 | 4,000 | 30,000 | $35,000^{\text {c }}$ | 1,300 | - | 400 | 500 | 4,250 | - |
| Upper | 500 | 1,200 | 250 | 9,200 | 70,000 | - | 2,900 | - | 800 | 1,600 | 8,500 | - |

a The Sitka survey index is the sum of peak survey counts on 5 streams.
b The Ketchikan survey index is the sum of peak survey counts on 14 streams.
c For the Taku River stock of coho salmon, the management objective of the U.S. is to ensure a minimum above-border run of 38,000 fish as specified in the Pacific Salmon Treaty. The listed figure of 35,000 fish, shown for comparison with spawning escapement estimates, reflects a probable Canadian catch above the border of up to 3,000 fish in non-coho directed fisheries when the total above-border run is 38,000 fish.


Figure 4.-Coho salmon escapement estimates and indices for streams in the Northern Inside area (districts 111 and 115), 1980-2010. Also shown are 312 -year moving average "cycle" trends and escapement goal ranges. The threshold of 35,000 shown for the Taku includes the inriver run threshold of 38,000 under the Pacific Salmon Treaty, minus an allowance for a catch of 3,000 fish from inriver commercial, food, personal use, and test fisheries.

Table 3.-Peak coho salmon escapement survey counts for Juneau roadside streams and the Berners and Chilkat rivers, mark-recapture estimates for the Taku and Chilkat rivers, and the total count of wild adult coho salmon at the Auke Creek weir, 1980-2010.

| Year | Juneau Roadside |  |  | Berners River | Chilkat River |  | Taku <br> River |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Auke Creek. (Weir) | Montana Creek | Peterson Creek |  | Index Count | Expanded Estimate |  |
| 1980 | 698 | - | - | - | - | - | - |
| 1981 | 646 | 227 | 219 |  | - | - | - |
| 1982 | 447 | 545 | 320 | 7,505 | - | - | - |
| 1983 | 694 | 636 | 219 | 9,840 | - | - | - |
| 1984 | 651 | 581 | 189 | 2,825 | - | - | - |
| 1985 | 942 | 810 | 276 | 6,169 | - | - | - |
| 1986 | 454 | 60 | 363 | 1,752 | - | - | - |
| 1987 | 668 | 314 | 204 | 3,260 | 1,113 | 37,432 | 55,457 |
| 1988 | 756 | 164 | 542 | 2,724 | 877 | 29,495 | 39,450 |
| 1989 | 502 | 566 | 242 | 7,509 | 1,452 | 48,833 | 56,808 |
| 1990 | 697 | 1,711 | 324 | 11,050 | 3,383 | 79,807 ${ }^{\text {a }}$ | 72,196 |
| 1991 | 808 | 1,415 | 410 | 11,530 | 2,513 | 84,517 | 127,484 |
| 1992 | 1,020 | 2,512 | 403 | 15,300 | 2,307 | 77,588 | 84,853 |
| 1993 | 859 | 1,352 | 112 | 15,670 | 1,731 | 58,217 | 109,457 |
| 1994 | 1,437 | 1,829 | 318 | 15,920 | 5,781 | 194,425 | 96,343 |
| 1995 | 460 | 600 | 277 | 4,945 | 1,687 | 56,737 | 55,710 |
| 1996 | 515 | 798 | 263 | 6,050 | 1,110 | 37,331 | 44,635 |
| 1997 | 609 | 1,018 | 186 | 10,050 | 1,294 | 43,519 | 32,345 |
| 1998 | 862 | 1,160 | 102 | 6,802 | 1,460 | 50,758 ${ }^{\text {a }}$ | 61,382 |
| 1999 | 845 | 1,000 | 272 | 9,920 | 1,699 | 57,140 | 60,768 |
| 2000 | 683 | 961 | 202 | 10,650 | 2,635 | 84,843 | 64,700 |
| 2001 | 865 | 1,119 | 106 | 19,290 | 3,232 | 107,697 | 104,394 |
| 2002 | 1,176 | 2,448 | 195 | 27,700 | 5,660 | 204,805 ${ }^{\text {a }}$ | 219,360 |
| 2003 | 585 | 808 | 203 | 10,110 | 3,950 | 133,045 ${ }^{\text {a }}$ | 183,038 |
| 2004 | 416 | 364 | 284 | 14,450 | 2,006 | 67,053 | 129,327 |
| 2005 | 450 | 351 | 139 | 5,220 | 977 | 34,575 ${ }^{\text {a }}$ | 135,558 |
| 2006 | 581 | 1,110 | 439 | 5,470 | 2,399 | 79,050 | 121,778 |
| 2007 | 352 | 324 | 226 | 3,915 | 758 | 24,770 | 74,326 |
| 2008 | 600 | 405 | 660 | 6,870 | 1,706 | 56,369 | 95,360 |
| 2009 | 360 | 698 | 123 | 4,230 | 1,453 | 47,911 | 104,321 |
| 2010 | 417 | 630 | 467 | 7,520 | 2,650 | 84,909 | 126,830 |
| Average | 679 | 884 | 276 | 9,112 | 2,243 | 74,201 | 93,995 |
| Goals: |  |  |  |  |  |  |  |
| Point | 340 | - | - | 6,300 | 1,550 | 50,000 | - |
| Lower | 200 | 400 | 100 | 4,000 | 950 | 30,000 | $35,000{ }^{\text {b }}$ |
| Upper | 500 | 1,200 | 250 | 9,200 | 2,200 | 70,000 | - |

${ }^{\text {a }}$ Mark-recapture estimates of Chilkat River escapement. Other estimates are expanded index counts.
${ }^{\mathrm{b}}$ For the Taku River stock of coho salmon, the management objective of the U.S. is to ensure a minimum above-border run of 38,000 fish as specified in the Pacific Salmon Treaty. The listed figure of 35,000 fish, shown for comparison with spawning escapement estimates, reflects a probable Canadian catch above the border of up to 3,000 fish in non-coho directed fisheries when the total above-border run is 38,000 fish.

The Berners River is a compact system with concentrated high-quality coho spawning and rearing habitat. Although a substantially smaller producer than the Taku and Chilkat rivers, it is an important contributor to the fisheries in northern Southeast Alaska. Escapement counts in the Berners River peaked at 27,700 spawners in 2002, but declined to only 3,915 spawners in 2007 before remaining within the goal range of 4,000-9,200 spawners in 2008-2010 (Figure 4; Table 3).
The Taku River may be the single largest coho salmon-producing system in the region. Escapement estimates were first made in 1987 and run reconstruction estimates are available since 1992 (Elliott and Bernard 1994; McPherson et al. 1994, 1997, 1998; McPherson and Bernard 1995, 1996; Yanusz et al. 1999, 2000; Jones III et al. 2006; Jones III In prep). The inriver run past Canyon Island near the U.S./Canada boundary is estimated using a markrecapture technique. Marking is done at research fish wheel sites in the canyon, while recovery sampling is done in test and Canadian commercial fisheries. Results of a 1991 radio-telemetry study indicated that the fish wheel estimate represented about $78 \%$ of the total system escapement, with about $22 \%$ spawning in Alaskan waters below Canyon Island (Eiler et al. unpublished ${ }^{1}$ ).
A BEG for Taku River coho salmon is under development by the Transboundary Technical Committee of the Pacific Salmon Commission (PSC). Based on the 1999 PST agreement, the management intent of the U.S. is to ensure a minimum above-border inriver run of 38,000 coho salmon with the following provisions: (1) no numerical limit on the Taku River coho salmon catch will apply in Canada during the directed sockeye salmon fishery (through Statistical Week 33); depending on inseason projections of above-border run size, directed Canadian harvests are: (2) 3,000 coho salmon for above-border runs less than 50,000, (3) 5,000 coho salmon for aboveborder runs between 50,000 and 60,000 , (4) 7,500 coho salmon for above-border runs between 60,000 and 75,000 , and (5) 10,000 coho salmon for above-border runs above 75,000 . Furthermore, the agreement reached within the PSC in May of 2008 specifies that annual catch limits specified for Canadian harvest of coho salmon in the Taku River may be exceeded, provided that bilaterally agreed upon inseason run assessments indicate that salmon passage into Canada has exceeded, or is projected to exceed, the specified Canadian harvest limit, plus bilaterally agreed upon spawning requirements.
The inriver run estimate past Canyon Island has exceeded 38,000 spawners in all years except 1997, when the border passage estimate was only 35,035 fish, including an above-border catch of 2,690 fish. Thus, the escapement estimate was only 32,345 spawners (Table 3), despite timely implementation of extensive inseason restrictions in troll, gillnet, and sport fisheries. In the early 1990s, the Taku River coho run increased sharply and greatly exceeded the current management threshold despite increased fishing effort in the District 111 gillnet fishery, which targets the stock in late August and September. Following the poor 1997 return, inriver run estimates have ranged well above the management threshold goal. Taku River escapement peaked in 2002 (estimate $=219,360$ spawners), as did escapements in the Berners and Chilkat rivers. Escapement estimates to the Taku River in the past 4 years have increased steadily from 74,326 spawners in 2007 to 126,830 spawners in 2010.

The Chilkat River has produced nearly as many returning coho salmon as the Taku River, on average. Mark-recapture estimates obtained in 5 years (1990, 1998, 2002, 2003, and 2005) were

[^2]used to calibrate a standardized peak survey count in spawning areas. Escapement estimates peaked at 204,805 spawners in 2002 and have since met or exceeded the $B E G$ of $30,000-70,000$ spawners in all years except for 2007, when the estimate was only 24,770 spawners (Table 3 ).

## Sitka Area Stocks

Ford Arm Creek is the only indicator stock in the Sitka area that has a long-term escapement data record and an established BEG (Figure 5; Tables 2 and 4). This stock is available along the coast from early July through early September and is harvested intensively by local directed commercial troll and marine sport fisheries, and incidentally to pink salmon in the Khaz Bay seine fishery. The goal range of $1,300-2,900$ spawners has been achieved in 15 years and exceeded in 13 years during the 28-year history of the project (Figure 5).

Escapement to Black River, located north of Ford Arm Lake, has been surveyed once annually by helicopter since 1984. Escapement survey counts in this system were relatively low during 1986-1989 (181 to 312 spawners), but increased to a range from 776 to 1,965 spawners during 1991-2003, and fluctuated widely from 160 to 1,100 spawners in 2005-2010.

The sum of peak escapement survey counts for 5 small streams near Sitka trended downward in the late 1980s, but increased sharply in the early 1990s (Figure 5; Tables 2 and 4). The counts declined again from 1997 to 2000, but have remained consistently above the goal range since 2001. Shaul and Tydingco (2006) recommended a goal of 400-800 spawners for the aggregate count in the 5 streams based on an analysis that assumes productivity (smolts per spawner at MSY) for Sitka Sound stocks to be average for coho stocks that have been studied. Escapements above the current lower goal bound have been achieved in every year except one (1987), while escapements have exceeded the range in all of the 10 most recent years.

## Southern Southeast Stocks

Hugh Smith Lake is the only full indicator stock in southern Southeast that has a long-term data series and an established BEG (Figure 6; Tables 2 and 5). An escapement goal range of 5001,100 spawners was established in 1994 (Clark et al. 1994) and was recently revised to 5001,600 spawners (Shaul et al. 2009). Over the past 29 years, escapements have been below the new goal range only once (1989), above it in 10 years, and within goal in 18 years.

The Ketchikan area survey index of peak helicopter counts for 14 streams followed a generally upward trend from 1987 to the early to mid-2000s before declining to numbers well below the long-term average in 2006 and 2007 (Figure 6; Tables 2 and 5). A BEG of 4,250 to 8,500 spawners was established in 2006 based on the recommendation of Shaul and Tydingco (2006). During 1987-2010, escapements have fallen short of the goal once, were within the range 13 times, and above the range 10 times.

Chuck Creek on the southern outside coast was recently added as a full indicator stock (McCurdy 2010). Three total escapement counts for Chuck Creek from the early to mid-1980s (Shaul et al. 1991) ranged from 956 to 1,238 spawners. Although weir counts totaling 1,350 spawners in 2001 and 2,189 spawners in 2002 were similar to the earlier counts, escapements declined to only 309-425 spawners in 2006-2008, before increasing to 776-814 in 2009-2010 (Table 2). Productivity of Chuck Creek for coho salmon may have been affected by major landscape changes caused by heavy clear-cut logging activity in the drainage during the 1970s and 1980s, followed by rapid re-growth.


Figure 5.-Coho salmon escapement estimates and indices for streams in the Sitka area (District 113), 1982-2010. Also shown are 312 -year moving average "cycle" trends and escapement goal bounds.

Table 4.-Peak counts of coho salmon in the Sitka escapement survey index (sum of 5 streams), a helicopter survey count of the Black River escapement, and a combination of weir counts and markrecapture estimates of the Ford Arm Creek escapement, 1982-2010.

| Year | Starrigavan Creek | Sinitsin Creek | St. John's Creek | Nakwasina River | Eagle <br> River | Sitka Index ${ }^{\text {a }}$ | Black <br> River | Ford Arm Creek (Weir- M/R) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 317 | 46 | 116 | 580 | 486 | 1,545 | - | 2,655 |
| 1983 | 45 | 31 | 20 | 217 | 144 | 457 | - | 1,931 |
| 1984 | 385 | 160 | 154 | 715 | 649 | 2,063 | 425 | - |
| 1985 | 193 | 144 | 109 | 408 | 392 | 1,246 | 1,628 | 2,324 |
| 1986 | 57 | 72 | 53 | 275 | 245 | 702 | 312 | 1,552 |
| 1987 | 36 | 21 | 22 | 47 | 167 | 293 | 262 | 1,694 |
| 1988 | 45 | 56 | 71 | 104 | 127 | 403 | 280 | 3,119 |
| 1989 | 101 | 76 | 89 | 129 | 181 | 576 | 181 | 2,176 |
| 1990 | 39 | 80 | 38 | 195 | 214 | 566 | 842 | 2,192 |
| 1991 | 142 | 186 | 107 | 621 | 454 | 1,510 | 690 | 2,761 |
| 1992 | 241 | 265 | 110 | 654 | 629 | 1,899 | 866 | 3,866 |
| 1993 | 256 | 213 | 90 | 644 | 513 | 1,716 | 764 | 4,202 |
| 1994 | 304 | 313 | 227 | 404 | 717 | 1,965 | 758 | 3,227 |
| 1995 | 274 | 152 | 99 | 626 | 336 | 1,487 | 1,265 | 2,446 |
| 1996 | 59 | 150 | 201 | 553 | 488 | 1,451 | 385 | 2,500 |
| 1997 | 55 | 90 | 68 | 300 | 296 | 809 | 686 | 4,718 |
| 1998 | 123 | 109 | 57 | 653 | 300 | 1,242 | 1,520 | 7,049 |
| 1999 | 167 | 48 | 25 | 291 | 245 | 776 | 1,590 | 3,800 |
| 2000 | 144 | 62 | 30 | 459 | 108 | 803 | 880 | 2,304 |
| 2001 | 133 | 132 | 80 | 753 | 417 | 1,515 | 1,080 | 2,209 |
| 2002 | 227 | 169 | 100 | 713 | 659 | 1,868 | 1,194 | 7,109 |
| 2003 | 95 | 102 | 91 | 440 | 373 | 1,101 | 1,055 | 6,789 |
| 2004 | 143 | 112 | 79 | 399 | 391 | 1,124 | 380 | 3,539 |
| 2005 | 76 | 67 | 173 | 892 | 460 | 1,668 | 160 | 4,257 |
| 2006 | 386 | 152 | 121 | 996 | 992 | 2,647 | 1,100 | 4,737 |
| 2007 | 130 | 39 | 86 | 385 | 426 | 1,066 | 745 | 2,567 |
| 2008 | 96 | 73 | 43 | 839 | 66 | 1,117 | 500 | 5,173 |
| 2009 | 128 | 160 | 140 | 335 | 393 | 1,156 | 590 | 2,181 |
| 2010 | 70 | 171 | 85 | 307 | 640 | 1,273 | 452 | 1,610 |
| Average | 154 | 119 | 93 | 480 | 397 | 1,243 | 763 | 3,382 |
| Goals: |  |  |  |  |  |  |  |  |
| Point |  |  |  |  |  | 500 |  | 2,050 |
| Lower |  |  |  |  |  | 400 |  | 1,300 |
| Upper |  |  |  |  |  | 800 |  | 2,900 |

Note: Total index is the sum of counts and interpolated values. Interpolated values are shown in shaded bold italic print.

$\square$ Survey Total
Year
$-\infty$ Cycle Trend Goal Bounds
Hugh Smith Lake Total Escapement (Weir and Mark-Recapture)


Figure 6.-Sum of peak coho salmon escapement survey counts for 14 streams in the Ketchikan area (top graph) and coho salmon escapement counts and estimates for Hugh Smith Lake (bottom graph), 1982-2010. Also shown are $31 / 2$ year "cycle" trends, the escapement goals for Hugh Smith Lake (5001,600 spawners) and the combined peak counts for Ketchikan surveyed streams (4,250-8,500 spawners).

Table 5.-Peak coho salmon survey counts for 14 streams in the Ketchikan area and total adult coho salmon escapement to Hugh Smith Lake, 1987-2010.

| Year | $\begin{gathered} \text { Herman } \\ \text { Creek } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Grant } \\ & \text { Creek } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Eulachon } \\ \text { River } \end{gathered}$ | $\begin{gathered} \text { Klahini } \\ \text { River } \end{gathered}$ | $\begin{aligned} & \text { Indian } \\ & \text { River } \end{aligned}$ | $\begin{gathered} \text { Barrier } \\ \text { Creek } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { King } \\ & \text { Creek } \\ & \hline \end{aligned}$ | Choca Creek | $\begin{aligned} & \text { Carroll } \\ & \text { River } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Blossum } \\ \text { River } \\ \hline \end{gathered}$ | Keta River | $\begin{gathered} \text { Marten } \\ \text { River } \\ \hline \end{gathered}$ | Humpback Creek | $\begin{gathered} \text { Tombstone } \\ \text { River } \\ \hline \end{gathered}$ | Combined Survey Index | $\begin{gathered} \text { Hugh Smith } \\ \text { Lake } \\ \text { (Weir \& } M / R \text { ) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1987 | 92 | 88 | 154 | 62 | 387 | 98 | 304 | 145 | 180 | 700 | 800 | 740 | 650 | 532 | 4,933 | 1,118 |
| 1988 | 72 | 150 | 205 | 20 | 300 | 50 | 175 | 150 | 193 | 790 | 850 | 600 | 52 | 1,400 | 5,007 | 513 |
| 1989 | 75 | 101 | 290 | 15 | 925 | 450 | 510 | 200 | 70 | 1,000 | 650 | 1,175 | 350 | 950 | 6,761 | 433 |
| 1990 | 150 | 30 | 235 | 150 | 282 | 72 | 35 | 105 | 139 | 800 | 550 | 575 | 135 | 275 | 3,533 | 870 |
| 1991 | 245 | 50 | 285 | 50 | 550 | 100 | 300 | 220 | 375 | 725 | 800 | 575 | 671 | 775 | 5,721 | 1,826 |
| 1992 | 115 | 270 | 860 | 90 | 675 | 100 | 250 | 150 | 360 | 650 | 627 | 1,285 | 550 | 1,035 | 7,017 | 1,426 |
| 1993 | 90 | 175 | 460 | 50 | 475 | 325 | 110 | 300 | 310 | 850 | 725 | 1,525 | 600 | 1,275 | 7,270 | 830 |
| 1994 | 265 | 220 | 755 | 200 | 560 | 175 | 325 | 225 | 475 | 775 | 1,100 | 2,205 | 560 | 850 | 8,690 | 1,753 |
| 1995 | 250 | 94 | 435 | 165 | 600 | 220 | 415 | 180 | 400 | 800 | 1,155 | 1,385 | 82 | 2,446 | 8,627 | 1,781 |
| 1996 | 94 | 92 | 383 | 40 | 570 | 230 | 457 | 220 | 240 | 829 | 1,506 | 1,924 | 440 | 1,806 | 8,831 | 958 |
| 1997 | 75 | 85 | 420 | 60 | 371 | 94 | 292 | 175 | 140 | 1,143 | 571 | 759 | 32 | 847 | 5,063 | 732 |
| 1998 | 94 | 130 | 460 | 120 | 304 | 50 | 411 | 190 | 255 | 1,004 | 1,169 | 1,961 | 256 | 666 | 7,070 | 983 |
| 1999 | 75 | 127 | 657 | 150 | 356 | 25 | 627 | 225 | 425 | 598 | 1,895 | 1,518 | 520 | 840 | 8,038 | 1,246 |
| 2000 | 135 | 94 | 600 | 110 | 380 | 72 | 620 | 180 | 275 | 1,354 | 1,619 | 1,421 | 102 | 1,672 | 8,634 | 600 |
| 2001 | 80 | 110 | 929 | 151 | 1,140 | 212 | 891 | 450 | 173 | 1,561 | 1,612 | 1,956 | 506 | 1,704 | 11,475 | 1,580 |
| 2002 | 88 | 138 | 1,105 | 20 | 940 | 70 | 700 | 220 | 270 | 1,359 | 1,368 | 2,302 | 2,004 | 1,639 | 12,223 | 3,291 |
| 2003 | 242 | 197 | 875 | 39 | 690 | 57 | 1,140 | 380 | 427 | 1,940 | 1,934 | 1,980 | 214 | 1,745 | 11,859 | 1,510 |
| 2004 | 150 | 230 | 801 | 170 | 935 | 250 | 640 | 180 | 455 | 1,005 | 1,200 | 1,835 | 1,230 | 823 | 9,904 | 840 |
| 2005 | 510 | 300 | 1,240 | 360 | 890 | 190 | 810 | 270 | 500 | 3,680 | 3,290 | 1,130 | 500 | 1,170 | 14,840 | 1,732 |
| 2006 | 165 | 124 | 190 | 176 | 280 | 30 | 405 | 130 | 272 | 2,300 | 645 | 335 | 260 | 1,600 | 6,912 | 891 |
| 2007 | 134 | 75 | 298 | 35 | 245 | 15 | 290 | 210 | 171 | 990 | 970 | 351 | 3 | 701 | 4,488 | 1,244 |
| 2008 | 115 | 55 | 570 | 25 | 1,250 | 23 | 420 | 100 | 613 | 7,100 | 2,524 | 925 | 2,600 | 360 | 16,680 | 1,741 |
| 2009 | 160 | 330 | 330 | 340 | 750 | 110 | 1,050 | 100 | 1,100 | 1,041 | 315 | 1,675 | 700 | 225 | 8,226 | 2,282 |
| 2010 | 85 | 102 | 370 | 68 | 880 | 90 | 570 | 190 | 202 | 350 | 550 | 350 | 200 | 650 | 4,656 | 2,878 |
| Avg. | 148 | 140 | 538 | 111 | 614 | 130 | 489 | 204 | 334 | 1,389 | 1,184 | 1,270 | 551 | 1,083 | 8,186 | 1,377 |
| Goal: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Point |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 5,100 | 850 |
| Lower |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 4,250 | 500 |
| Upper |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 8,500 | 1,600 |

Note: Combined survey count is the sum of counts and interpolated values. Interpolated values are shown in shaded bold italic print.

## Yakutat Stocks

Yakutat stocks are harvested primarily in set gillnet and sport fisheries that target runs to discrete systems, but trollers fishing on mixed stocks off the coast account for some of the catch. BEGs exist for 7 stocks in this area (Clark and Clark 1994), but comparable peak escapement surveys have been conducted relatively consistently in recent years on only 3 systems, the Lost, Situk, and Tsiu rivers.

Although the data series starts in 1972, the quality and comparability of peak survey counts in the Yakutat area are somewhat lower than is the case in other areas of the Southeast Region. Most aerial and foot surveys on these systems have been conducted early in the run to support inseason management of the set gillnet fisheries. Mark-recapture experiments were conducted from 2004 to 2006 to estimate escapement of Situk River coho salmon (Waltemyer et al. 2005, Eggers and Tracy 2007, Shaul et al. 2010) and conducted in the Lost River in 2003 and 2004 (Clark et al. 2005, 2006) in hopes of providing a calibration of the index counts. Mark-recapture estimates were not consistent with index counts (Figure 7; Table 6) and as a result, meaningful expansion factors could not be estimated. Index counts were substantially lower than total escapement in all years and accounted for minor and variable portions of the total escapements.

Utility of the peak survey counts in assessing historical escapement is limited by decreasing survey effort near the peak of spawner abundance at the end of the fishery and by frequently deteriorating weather conditions after mid-September. Survey effort on these systems declined from 1995 to 2000, but has improved somewhat since 2001. The combined escapement index for Yakutat shows peaks in the early to mid-1990s and in 2002 (Figure 7) similar to northern inside stocks (Figure 4). Escapement goals have been attained in most years.

## Smolt Production

Recent smolt production estimates are available for 8 years or more for 6 systems, while presmolt estimates in the summer prior to smolt emigration are available for Ford Arm Creek (Table 7). Estimates are listed by adult return year for the smolt emigration in the previous year.

Shaul et al. (2005) noted a long-term linear decline in Auke Creek smolt production of about $1.5 \%$ per year or $38.4 \%$ ( 2,956 smolts) during 1980-2004 based on a robust trend (Geiger and Zhang 2002). The average number of smolts during the recent 8 -year period of low counts (2003-2010) was 4,150 smolts, which was $43 \%$ lower than the first 8 years ( 7,316 smolts in 1980-1987). However, the approximately level trend in smolt production during 2003-2010 period does not suggest further decline, while the migration of 6,053 smolts associated with the 2011 return was slightly above the long-term average and was the largest smolt run since 1999. The decrease in Auke Creek smolt production does not appear to be related to reduced escapement levels, as brood year escapements remained relatively level during the decline and escapements have remained within or above the BEG (Figure 4, Table 2). Following improvement in 2010, a 2011 migration (2012 return) count of 10,435 smolts (John Joyce, National Marine Fisheries Service (NMFS), personal communication) represents a full rebound from the long declining trend and was second only to 1980 migration of 10,714 smolts. As with the decline, the reason for the dramatic recent rebound is unknown.

The estimated number of smolts migrating from the Berners River declined from an average of 198,398 (range 133,629-326,312) smolts during 1990-2005 to only 124,070 smolts in 2006, 115,845 smolts in 2007, and 89,177 smolts in 2008 (Table 7; Figure 8). The decrease in smolt
production, in combination with lower marine survival rates, resulted in a dramatic decrease in adult returns. Shaul et al. (2008) discuss the phenomenon and the fact that the decline coincided with a strong departure from a significant linear relationship ( $p<0.01$ ) between summer/fall precipitation at the Juneau airport and the Berners River smolt migration the following spring for the 14-year period 1989-2002 (Figure 8). They found no indication of physical changes in habitat observed during the period that would likely explain the decrease. However, a similar decline in smolt production from the Chilkat River after the 2004 return year (Table 7) suggests the primary agent in the decline may have operated over a broader area. Berners River smolt production estimates increased from the low of 89,177 smolts for the 2008 return year to a substantially improved 161,112 smolts in 2010 before falling again to 130,795 smolts in 2011.

As with Auke Creek, the pattern of escapements and returns does not point toward a decrease in spawning escapement as the primary factor in the decline in Berners River smolt production. Interestingly, the primary brood year for improved freshwater production in the 2010 return year was 2007, a year with a small adult escapement of 3,915 spawners that was below goal and the lowest escapement count since 1988. Newly emerged fry ( $<38 \mathrm{~mm}$ ) from that brood year that were marked for an aging validation study survived to age- $1+$ smolthood at an extremely high estimated rate of $39.2 \%$, while fry to adult survival was estimated at $5.3 \%$. Both of these estimates are likely low because they do not yet include fish that remained in the system another year and smolted at age 2.
The Chilkat River has shown a similar recent decrease in smolt production. On average, an estimated 1.00 million (range $0.72-1.81$ million) smolts produced the 2005-2011 adult returns to the Chilkat River, which was $45 \%$ lower than the average of 1.81 million (range 1.19-2.97 million) smolts associated with the prior 5 adult returns in 2000-2004. This decrease between periods was similar to the $41 \%$ decline observed for the Berners River.
In contrast to Berners and Chilkat river production, smolt estimates for the Taku River above Canyon Island have increased in recent years and peaked at over 3.3 million smolts for the 2008 adult return. Smolt production from the Taku River was low during 1996-1998, with estimates of $0.8-1.0$ million annually, but has increased to $2.1-3.3$ million annually starting in 2002 (Table 7). Estimates for the Taku River since 1992 averaged 2.0 million smolts. The reason for the recent upward trend in Taku River smolt estimates, in contrast to those in the Berners and Chilkat rivers, is unclear. However, beginning in 2000, Jones et al. (2006) found that use of the simple Chapman's estimate employed in earlier years produced smolt estimates that were biased low ( $\sim 12 \%$ over 5 years) due to size selectivity in smolt tagging. Stratified estimates that account for this apparent bias were employed for estimates beginning in 2002. A change in the smolt capture method from screw traps to minnow traps after 1996 may also have altered the stock composition of the smolt catch toward later-run mainstem stocks relative to samples from returning adults at Canyon Island, which may also have increased estimates.

Shaul et al. (2005) noted an upward trend in presmolt production in the Ford Arm Creek system and speculated that it may have resulted from increased carcass nutrient input. Estimated midsummer presmolt abundance in the Ford Arm Creek system trended upward from an average of 62,566 presmolts for returns in the 1980s to 81,934 in the 1990s, and 89,327 during 2000-2010.


Figure 7.-Peak coho salmon escapement survey counts for 3 systems in the Yakutat area and the combined count for all 3 systems, 1972-2010. Also shown are 5 -year symmetrical average trends and escapement goal ranges. The total index includes interpolations for systems without counts in all years, except 1999 (see Escapement Indicators section for a description of the method used).

Table 6.-Yakutat area coho salmon peak escapement survey counts and available total escapement estimates, 1972-2010.

|  | Lost River |  | Situk River |  |  | Tsiu River |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: |

[^3]Table 7.-Total coho smolt and presmolt production estimates for 7 wild coho salmon-producing systems in Southeast Alaska by age-. 1 return year, 1980-2011.

|  | Auke | Berners | Chilkat | Taku | Ford Arm | Hugh Smith | Chuck |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Return | Creek | River | River | River | Creek | Lake | Creek |
| Year | Smolts | Smolts | Smolts | Smolts | Presmolts | Smolts | Smolts |
| 1980 | 8,789 | - | - | - | - | - | - |
| 1981 | 10,714 | - | - | - | - | - | - |
| 1982 | 6,967 | - | - | - | 79,059 | - | - |
| 1983 | 6,849 | - | - | - | 63,686 | 29,117 | - |
| 1984 | 6,901 | - | - | - |  | 53,227 | - |
| 1985 | 6,838 | - | - | - | 38,509 | 32,283 | - |
| 1986 | 5,852 | - | - | - | 45,748 | 23,572 | - |
| 1987 | 5,617 | - | - | - | 70,322 | 21,878 | - |
| 1988 | 7,014 | - | - | - | 88,983 | 36,218 | - |
| 1989 | 7,685 | - | - | - | 51,658 | 27,904 | - |
| 1990 | 7,011 | 163,998 | - | - | 54,851 | 26,620 | - |
| 1991 | 5,137 | 141,291 | - | - | 56,284 | 33,101 | - |
| 1992 | 5,690 | 187,688 | - | 1,080,551 | 61,728 | 23,373 | - |
| 1993 | 6,596 | 326,312 | - | 1,510,032 | 57,401 | 32,657 | - |
| 1994 | 8,647 | 255,519 | - | 1,475,874 | 82,893 | 48,434 | - |
| 1995 | 7,495 | 181,503 | - | 1,525,330 | 134,640 | 49,516 | - |
| 1996 | 4,884 | 194,019 | - | 986,489 | 91,605 | 22,267 | - |
| 1997 | 3,934 | 133,629 | - | 759,763 | 66,772 | 32,294 | - |
| 1998 | 6,111 | 139,959 | - | 853,662 | 80,517 | 37,436 | - |
| 1999 | 7,420 | 252,168 | - | 1,184,195 | 132,655 | 29,875 | - |
| 2000 | 5,233 | 183,023 | 1,237,056 | 1,691,411 | 62,444 | 19,902 | - |
| 2001 | 4,969 | 268,777 | 1,185,804 | 1,811,038 | 102,610 | 23,327 | - |
| 2002 | 5,980 | 264,599 | 2,970,458 | 2,741,593 | 102,918 | 36,487 | - |
| 2003 | 3,616 | 151,980 | 1,696,212 | 2,737,851 | 77,081 | 26,841 | 12,487 |
| 2004 | 3,695 | 185,125 | 1,938,322 | 2,961,344 | 101,579 | 22,997 | 29,302 |
| 2005 | 4,549 | 144,778 | 776,934 | 3,755,274 | 120,632 | 39,924 | 17,507 |
| 2006 | 4,287 | 124,070 | 1,807,837 | 2,149,673 | 98,470 | 28,184 | 10,306 |
| 2007 | 4,515 | 115,845 | 875,478 | 3,152,471 | 84,017 | 37,267 | 15,604 |
| 2008 | 4,053 | 89,177 | 893,032 | 3,344,590 | 72,315 | 28,793 | 17,327 |
| 2009 | 3,815 | 102,318 | 716,689 | 2,803,021 | 96,180 | 24,006 | 15,471 |
| 2010 | 4,667 | 161,112 | 871,220 | 2,270,500 | 64,349 | 25,813 | 22,651 |
| 2011 | 6,053 | 130,795 | 1,026,314 | 1,677,123 | 85,428 | 37,862 | a |
| Average | 5,987 | 177,168 | 1,332,946 | 2,023,589 | 80,184 | 31,420 | 17,582 |

${ }^{a}$ Project discontinued.


Figure 8.-Berners River coho salmon smolt estimates (with 95\% confidence bounds) and total JulyNovember precipitation at the Juneau Airport in the prior year, 1989-2010. The 2010 estimate is very preliminary.
Shaul et al. (in prep) examined more closely the relationship between coho salmon production and marine-derived nutrient loading by pink salmon and other species. They found freshwater production of coho salmon in the Ford Arm Creek to be positively correlated with pink salmon escapement in (a) the common brood year for both species, (b) the following brood year, and (c) the average for both years, up to a saturation level at about 116,000 pink salmon (peak count), above which there appeared to be no further response. The relationship, fitted with a logistic hockey stick model, suggests an approximate doubling of coho salmon production as pink salmon escapement increases from zero to a peak survey count of approximately 116,000 spawners. When divided by total stream and lakeshore area of $175,721 \mathrm{~m}^{2}$, the estimated pink salmon carcass density associated with the nominal saturation point is 1.4 carcasses $/ \mathrm{m}^{2}$. This value is consistent with the growth response by juvenile coho salmon to addition of pink salmon carcasses in an artificial stream channel observed by Wipfli et al. (2003), who found a substantial response in increased mass and length to coho salmon fry exposed to pink salmon carcass densities between 0 and 1 carcass $/ \mathrm{m}^{2}$, with incremental increases sharply diminishing at higher carcass densities up to 4 carcasses $/ \mathrm{m}^{2}$. However, accounting for the contribution by carcasses of all species in Ford Arm Creek (of which pink salmon contributed $76 \%$ by mass on average), the number of total pink salmon equivalents associated with the nominal saturation point is approximately 1.8 carcasses $/ \mathrm{m}^{2}$.

Smolt production from Hugh Smith Lake, the southern inside indicator stock, has shown no evident trend over a 29-year period (1984-2011 return years) when production averaged 31,420 smolts (Table 7). There is also no evident trend in the shorter 8-year data series for Chuck Creek on the southern outside coast, where production averaged 17,582 (range $10,306-29,302$ ) smolts for the 2003-2010 adult returns.

## Marine Survival

Marine survival rates for wild indicator stocks increased in the early 1980s and reached a peak in the early to mid-1990s before declining to more moderate levels from 1995 to 2004 (Figure 9; Table 8). Survival rates then declined, reaching a recent low in northern inside systems (Auke Creek and Berners, Chilkat and Taku rivers) in 2007 at an average of $7.0 \%$ (range 4.2-11.9\%). Survival rates then rebounded in all 4 systems to an average of $14.6 \%$ (range 10.9-17.7\%) in 2010. The southern inside indicator stock (Hugh Smith Lake) showed a similar pattern, although it bottomed in 2006 at $6.8 \%$ before rebounding consistently in each of the following 4 years to a record $21.0 \%$ in 2010. Regionally, the mean-average survival rate for the 6 stocks shown in Table 8 increased from $9.5 \%$ in 2005-2007 to $12.8 \%$ in 2008-2010.

Outer coastal stocks, represented by Ford Arm Creek and Chuck Creek, have shown somewhat different patterns. Survival of Ford Arm Creek presmolts was close to average in 2007 at 10.3\%, but declined to only $7.4 \%$ in 2009 and $7.0 \%$ in 2010 (Figure 9; Table 8). Chuck Creek marine survival reached a peak of $15.6 \%$ in 2009 before falling to a below-average $7.2 \%$ in 2010.

Marine survival has been, on average, a more important determinant of adult return compared with smolt production, based on their relative contributions to the combined coefficient of variation squared ( $\mathrm{CV}^{2}$ ). On average, through 2010, $55 \%$ of the variation in the adult return to indicator systems has been attributed to marine survival compared with $45 \%$ for freshwater factors, including parent spawning escapement (Figure 10). The estimates ranged from 64\% marine and $36 \%$ fresh water for Auke Creek to near parity ( $51 \%$ marine and $49 \%$ fresh water) for 2 mainland river systems (Berners and Taku rivers). For Ford Arm Creek, the results were similar to the 2 other lake systems (Auke Creek and Hugh Smith Lake), with $62 \%$ of variation in adult production attributed to variation in survival from tagging to adulthood compared with $38 \%$ attributed to variation in the number of presmolts. However, the survival estimate for that system includes a portion of the freshwater residence period.

## Hatchery Survival Rates

Releases of coho salmon from Southeast Alaska hatcheries have increased steadily over the past 3 decades, from fewer than 1 million fish in 1980 to 19.0 million fish in 2009 (Figure 11). However, the aggregate contribution by hatcheries to common property fisheries has not shown a commensurate increase. The estimated troll catch of hatchery coho salmon reached a peak, along with the all-gear catch, in the early 1990s, but has since declined. The 20-year linear trend from 1991 to 2010 decreased by $40 \%$ in the troll catch (Figure 11) and $43 \%$ in the all-gear commercial catch. Much of the decline can be attributed to an overall decline from peak survival and abundance for both wild and hatchery stocks in the early 1990s as shown in total wild abundance estimates that declined by $15 \%$ (Figure 18) and average wild stock survival rates that declined by 35\% (Figure 9). However, the hatchery fraction of the aggregate troll catch (Figure 11), as well as in the all-gear commercial catch, show a slight negative slope, despite a tripling of smolts, presmolts, and fingerlings released from 1990 to 2009.

— - Auke Cr. --२-- Berners R. -e-Taku R. $\quad$ Hugh Smith L.


Figure 9.-Estimated marine survival rate for wild coho salmon smolts from 4 systems in inside areas of Southeast Alaska (upper graph) and smolts from one system and presmolts from one system on the outer coast of Southeast Alaska (lower graph), 1980-2010. The estimates for Ford Arm Lake presmolts include approximately 10 months of mortality from July to May.

Table 8.-Estimated survival rate (percent) of coho salmon smolts and presmolts from 7 wild Southeast Alaska indicator stocks from the time of tagging until return to the fisheries, 1980-2010.

|  | Auke |  |  |  |  |  |  |
| :--- | :---: | :---: | ---: | :---: | ---: | :---: | ---: |
| Return |  |  |  |  |  |  |  |
| Year | Creek | Berners <br> River <br> Smolts | Chilkat <br> River <br> Smolts | Taku <br> River <br> Smolts | Ford Arm <br> Lake <br> Presmolts | Hugh Smith <br> Lake <br> Smolts | Chuck <br> Creek <br> Smolts |
| 1980 | 9.9 | - | - | - | - | - | - |
| 1981 | 9.1 | - | - | - | - | - | - |
| 1982 | 10.6 | - | - | - | 5.9 | - | - |
| 1983 | 18.1 | - | - | - | 9.7 | 13.3 | - |
| 1984 | 15.9 | - | - | - | - | 7.6 | - |
| 1985 | 24.6 | - | - | - | 12.5 | 7.6 | - |
| 1986 | 16.6 | - | - | - | 9.0 | 18.5 | - |
| 1987 | 21.0 | - | - | - | 4.6 | 10.3 | - |
| 1988 | 17.1 | - | - | - | 6.8 | 4.1 | - |
| 1989 | 14.4 | - | - | - | 11.9 | 8.6 | - |
| 1990 | 21.1 | 20.6 | - | - | 9.6 | 18.0 | - |
| 1991 | 23.0 | 24.9 | - | - | 10.7 | 17.4 | - |
| 1992 | 33.0 | 24.4 | - | 19.9 | 15.1 | 20.9 | - |
| 1993 | 24.1 | 15.2 | - | 14.0 | 21.9 | 13.0 | - |
| 1994 | 35.3 | 28.9 | - | 23.0 | 13.9 | 19.5 | - |
| 1995 | 10.9 | 15.9 | - | 11.9 | 5.0 | 13.5 | - |
| 1996 | 23.4 | 12.3 | - | 9.6 | 6.4 | 17.7 | - |
| 1997 | 19.2 | 11.6 | - | 6.7 | 14.6 | 8.3 | - |
| 1998 | 23.1 | 17.0 | - | 14.0 | 20.0 | 11.7 | - |
| 1999 | 19.3 | 12.9 | - | 9.9 | 7.7 | 14.1 | - |
| 2000 | 18.5 | 11.8 | 10.1 | 6.5 | 12.9 | 6.8 | - |
| 2001 | 28.3 | 11.9 | 13.1 | 9.0 | 8.4 | 13.4 | - |
| 2002 | 26.8 | 18.9 | 10.7 | 11.1 | 14.7 | 14.8 | - |
| 2003 | 25.0 | 19.1 | 12.9 | 9.7 | 17.1 | 13.7 | 11.9 |
| 2004 | 20.2 | 17.9 | 10.3 | 8.5 | 11.9 | 10.8 | 5.4 |
| 2005 | 16.0 | 8.8 | 8.4 | 5.9 | 8.4 | 9.1 | 9.4 |
| 2006 | 20.5 | 12.9 | 8.4 | 10.5 | 10.0 | 6.8 | 8.3 |
| 2007 | 11.9 | 7.5 | 4.3 | 4.2 | 10.3 | 8.9 | 7.9 |
| 2008 | 24.1 | 15.8 | 12.4 | 5.2 | 15.3 | 13.1 | 5.0 |
| 2009 | 15.5 | 9.2 | 11.3 | 8.0 | 7.4 | 18.3 | 15.6 |
| 2010 | 16.4 | 13.5 | 17.7 | 10.9 | 7.0 | 21.0 | 7.2 |
| Average | 19.8 | 15.8 | 10.9 | 10.4 | 11.0 | 12.9 | 8.8 |
|  |  |  |  |  |  |  |  |



Figure 10.-Percent of variation in total adult run size attributed to freshwater influences (including spawning escapement) and marine survival, 1980-2010. Ford Arm Creek juveniles were marked in midJuly of the year before sea-migration, so survival estimates for that system include the last 10 months of freshwater residence.

The lack of both an absolute and proportionate positive response to increasing hatchery releases indicates that either wild smolt production has increased in proportion to hatchery releases over the period (which is not evident in most of the indicator stocks), or that hatchery smolts have progressively underperformed wild smolts in marine survival over time.
We therefore compared hatchery and wild survival rates over time (Figure 12), focusing only on streams, facilities, and release locations with a substantial history of consistent releases based on wild stock survival estimates in Table 8 and survival rate estimates reported by hatchery operators and compiled by Skannes et al. (2011). Hatchery survival rates have averaged substantially lower, $69 \%$ of the rate for wild indicator stocks in northern Southeast and $62 \%$ in southern Southeast. Interestingly, hatchery survival rates in both regions began at near-parity with wild indicator survival rates and then declined (Figure 13). Both regions show a slight
rebound in the hatchery-to-wild survival ratio in the early-2000s before decreasing again later in the decade.

For northern Southeast, there was a $48 \%$ decline in the average hatchery-wild survival ratio from 0.86 in the first 3 years of the time series (1991-1993) to 0.45 in the last 3 years (2008-2010). For southern Southeast, there was a $53 \%$ decline in the average hatchery-wild survival ratio from 1.10 in the first 3 years of the time series (1983-1985) to 0.51 in the last 3 years (2008-2010). Although these estimates indicate a relative decrease in survival, the decline in survival of longer-established hatchery stocks in comparison with wild stocks is far from adequate to fully explain the absence of an adult production response to an overall tripling of hatchery releases in the region. Spectacularly poor success by a few major new programs has been a substantial factor in the lack of increase in overall adult production.

We suspect that the decrease in marine survival relative to wild stocks over time is, in part, the result of development of predator fields attracted to large point sources of smolts entering marine waters (Nickelson 2003, Beamish et al. 1992). Development of predator fields affecting marine survival around larger annual point sources of salmon smolts may not be unique to hatcheries in the region. Shaul et al. (2003) noted a strong inverse relationship between total salmon production and average marine survival in both the northern inside area (Auke Creek, Berners River, and Taku River) and in the southern boundary area (Hugh Smith Lake, Lachmach River, and Nass River) based on estimates reported by the Joint Northern Boundary Technical Committee (2002). The broad dispersion of point sources of wild coho salmon smolts in Southeast Alaska, because of the region's high rainfall, extensive shoreline, and large number of small primary streams, may be a substantial advantage to their marine survival.
Both wild and hatchery survival rates averaged higher in northern Southeast compared with southern Southeast during most period of record, but the trend has increasingly favored southern Southeast since 2004 (Figure 14).

## Total Stock Abundance

Total return abundance, including catch and escapement, is the product of smolt production and marine survival. For the full indicator stocks, estimates of total escapement and harvest are shown in tables 9-15 and figures 15-17.
The longest studied indicator stocks in inside areas of Southeast show similar patterns in abundance since the early 1980s. The Auke Creek, Berners River, Taku River, and Hugh Smith Lake stocks all show relatively level long-term trends, with a period of high abundance in the early 1990s and a spectacular peak in 1994 (Figures 15 and 16; Tables 9, 10, 12, and 13) that coincided with a similar peak in the commercial catch of wild coho salmon (Figure 1). A second lower peak occurred in 2002 that, in combination with low exploitation rates, resulted in very large escapements in those systems. However, combined low smolt production and marine survival in 2007 resulted in record low returns to Auke Creek and the Berners and Chilkat rivers, while the return to Hugh Smith Lake was below average. The estimated 2007 return to the Taku River above Canyon Island of about 133,300 fish was the smallest return since 1997 (Figure 16; Table 13). Returns to these inside systems have since rebounded substantially through 2010.


Figure 11.-Releases of coho salmon (excluding fry) from Southeast Alaska hatcheries, the percent of the troll catch comprised of fish of hatchery origin, and the number of hatchery fish contributed to the Alaska troll coho salmon catch, 1981-2010.


Figure 12.-Average marine survival estimates for long-term, consistent wild and hatchery release locations in northern and southern Southeast, 1983-2010. Statistical interpolations were made for missing estimates for within wild and hatchery groups in each region.


Figure 13.-Ratio of the average hatchery to average wild marine survival rate for long-term wild indicator stocks and hatchery release locations within northern and southern Southeast Alaska with a 0.5 LOESS trend, 1983-2010.


Figure 14.-Ratio of the average marine survival rate in northern Southeast to the average for southern Southeast for long-term wild and hatchery indicator stocks in the 2 regions, with a 0.5 LOESS trend, 1983-2010.


Figure 15.-Total run size, catch, escapement, and biological escapement goal range for 4 wild Southeast Alaska coho salmon indicator stocks, 1982-2010.


Figure 16.-Total estimated run size, catch, and escapement of coho salmon bound for the Taku River (above Canyon Island) and the Chilkat and Berners rivers, 1987-2010.


Figure 17.-Total run size, catch, and escapement of adult coho salmon returning to Chuck Creek, 1982-2010.
The return to Ford Arm Creek on the outer coast has been poorly correlated with most inside systems (Shaul et al. 2009). Estimated returns to that system increased dramatically from an average of 5,164 adults in 1982-1991 to 10,027 adults in 1992-2010, with peaks of 16,124 adults in 1998 and 15,118 adults in 2002 (Figure 15; Table 11). However, returns have been lower in most years since 2005, while the 2010 return of only 4,473 adults was the lowest since 1987 and the third lowest return in 28 years.

Recent estimated Chuck Creek returns of 857-2,083 (average 1,423) adults during 2003-2010 were far smaller than 1982-1985 returns, averaging 3,000 (range 2,407-3,837) adults (Figure 17; Table 15). However, escapement counts of 1,350 adults in 2001 and 2,189 adults in 2002 suggest total returns were strong in those years. The Chuck Creek drainage was heavily logged to the creek bank and lakeshore in most areas in the 1970s and 1980s. That activity likely reduced habitat structure in the system, increased solar exposure, and elevated temperatures. There has been substantial regrowth and beaver pond development in recent years. This pattern of widespread disturbance, followed by succession, has likely had a substantial influence on coho salmon returns.

## Regional Wild Abundance

The projected commercial catch of wild coho salmon was established in the 1980s as a proxy for total abundance in determining the need for an early-season troll fishery closure under Alaska regulatory statute (5 AAC 29.110). Specifically, the department may close the coho salmon troll fishery in the Southeastern Alaska-Yakutat Area for up to 7 days, on or after July 25, if the total projected commercial harvest of wild coho salmon is less than 1.1 million fish. When this
regulation was established, the commercial harvest of wild fish was considered the best available proxy for aggregate wild coho salmon abundance returning to the region.

However, a weakness in using commercial catch as a proxy for abundance is the assumption of a stable total exploitation rate, while exploitation rates have, in fact, varied substantially. Therefore, a more stable index of total abundance has been developed based on the estimated troll catch of wild coho salmon and an index of the troll exploitation rate using estimates for 3 wild indicator stocks distributed across the region (Auke Creek, Ford Arm Creek, and Hugh Smith Lake). These indicator stock projects were selected because of their precise accounting of escapement, their long-term history of estimates, and their geographic distribution. Auke Creek and Hugh Smith Lake appear to be suitable representatives for major stock aggregates in inside production areas of northern and southern Southeast, respectively. Ford Arm Creek likely represents the more heavily exploited milling-type stock on the outer coast and is consistently heavily exploited by the troll fishery. The Ford Arm Creek stock receives only half weighting (20\%) in the index compared with Auke Creek and Hugh Smith Lake ( $40 \%$ each) out of concern that it is not as broadly representative as the other two, and is exploited by the troll fishery at rates that are far above average for indicator stocks in the region. For example, the nearby Nakwasina River stock in Sitka Sound, also on the outer coast, is more migratory and has been exploited by the troll fishery at a far lower rate averaging 26\% during 2000-2007 (Shaul et al. 2008), compared with 52\% for Ford Arm Creek.

Total wild coho salmon abundance available to the troll fishery (Table 16) was estimated by dividing the estimated wild catch of coho salmon by the Alaska troll fishery by the Alaska troll fishery exploitation rate, based on the above-described weighted average for the three indicator stocks. We also examined the season total (statistical weeks $28-38$ ) mean-average catch-per-boat-day (CPUE) by power trollers in relation to the total wild abundance, as well as wild commercial catch (Figure 18). Since power troll CPUE is a primary inseason indicator used to assess aggregate abundance, it is important to account for its historical relationship.

There was a substantial upward shift in mean-average power troll wild CPUE relative to estimates of aggregate wild coho salmon abundance between 1995 and 1996. Mean-average power troll CPUE has maintained about the same correlation coefficient with abundance between the periods 1982-1995 and 1996-2010 ( $\mathrm{R}^{2}=0.74$ ), but CPUE was about $23 \%$ higher relative to abundance during the latter period (Figure 19).

This shift occurred concurrently with increasing price and cost pressures on the fishery in the mid-1990s. Although some power troll vessels departed the fishery between 1995 and 1996 and technological improvements may have contributed to increased effectiveness of a boat-day of effort, we believe from discussions with trollers that reduced willingness to fish in areas and times of lower abundance was a primary factor in the shift. Troll effort in power-troll boat-days concurrently declined sharply from an average of 49,400 boat-days during 1982-1995 to 26,000 boat-days during 1996-2010 (Table 16). The record low of 20,394 boat-days in 2002 occurred in a year of high abundance, but very low salmon prices and low exploitation rates. With improving prices, troll effort has since increased to 31,157 boat-days in 2010, the highest level since 1999.

Meanwhile, the all-gear wild commercial catch has fallen as a fraction of the abundance index from an average of $64 \%$ during 1982-1999 to only $50 \%$ during 2000-2010, as exploitation rates have declined. The troll exploitation rate used to calculate the index decreased from an average of $39 \%$ to $32 \%$ between those periods.

Table 9.-Estimated harvest by gear type, escapement, and total run of coho salmon returning to Auke Creek, 1980-2010.

| Year | Fishery Sample Size | Number of Fish |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Drift |  | Total |  |  | Total <br> Return |
|  |  | Troll | Seine | Gillnet | Sport | Catch | Escapement |  |
| 1980 | 15 | 117 | 0 | 29 | 24 | 170 | 698 | 868 |
| 1981 | 70 | 280 | 0 | 31 | 19 | 330 | 646 | 976 |
| 1982 | 45 | 149 | 117 | 24 | 2 | 292 | 447 | 739 |
| 1983 | 129 | 385 | 10 | 28 | 122 | 545 | 694 | 1,239 |
| 1984 | 124 | 372 | 8 | 13 | 51 | 444 | 651 | 1,095 |
| 1985 | 177 | 594 | 3 | 71 | 73 | 741 | 942 | 1,683 |
| 1986 | 110 | 421 | 2 | 60 | 37 | 520 | 454 | 974 |
| 1987 | 145 | 438 | 2 | 48 | 23 | 511 | 668 | 1,179 |
| 1988 | 145 | 306 | 12 | 72 | 55 | 445 | 756 | 1,201 |
| 1989 | 182 | 533 | 7 | 15 | 49 | 604 | 502 | 1,106 |
| 1990 | 168 | 635 | 15 | 57 | 78 | 785 | 697 | 1,482 |
| 1991 | 47 | 200 | 8 | 152 | 11 | 371 | 808 | 1,179 |
| 1992 | 53 | 603 | 10 | 196 | 46 | 855 | 1,020 | 1,875 |
| 1993 | 169 | 611 | 8 | 92 | 19 | 730 | 859 | 1,589 |
| 1994 | 330 | 1,064 | 224 | 218 | 112 | 1,618 | 1,437 | 3,055 |
| 1995 | 82 | 264 | 5 | 65 | 26 | 360 | 460 | 820 |
| 1996 | 160 | 446 | 11 | 133 | 36 | 626 | 515 | 1,141 |
| 1997 | 43 | 94 | 4 | 0 | 50 | 148 | 609 | 757 |
| 1998 | 157 | 437 | 17 | 43 | 54 | 551 | 862 | 1,413 |
| 1999 | 160 | 485 | 5 | 58 | 42 | 590 | 845 | 1,435 |
| 2000 | 103 | 228 | 6 | 23 | 29 | 286 | 683 | 969 |
| 2001 | 149 | 435 | 10 | 41 | 55 | 541 | 865 | 1,406 |
| 2002 | 125 | 288 | 8 | 77 | 51 | 424 | 1,176 | 1,600 |
| 2003 | 97 | 211 | 4 | 59 | 45 | 319 | 585 | 904 |
| 2004 | 62 | 199 | 47 | 71 | 15 | 332 | 416 | 748 |
| 2005 | 66 | 240 | 0 | 6 | 31 | 277 | 450 | 727 |
| 2006 | 80 | 196 | 0 | 77 | 26 | 299 | 581 | 880 |
| 2007 | 47 | 134 | 6 | 30 | 14 | 184 | 352 | 536 |
| 2008 | 105 | 292 | 0 | 76 | 9 | 377 | 600 | 977 |
| 2009 | 75 | 179 | 0 | 46 | 8 | 233 | 360 | 593 |
| 2010 | 86 | 194 | 0 | 134 | 22 | 350 | 417 | 767 |
| Average |  | 356 | 18 | 66 | 40 | 479 | 679 | 1,158 |

Table 10.-Estimated harvest by gear type, escapement and total run of coho salmon returning to the Berners River, 1982-2010.

| Year | Fishery Sample Size | Number of Fish |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Troll | Seine | Drift Gillnet | Sport | $\begin{aligned} & \hline \text { B.C. } \\ & \text { Net } \end{aligned}$ | Cost Recovery | Total Catch | Escapement | Total Return |
| 1982 | 48 | 12,887 | 0 | 10,568 | 0 | 0 | 0 | 23,455 | 7,505 | 30,960 |
| 1983 | 125 | 17,153 | 0 | 6,978 | 65 | 0 | 0 | 24,196 | 9,840 | 34,036 |
| 1984 | - | - | - | - | - | - | - | - | 2,825 | - |
| 1985 | 93 | 10,865 | 198 | 7,015 | 0 | 0 | 0 | 18,078 | 6,169 | 24,247 |
| 1986 | 157 | 13,560 | 0 | 8,928 | 395 | 0 | 0 | 22,883 | 1,752 | 24,635 |
| 1987 | 53 | 7,448 | 0 | 3,301 | 48 | 0 | 0 | 10,797 | 3,260 | 14,057 |
| 1988 | 102 | 5,926 | 181 | 6,141 | 0 | 0 | 0 | 12,248 | 2,724 | 14,972 |
| 1989 | 58 | 10,515 | 0 | 1,664 | 0 | 0 | 0 | 12,179 | 7,509 | 19,688 |
| 1990 | 471 | 14,851 | 141 | 7,352 | 369 | 0 | 0 | 22,713 | 11,050 | 33,763 |
| 1991 | 1,025 | 6,417 | 579 | 16,519 | 117 | 0 | 0 | 23,632 | 11,530 | 35,162 |
| 1992 | 701 | 15,337 | 344 | 14,677 | 192 | 0 | 0 | 30,550 | 15,300 | 45,850 |
| 1993 | 1,496 | 19,353 | 192 | 14,239 | 140 | 0 | 0 | 33,924 | 15,670 | 49,594 |
| 1994 | 2,647 | 27,319 | 1,686 | 27,907 | 891 | 5 | 0 | 57,808 | 15,920 | 73,728 |
| 1995 | 1,384 | 8,847 | 22 | 14,869 | 117 | 0 | 0 | 23,855 | 4,945 | 28,800 |
| 1996 | 601 | 10,524 | 380 | 6,434 | 412 | 0 | 0 | 17,750 | 6,050 | 23,800 |
| 1997 | 312 | 2,454 | 282 | 2,477 | 179 | 0 | 0 | 5,392 | 10,050 | 15,442 |
| 1998 | 613 | 10,427 | 435 | 5,716 | 380 | 0 | 0 | 16,958 | 6,802 | 23,760 |
| 1999 | 948 | 12,877 | 208 | 9,317 | 261 | 0 | 0 | 22,663 | 9,920 | 32,583 |
| 2000 | 693 | 5,362 | 145 | 5,296 | 196 | 0 | 6 | 11,005 | 10,650 | 21,655 |
| 2001 | 748 | 8,854 | 195 | 3,499 | 123 | 0 | 0 | 12,671 | 19,290 | 31,961 |
| 2002 | 788 | 8,671 | 228 | 13,014 | 471 | 0 | 0 | 22,384 | 27,700 | 50,084 |
| 2003 | 1,326 | 6,866 | 247 | 11,302 | 455 | 0 | 0 | 18,870 | 10,110 | 28,980 |
| 2004 | 756 | 10,941 | 92 | 7,376 | 278 | 0 | 0 | 18,687 | 14,450 | 33,137 |
| 2005 | 400 | 4,701 | 163 | 2,546 | 175 | 0 | 0 | 7,585 | 5,220 | 12,805 |
| 2006 | 701 | 4,100 | 0 | 6,341 | 97 | 0 | 0 | 10,537 | 5,470 | 16,007 |
| 2007 | 296 | 2,992 | 34 | 1,659 | 82 | 0 | 0 | 4,767 | 3,915 | 8,682 |
| 2008 | 421 | 3,790 | 0 | 3,386 | 38 | 0 | 0 | 7,214 | 6,870 | 14,084 |
| 2009 | 201 | 2,807 | 36 | 2,037 | 258 | 0 | 0 | 5,138 | 4,230 | 9,368 |
| 2010 | 325 | 6,472 | 109 | 7,264 | 315 | 0 | 0 | 14,160 | 7,520 | 21,680 |
| Average |  | 9,726 | 211 | 8,136 | 216 | 0 | 0 | 18,289 | 9,112 | 27,626 |

Table 11.-Estimated harvest by gear type, escapement, and total run of coho salmon returning to Ford Arm Creek, 1982-2010.

| Year | Fishery Sample Size | Number of Fish |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Alaska Troll | Seine | Drift Gillnet | Sport | Canadian Troll | Total Catch | Escapement | Total Return |
| 1982 | 38 | 1,927 | 106 | 0 | 0 | 0 | 2,033 | 2,655 | 4,688 |
| 1983 | 93 | 3,344 | 912 | 0 | 0 | 0 | 4,256 | 1,931 | 6,187 |
| 1984 | - | - | - | - | - | - | - | - | - |
| 1985 | 49 | 2,482 | 0 | 0 | 0 | 0 | 2,482 | 2,324 | 4,806 |
| 1986 | 87 | 2,483 | 63 | 0 | 0 | 0 | 2,545 | 1,552 | 4,097 |
| 1987 | 71 | 1,458 | 81 | 0 | 0 | 0 | 1,539 | 1,694 | 3,233 |
| 1988 | 151 | 2,816 | 46 | 0 | 0 | 31 | 2,893 | 3,119 | 6,012 |
| 1989 | 218 | 3,799 | 185 | 0 | 0 | 0 | 3,984 | 2,176 | 6,160 |
| 1990 | 174 | 2,982 | 100 | 0 | 0 | 0 | 3,082 | 2,192 | 5,274 |
| 1991 | 193 | 3,203 | 44 | 10 | 0 | 0 | 3,257 | 2,761 | 6,018 |
| 1992 | 199 | 5,252 | 233 | 0 | 0 | 0 | 5,485 | 3,866 | 9,351 |
| 1993 | 349 | 7,749 | 434 | 0 | 176 | 0 | 8,360 | 4,202 | 12,562 |
| 1994 | 236 | 6,856 | 1,020 | 0 | 384 | 0 | 8,259 | 3,227 | 11,486 |
| 1995 | 82 | 3,582 | 759 | 0 | 0 | 0 | 4,341 | 2,446 | 6,787 |
| 1996 | 64 | 3,083 | 0 | 0 | 281 | 0 | 3,364 | 2,500 | 5,864 |
| 1997 | 242 | 4,702 | 0 | 0 | 351 | 0 | 5,053 | 4,718 | 9,771 |
| 1998 | 320 | 7,835 | 435 | 20 | 785 | 0 | 9,075 | 7,049 | 16,124 |
| 1999 | 146 | 5,893 | 66 | 0 | 436 | 0 | 6,395 | 3,800 | 10,195 |
| 2000 | 193 | 4,604 | 916 | 14 | 211 | 0 | 5,744 | 2,304 | 8,048 |
| 2001 | 131 | 5,821 | 115 | 0 | 480 | 0 | 6,415 | 2,209 | 8,624 |
| 2002 | 246 | 5,751 | 1,260 | 0 | 998 | 0 | 8,009 | 7,109 | 15,118 |
| 2003 | 225 | 4,154 | 504 | 0 | 1,770 | 0 | 6,429 | 6,789 | 13,218 |
| 2004 | 153 | 7,722 | 524 | 0 | 319 | 0 | 8,564 | 3,539 | 12,103 |
| 2005 | 81 | 5,134 | 60 | 0 | 672 | 0 | 5,867 | 4,257 | 10,124 |
| 2006 | 137 | 3,866 | 367 | 0 | 844 | 0 | 5,078 | 4,737 | 9,815 |
| 2007 | 188 | 5,673 | 217 | 7 | 202 | 0 | 6,098 | 2,567 | 8,665 |
| 2008 | 231 | 4,563 | 1,047 | 0 | 277 | 0 | 5,887 | 5,173 | 11,060 |
| 2009 | 156 | 4,604 | 248 | 0 | 93 | 0 | 4,945 | 2,181 | 7,126 |
| 2010 | 96 | 2,149 | 582 | 0 | 132 | 0 | 2,863 | 1,610 | 4,473 |
| Average |  | 4,410 | 369 | 2 | 300 | 1 | 5,082 | 3,382 | 8,464 |

Table 12.-Estimated harvest by gear type, escapement, and total run of coho salmon returning to Hugh Smith Lake, 1982-2010.

| Year | Fishery Sample Size | Number of Fish |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Alaska <br> Troll | Alaska Seine | Alaska Gillnet | Alaska Trap | Alaska Sport | B.C. Troll | B.C. | B.C. Sport | Total <br> Catch | Escapement | Total Return |
| 1982 | 91 | 2,758 | 628 | 203 | 0 | 0 | 316 | 84 |  | 3,988 | 2,144 | 6,132 |
| 1983 | 185 | 1,374 | 424 | 277 | 49 | 0 | 214 | 50 | 0 | 2,388 | 1,487 | 3,875 |
| 1984 | 151 | 1,266 | 504 | 471 | 18 | 0 | 331 | 27 | 0 | 2,617 | 1,407 | 4,024 |
| 1985 | 213 | 868 | 287 | 137 | 5 | 0 | 201 | 39 | 0 | 1,537 | 903 | 2,440 |
| 1986 | 256 | 1,598 | 493 | 213 | 0 | 16 | 236 | 28 | 0 | 2,583 | 1,782 | 4,365 |
| 1987 | 99 | 657 | 82 | 148 | 4 | 28 | 155 | 53 | 0 | 1,127 | 1,117 | 2,244 |
| 1988 | 41 | 406 | 207 | 78 | 0 | 0 | 242 | 27 | 0 | 960 | 513 | 1,473 |
| 1989 | 91 | 1,217 | 320 | 247 | 0 | 62 | 106 | 20 | 0 | 1,971 | 433 | 2,404 |
| 1990 | 263 | 1,803 | 566 | 637 | 23 | 0 | 840 | 54 | 0 | 3,924 | 870 | 4,794 |
| 1991 | 399 | 2,103 | 190 | 941 | 0 | 38 | 614 | 44 | 0 | 3,931 | 1,836 | 5,767 |
| 1992 | 497 | 1,854 | 676 | 600 | 0 | 40 | 289 | 10 | 0 | 3,469 | 1,426 | 4,895 |
| 1993 | 155 | 2,227 | 269 | 666 | 0 | 0 | 207 | 41 | 0 | 3,410 | 832 | 4,242 |
| 1994 | 838 | 4,333 | 1,123 | 1,450 | 0 | 45 | 694 | 53 | 13 | 7,711 | 1,753 | 9,464 |
| 1995 | 432 | 2,018 | 947 | 1,588 | 0 | 98 | 236 | 28 | 11 | 4,927 | 1,781 | 6,708 |
| 1996 | 502 | 1,585 | 623 | 487 | 0 | 125 | 125 | 38 | 14 | 2,998 | 950 | 3,948 |
| 1997 | 480 | 1,321 | 108 | 397 | 0 | 45 | 91 | 0 | 0 | 1,964 | 732 | 2,696 |
| 1998 | 668 | 1,771 | 471 | 980 | 0 | 150 | 0 | 0 | 15 | 3,388 | 983 | 4,371 |
| 1999 | 623 | 1,757 | 283 | 726 | 0 | 180 | 0 | 0 | 30 | 2,975 | 1,246 | 4,221 |
| 2000 | 161 | 489 | 45 | 116 | 0 | 97 | 0 | 0 | 0 | 746 | 600 | 1,346 |
| 2001 | 314 | 696 | 454 | 324 | 0 | 58 | 7 | 0 | 0 | 1,539 | 1,580 | 3,119 |
| 2002 | 434 | 892 | 451 | 555 | 0 | 91 | 65 | 0 | 61 | 2,115 | 3,291 | 5,406 |
| 2003 | 335 | 894 | 354 | 690 | 0 | 106 | 91 | 31 | 0 | 2,166 | 1,510 | 3,676 |
| 2004 | 244 | 1,017 | 196 | 243 | 0 | 60 | 48 | 20 | 69 | 1,652 | 840 | 2,492 |
| 2005 | 256 | 1,163 | 122 | 532 | 0 | 59 | 36 | 8 | 0 | 1,920 | 1,732 | 3,652 |
| 2006 | 169 | 703 | 64 | 170 | 0 | 7 | 34 | 0 | 58 | 1,035 | 891 | 1,926 |
| 2007 | 294 | 1,262 | 175 | 300 | 0 | 74 | 57 | 11 | 186 | 2,065 | 1,244 | 3,309 |
| 2008 | 302 | 716 | 244 | 779 | 0 | 33 | 59 | 12 | 192 | 2,035 | 1,741 | 3,776 |
| 2009 | 253 | 1,049 | 268 | 483 | 0 | 18 | 265 | 0 | 19 | 2,102 | 2,281 | 4,383 |
| 2010 | 632 | 1,205 | 287 | 692 | 0 | 36 | 218 | 0 | 101 | 2,539 | 2,878 | 5,417 |
| Avera |  | 1,414 | 375 | 522 | 3 | 51 | 199 | 23 | 27 | 2,613 | 1,406 | 4,019 |

Table 13.-Estimated catch and escapement of coho salmon bound for the Taku River above Canyon Island, 1987-2010.

| Year | Fishery Sample Size | Number of Fish |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Troll | Seine | Gillnet | Marine Sport | Inriver | Total <br> Catch | Escapement | Total <br> Return |
| 1987 | - | - | - | - | - | 6,519 | - | 55,457 | - |
| 1988 | - | - | - | - | - | 3,643 | - | 39,450 | - |
| 1989 | - | - | - | - | - | 4,090 | - | 56,808 | - |
| 1990 | - | - | - | - | - | 3,788 | - | 72,196 | - |
| 1991 | - | - | - | - | - | 5,525 | - | 127,484 | - |
| 1992 | 128 | 41,736 | 2,668 | 76,324 | 3,337 | 5,629 | 129,694 | 84,853 | 214,547 |
| 1993 | 121 | 61,130 | 2,675 | 31,440 | 2,513 | 4,659 | 102,417 | 109,457 | 211,874 |
| 1994 | 178 | 97,039 | 26,352 | 86,198 | 19,018 | 14,786 | 243,393 | 96,343 | 339,736 |
| 1995 | 201 | 45,041 | 1,853 | 56,820 | 7,857 | 13,835 | 125,406 | 55,710 | 181,116 |
| 1996 | 136 | 24,781 | 220 | 17,067 | 2,461 | 5,119 | 49,648 | 44,635 | 94,283 |
| 1997 | 66 | 8,822 | 550 | 1,490 | 4,963 | 2,717 | 18,542 | 32,345 | 50,887 |
| 1998 | 231 | 28,827 | 742 | 19,371 | 4,428 | 5,176 | 58,544 | 61,382 | 119,926 |
| 1999 | 252 | 36,231 | 2,881 | 7,507 | 4,170 | 5,619 | 56,408 | 60,768 | 117,176 |
| 2000 | 221 | 21,236 | 2,132 | 11,466 | 4,137 | 5,478 | 44,449 | 64,700 | 109,149 |
| 2001 | 344 | 38,326 | 2,066 | 11,777 | 3,094 | 3,121 | 58,384 | 104,394 | 162,778 |
| 2002 | 397 | 39,054 | 3,457 | 30,894 | 6,641 | 3,870 | 83,916 | 219,360 | 303,276 |
| 2003 | 195 | 36,433 | 3,646 | 27,694 | 10,504 | 3,776 | 82,053 | 183,038 | 265,091 |
| 2004 | 223 | 62,002 | 5,334 | 30,961 | 14,107 | 9,804 | 122,208 | 129,327 | 251,535 |
| 2005 | 90 | 46,522 | 4,324 | 23,546 | 4,653 | 8,393 | 87,438 | 135,558 | 222,996 |
| 2006 | 319 | 49,394 | 614 | 37,879 | 4,621 | 12,409 | 104,917 | 121,778 | 226,695 |
| 2007 | 150 | 23,519 | 6,484 | 18,795 | 2,123 | 8,053 | 58,974 | 74,326 | 133,300 |
| 2008 | 94 | 47,997 | 0 | 25,254 | 1,530 | 3,930 | 78,711 | 95,360 | 174,071 |
| 2009 | 300 | 51,748 | 4,749 | 46,838 | 6,720 | 9,635 | 119,690 | 104,321 | 224,011 |
| 2010 | 117 | 34,554 | 3,988 | 52,497 | 14,287 | 14,666 | 119,992 | 126,830 | 246,822 |
| 1992-2010 |  |  |  |  |  |  |  |  |  |
| Average |  | 41,810 | 3,933 | 32,306 | 6,377 | 7,404 | 91,831 | 100,236 | 192,067 |
| 1987-2010 |  |  |  |  |  |  |  |  |  |
| Average |  | - | - | - | - | 6,843 | - | 93,995 | - |

Table 14.-Estimated harvest by gear type, escapement, and total run of coho salmon returning to the Chilkat River, 1987-2010.

| Fishery Sample |  | Number of Fish |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Drift | Marine | Inriver | Total |  |  | Total |
| Year | Size | Troll | Seine | Gillnet | Sport | Sport | Subsistence | Catch | Escapement | Return |
| 1987 | - | - | - | - | - | - | 10 | - | 37,432 | - |
| 1988 | - | - | - | - | - | - | 83 | _ | 29,495 | - |
| 1989 | - | - | - | - | - | - | 60 | - | 48,833 | - |
| 1990 | - | - | - | - | - | - | 107 | - | 79,807 | - |
| 1991 | - | - | - | - | - | - | 100 | - | 84,517 | - |
| 1992 | - | - | - | - | - | - | 217 | - | 77,588 | - |
| 1993 | - | - | - | - | - | - | 209 | - | 58,217 | - |
| 1994 | - | - | - | - | - | - | 186 | - | 194,425 | - |
| 1995 | - | - | - | - | - | - | 334 | - | 56,737 | - |
| 1996 | - | - | - | - | - | - | 203 | - | 37,331 | - |
| 1997 | - | - | - | - | - | - | 134 | - | 43,519 | - |
| 1998 | - | - | - | - | - | - | 178 | - | 50,758 | - |
| 1999 | - | - | - | - | - | - | 115 | - | 57,140 | - |
| 2000 | 265 | 21,911 | 825 | 15,580 | 1,230 | 819 | 199 | 40,564 | 84,843 | 125,407 |
| 2001 | 251 | 30,624 | 673 | 13,709 | 817 | 2,094 | 126 | 48,043 | 107,697 | 155,740 |
| 2002 | 329 | 63,056 | 812 | 43,296 | 2,775 | 3,480 | 574 | 113,993 | 204,805 | 318,798 |
| 2003 | 424 | 51,794 | 1,268 | 26,305 | 3,883 | 2,489 | 498 | 86,237 | 133,045 | 219,282 |
| 2004 | 254 | 84,286 | 937 | 35,155 | 7,982 | 2,822 | 455 | 131,637 | 67,053 | 198,690 |
| 2005 | 141 | 17,646 | 325 | 10,590 | 872 | 1,203 | 335 | 30,971 | 38,589 | 69,560 |
| 2006 | 217 | 42,621 | 295 | 26,246 | 1,297 | 1,782 | 355 | 72,596 | 79,050 | 151,646 |
| 2007 | 78 | 8,078 | 0 | 3,986 | 66 | 540 | 107 | 12,777 | 24,770 | 37,547 |
| 2008 | 358 | 23,875 | 0 | 28,727 | 251 | 738 | 390 | 53,981 | 56,369 | 110,350 |
| 2009 | 325 | 14,911 | 301 | 15,179 | 72 | 2,059 | 460 | 32,982 | 47,911 | 80,893 |
| 2010 | 427 | 29,828 | 246 | 37,723 | 1,807 | 2,021 | 322 | 71,947 | 84,909 | 156,856 |
| 2000-2010 |  |  |  |  |  |  |  |  |  |  |
| Average |  | 35,330 | 517 | 23,318 | 1,914 | 1,822 | 347 | 63,248 | 84,458 | 147,706 |
| 1987-2010 Averag |  | ge - | - | - | - | - | 240 | - | 74,368 | - |

Table 15.-Estimated harvest by gear type, escapement, and total run of adult coho salmon returning to Chuck Creek, 1982, 1983, 1985, and 2003-2010, with escapement counts only for 2001 and 2002.

| Year | Fishery <br> Sample <br> Size | Number of Fish |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Alaska Troll | Seine | Drift <br> Gillnet | Sport | B.C. <br> Troll | $\begin{aligned} & \text { B.C. } \\ & \text { Net } \end{aligned}$ | $\begin{aligned} & \text { B.C. } \\ & \text { Sport } \end{aligned}$ | Total <br> Catch | Escapement | Total <br> Return |
| 1982 | 28 | 1,320 | 418 | 0 | 0 | 0 | 0 | 0 | 1,738 | 1,017 | 2,755 |
| 1983 | 11 | 551 | 618 | 0 | 0 | 0 | 0 | 0 | 1,169 | 1,238 | 2,407 |
| 1985 | 29 | 1,906 | 975 | 0 | 0 | 0 | 0 | 0 | 2,881 | 956 | 3,837 |
| 2001 | - | - | - | - | - | - | - | - | - | 1,350 | - |
| 2002 | - | - | - | - | - | - | - | - | - | 2,189 | - |
| 2003 | 192 | 539 | 252 | 0 | 83 | 0 | 0 | 0 | 874 | 614 | 1,488 |
| 2004 | 203 | 725 | 179 | 0 | 76 | 0 | 0 | 0 | 980 | 606 | 1,586 |
| 2005 | 160 | 652 | 232 | 0 | 120 | 0 | 0 | 0 | 1,004 | 646 | 1,650 |
| 2006 | 84 | 401 | 32 | 0 | 8 | 7 | 0 | 0 | 448 | 409 | 857 |
| 2007 | 143 | 577 | 116 | 0 | 29 | 10 | 5 | 45 | 782 | 425 | 1,207 |
| 2008 | 121 | 389 | 146 | 17 | 8 | 5 | 0 | 0 | 565 | 309 | 874 |
| 2009 | 311 | 996 | 292 | 3 | 16 | 0 | 0 | 0 | 1,307 | 776 | 2,083 |
| 2010 | 284 | 658 | 110 | 0 | 49 | 4 | 0 | 6 | 827 | 814 | 1,641 |
| Average |  | 792 | 306 | 2 | 35 | 2 | 0 | 5 | 1,143 | 873 | 1,853 |

## EXPLOITATION RATES

Most Southeast Alaska coho salmon stocks accumulate substantial exploitation rates in mixedstock fisheries. Some inside stocks run a gauntlet of fisheries, from troll and marine sport fisheries along the outer coast, through net, sport, and troll fisheries in corridor areas, and through intensive inside gillnet fisheries concentrated near some estuaries. In some cases, there are significant freshwater sport and subsistence harvests as well.

Exploitation rates were low for most systems in 2002 and 2003 because of market and cost pressures on the fisheries. However, that pattern appeared to be reversed by 2004 in apparent response to improved prices, particularly in the troll fishery (Figures 20 and 21; Tables 17-23).
The Auke Creek stock has been exploited at a relatively low average rate of $40 \%$ (range 20-55\%) during 1980 to 2010, owing mainly to lack of intensive net fishing in its migratory pathway during the fall (Figures 20 and 21; Table 17). The troll fishery has accounted for the majority of the harvest, exploiting the stock at an average rate of $30 \%$ (range $12 \%$ to $48 \%$ ), with less than $5 \%$ each attributed to seine, gillnet, and sport fisheries. During 2008-2010, this stock was exploited at an average of $41 \%$, very close to the long-term average of $40 \%$. However, the 2010 estimate of $46 \%$ was the highest all-gear exploitation rate estimate since 1996 (53\%), owing largely to a record drift gillnet exploitation rate of $17 \%$. The troll fishery exploitation rate during 2008-2010 ranged from $25 \%$ to 30\%.

During 2008-2010, total exploitation rate estimates for the Berners River stock ranged from $51 \%$ to $65 \%$, and averaged $57 \%$. The troll fishery has been the largest harvester of that stock, on average. However, the drift gillnet fishery has also accounted for a substantial portion of the run, ranging from 22\% to 34\% (Figures 20 and 21; Table 18).

Table 16.-Estimates of wild and hatchery commercial catch and troll catch, troll exploitation rate index, mean-average power troll wild coho CPUE, total troll effort, and total wild coho salmon abundance available in the Alaska troll fishery, in millions of fish, 1982-2010.

| Year | Troll Catch (Millions of Fish) |  |  | Alaska Troll <br> Exploitation <br> Rate Index ${ }^{1}$ | Estimated <br> Total Wild <br> Abundance | Mean-Avg. Troll Effort Power Troll (Power Troll Wild CPUE ${ }^{2}$ Boat-Days) ${ }^{3}$ |  | Commercial Catch (Millions of Fish) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Hatchery | Wild |  |  |  |  | Total | Hatchery | Wild |
| 1982 | 1.322 | 0.036 | 1.286 | 34.3\% | 3.752 | 47.4 | 67,039 | 2.103 | 0.062 | 2.041 |
| 1983 | 1.280 | 0.053 | 1.227 | 37.4\% | 3.280 | 44.1 | 50,376 | 1.943 | 0.075 | 1.868 |
| 1984 | 1.134 | 0.071 | 1.062 | 37.0\% | 2.868 | 38.7 | 50,502 | 1.881 | 0.121 | 1.760 |
| 1985 | 1.606 | 0.107 | 1.500 | 38.7\% | 3.878 | 42.4 | 54,905 | 2.562 | 0.177 | 2.385 |
| 1986 | 2.130 | 0.280 | 1.850 | 44.0\% | 4.200 | 47.7 | 61,356 | 3.259 | 0.394 | 2.865 |
| 1987 | 1.042 | 0.091 | 0.951 | 35.6\% | 2.671 | 25.6 | 52,908 | 1.487 | 0.112 | 1.374 |
| 1988 | 0.500 | 0.028 | 0.472 | 30.6\% | 1.544 | 21.5 | 38,866 | 1.036 | 0.049 | 0.987 |
| 1989 | 1.370 | 0.122 | 1.248 | 51.9\% | 2.408 | 54.3 | 48,228 | 2.182 | 0.175 | 2.007 |
| 1990 | 1.851 | 0.292 | 1.560 | 43.5\% | 3.586 | 43.9 | 48,291 | 2.740 | 0.413 | 2.327 |
| 1991 | 1.721 | 0.384 | 1.337 | 32.0\% | 4.175 | 48.7 | 42,598 | 2.897 | 0.608 | 2.289 |
| 1992 | 1.929 | 0.420 | 1.509 | 39.3\% | 3.845 | 51.1 | 45,478 | 3.424 | 0.739 | 2.685 |
| 1993 | 2.408 | 0.394 | 2.014 | 48.7\% | 4.134 | 64.5 | 46,527 | 3.556 | 0.544 | 3.012 |
| 1994 | 3.462 | 0.515 | 2.947 | 44.2\% | 6.669 | 89.1 | 51,912 | 5.520 | 0.732 | 4.788 |
| 1995 | 1.750 | 0.336 | 1.414 | 35.5\% | 3.987 | 54.0 | 32,193 | 3.130 | 0.583 | 2.547 |
| 1996 | 1.907 | 0.449 | 1.458 | 42.2\% | 3.453 | 57.0 | 29,779 | 2.986 | 0.626 | 2.360 |
| 1997 | 1.170 | 0.242 | 0.928 | 34.2\% | 2.714 | 39.9 | 24,974 | 1.839 | 0.327 | 1.512 |
| 1998 | 1.636 | 0.329 | 1.307 | 38.3\% | 3.413 | 57.8 | 26,150 | 2.751 | 0.547 | 2.204 |
| 1999 | 2.273 | 0.514 | 1.758 | 41.7\% | 4.214 | 69.0 | 31,894 | 3.277 | 0.724 | 2.552 |
| 2000 | 1.125 | 0.249 | 0.876 | 35.4\% | 2.476 | 43.8 | 22,557 | 1.688 | 0.354 | 1.334 |
| 2001 | 1.845 | 0.365 | 1.481 | 34.8\% | 4.254 | 73.4 | 23,806 | 2.945 | 0.554 | 2.391 |
| 2002 | 1.315 | 0.335 | 0.980 | 21.4\% | 4.578 | 63.7 | 20,394 | 2.487 | 0.605 | 1.882 |
| 2003 | 1.223 | 0.287 | 0.936 | 25.4\% | 3.693 | 55.4 | 21,549 | 2.166 | 0.501 | 1.665 |
| 2004 | 1.917 | 0.312 | 1.605 | 39.7\% | 4.040 | 76.7 | 26,776 | 2.858 | 0.451 | 2.407 |
| 2005 | 2.038 | 0.333 | 1.705 | 36.1\% | 4.725 | 76.3 | 27,065 | 2.767 | 0.450 | 2.317 |
| 2006 | 1.363 | 0.217 | 1.146 | 31.4\% | 3.653 | 55.6 | 25,862 | 1.841 | 0.266 | 1.575 |
| 2007 | 1.378 | 0.309 | 1.069 | 38.4\% | 2.788 | 48.8 | 26,033 | 1.911 | 0.393 | 1.519 |
| 2008 | 1.293 | 0.274 | 1.019 | 27.8\% | 3.668 | 49.0 | 24,799 | 2.040 | 0.396 | 1.644 |
| 2009 | 1.592 | 0.247 | 1.344 | 34.6\% | 3.888 | 67.1 | 27,021 | 2.375 | 0.384 | 1.991 |
| 2010 | 1.343 | 0.285 | 1.058 | 28.6\% | 3.695 | 54.2 | 31,157 | 2.286 | 0.470 | 1.815 |
| Total | 1.618 | 0.272 | 1.346 | 36.6\% | 3.664 | 53.8 | 37,276 | 2.550 | 0.408 | 2.142 |

[^4]

Figure 18.-Estimates of Southeast Alaska wild coho salmon commercial catch, total wild abundance available to the Alaska troll fishery and mean-average power troll wild CPUE in statistical weeks 28-38, 1982-2010.

Exploitation rate estimates for the Taku River run during 1992-2010 ranged from 28\% to 72\% (average $47 \%$; Table 21). Trollers accounted for $22 \%$ (range $13-31 \%$ ) of the run, on average, while drift gillnetters accounted for $16 \%$ (range $3-36 \%$ ). The drift gillnet exploitation rate ranged from $15 \%$ to $36 \%$ during 1992-1998 (except for 1997 when the District 111 gillnet fishery was closed early) and declined to only $6-11 \%$ in 1999-2003, before increasing again to $11-21 \%$ in 2006-2010. Seine, marine sport, and inriver fisheries have accounted for an average of $2 \%, 3 \%$, and $4 \%$ of the run, respectively.
Troll fishery exploitation rate estimates for the Chilkat River stock during 2000-2010 averaged higher than estimates for the Taku River ( $23 \%$ compared with $20 \%$ ), but displayed a similar pattern, with the highest estimate in 2004 (Tables 21 and 22). Chilkat River fish were also exploited more heavily by the drift gillnet fishery, on average, at rates ranging from $9 \%$ to $26 \%$ (average 16\%) during 2000-2010, compared with $14 \%$ (range $7-21 \%$ ) for the Taku run. Total all-gear exploitation rate estimates for the Chilkat River increased sharply from $31 \%$ to $39 \%$ in $2000-2003$ to a peak of $66 \%$ in 2004 before decreasing again to $34-49 \%$ in 2005-2010.

The Ford Arm Creek stock has been harvested at moderate to high exploitation rates, primarily in the regional troll fishery, which is most intensive in waters near this system. The exploitation rate by the troll fishery has averaged $53 \%$ since 1982 (Figure 20; Table 19), while intermittent seine harvests and increasing marine sport fishing have brought the long-term average exploitation rate by all fisheries up to $60 \%$. The stock forages in coastal waters throughout the summer and is, therefore, substantially more available to intensive hook-and-line fisheries in the vicinity of Sitka and Pelican compared with more migratory stocks. The Ford Arm stock has also become one of the more heavily fished stocks by the recently expanded sport charter fishery, with recent exploitation rate estimates ranging as high as $13 \%$ in 2003. The Khaz Bay seine fishery also harvests a substantial fraction of the stock in some years. The seine exploitation rate estimate of $13 \%$ in 2010 was the second highest on record and occurred incidentally to an alltime record catch of 2.25 million pink salmon by seine fishery in Khaz Bay.


Figure 19.-Linear relationship between estimated region total wild coho salmon abundance and meanaverage power troll wild CPUE in statistical weeks 28-38, 1982-1995 and 1996-2010.


Figure 20.-Estimated exploitation rates by the Alaska troll fishery for 4 coded-wire-tagged Southeast Alaska coho salmon stocks, 1982-2010.


Figure 21.-Estimated total exploitation rates by all fisheries for 4 coded-wire-tagged Southeast Alaska coho salmon stocks, 1982-2010.

The Hugh Smith Lake stock is an example of a stock that traverses an extended gauntlet of mixed stock fisheries along the coast and is exposed to fisheries outside of state jurisdiction in Canada and around Annette Island. From 1982 to 1988, the Hugh Smith Lake stock was exploited at moderate rates for coho salmon, averaging 61\% (Figure 21; Table 20). However, exploitation became markedly more intense during 1989-1999, at an average rate of $76 \%$ (range $68-82 \%$ ) before decreasing sharply to $53 \%$ (range $39-66 \%$ ) during 2000-2010. The recent decrease was distributed across all commercial fisheries, with the Alaska troll exploitation rate decreasing from $42 \%$ to $28 \%$, the Alaska seine rate decreasing from $10 \%$ to $7 \%$, and the Alaska gillnet rate decreasing from $16 \%$ to $12 \%$. The average Alaska sport exploitation rate remained about the same at $2 \%$, while the average exploitation rate on the stock by Canadian fisheries decreased from $6 \%$ to $4 \%$. The troll fishery in British Columbia was a substantial factor through the mid-1990s, with an average exploitation rate on the Hugh Smith Lake stock of 7\% from 1982 through 1997, after which Canadian exploitation decreased to zero for several years due to severe fishing restrictions on coho salmon. Although the troll fleet in northern British Columbia was substantially reduced in the late-1990s, relaxation of fishery restrictions aimed primarily at conserving upper Skeena coho salmon has increased the Canadian troll exploitation rate on the Hugh Smith Lake stock to 4-6\% in 2009 and 2010.

The Chuck Creek stock on the southern outside coast was exploited at an average rate of $60 \%$ (range 50-65\%) in 2003-2010 compared with 62\% (range 49-75\%) in 1982, 1983, and 1985 (Table 23). This stock has a relatively localized fishery distribution concentrated in southern outside waters compared with the more migratory Hugh Smith Lake stock and southern inside fall hatchery stocks that are more broadly distributed in the catch as they progress southward during the season. Most of the harvest of Chuck Creek coho salmon is taken in the troll and seine fisheries, although recent development of the sport charter fishery has resulted in significant sport exploitation rates, averaging about 3\% during 2003-2010.

A substantial shift in harvest by gear type on the Chuck Creek stock occurred between the early to mid-1980s and the mid to late-2000s, with a reduction by nearly half in the average seine exploitation rate estimate from $22 \%$ to $12 \%$. This occurred concurrently with decreases of $34 \%$ and $75 \%$, respectively, in the average number of purse seine boat-days fished in Districts 103 and 104. The average number of coho salmon harvested by purse seiners in those districts decreased by 8\% in District 103 from 29,200 fish to 26,900 fish and by 57\% in District 104 from 146,500 fish to 62,600 fish. The decline in purse seine effort and catch in District 104 has been a substantial factor in the total Southeast Alaska purse seine catch falling below its $19 \%$ long-term allocation of the commercial catch, while average catches by trollers and drift gillnetters since 1989 have been above their long-term allocations (Skannes et al. 2011). The reasons for the decline in purse seine catch and effort in District 104 appear to be primarily a combination of restrictions on fishing early in the season under the PST, as well as trends in migration and availability of sockeye salmon and other species in the district that have made it a less attractive fishing location in some recent years relative to other opportunities.
The $10 \%$ decline in purse seine exploitation on the Chuck Creek stock was offset, in part, by an increase in average Alaska troll exploitation from $40 \%$ in 1982, 1983, and 1985 to $44 \%$ in 2003-2010 and by an increase in estimated marine sport exploitation from a trace level to an average of over $3 \%$.

Table 17.-Estimated harvest (by gear type) and escapement as a percent of the total Auke Creek coho salmon run, 1980-2010.

| Year | Fishery Sample Size | Percent of Total Return |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Troll | Seine | Drift Gillnet | Sport | Total Catch | Escapement | Total <br> Return |
| 1980 | 15 | 13.5 | 0.0 | 3.3 | 2.8 | 19.6 | 80.4 | 100.0 |
| 1981 | 70 | 28.7 | 0.0 | 3.2 | 1.9 | 33.8 | 66.2 | 100.0 |
| 1982 | 45 | 20.2 | 15.8 | 3.2 | 0.3 | 39.5 | 60.5 | 100.0 |
| 1983 | 129 | 31.1 | 0.8 | 2.3 | 9.8 | 44.0 | 56.0 | 100.0 |
| 1984 | 124 | 34.0 | 0.7 | 1.2 | 4.7 | 40.5 | 59.5 | 100.0 |
| 1985 | 177 | 35.3 | 0.2 | 4.2 | 4.3 | 44.0 | 56.0 | 100.0 |
| 1986 | 110 | 43.2 | 0.2 | 6.2 | 3.8 | 53.4 | 46.6 | 100.0 |
| 1987 | 145 | 37.2 | 0.2 | 4.1 | 2.0 | 43.3 | 56.7 | 100.0 |
| 1988 | 145 | 25.5 | 1.0 | 6.0 | 4.6 | 37.1 | 62.9 | 100.0 |
| 1989 | 182 | 48.2 | 0.6 | 1.4 | 4.4 | 54.6 | 45.4 | 100.0 |
| 1990 | 168 | 42.8 | 1.0 | 3.8 | 5.3 | 53.0 | 47.0 | 100.0 |
| 1991 | 47 | 17.0 | 0.7 | 12.9 | 0.9 | 31.5 | 68.5 | 100.0 |
| 1992 | 53 | 32.2 | 0.5 | 10.5 | 2.5 | 45.6 | 54.4 | 100.0 |
| 1993 | 169 | 38.5 | 0.5 | 5.8 | 1.2 | 45.9 | 54.1 | 100.0 |
| 1994 | 330 | 34.8 | 7.3 | 7.1 | 3.7 | 53.0 | 47.0 | 100.0 |
| 1995 | 82 | 32.2 | 0.6 | 7.9 | 3.2 | 43.9 | 56.1 | 100.0 |
| 1996 | 160 | 39.1 | 1.0 | 11.7 | 3.2 | 54.9 | 45.1 | 100.0 |
| 1997 | 43 | 12.4 | 0.5 | 0.0 | 6.6 | 19.6 | 80.4 | 100.0 |
| 1998 | 157 | 30.9 | 1.2 | 3.0 | 3.8 | 39.0 | 61.0 | 100.0 |
| 1999 | 160 | 33.8 | 0.3 | 4.0 | 2.9 | 41.1 | 58.9 | 100.0 |
| 2000 | 103 | 23.5 | 0.6 | 2.4 | 3.0 | 29.5 | 70.5 | 100.0 |
| 2001 | 149 | 30.9 | 0.7 | 2.9 | 3.9 | 38.5 | 61.5 | 100.0 |
| 2002 | 125 | 18.0 | 0.5 | 4.8 | 3.2 | 26.5 | 73.5 | 100.0 |
| 2003 | 97 | 23.3 | 0.4 | 6.5 | 5.0 | 35.3 | 64.7 | 100.0 |
| 2004 | 62 | 26.6 | 6.3 | 9.5 | 2.0 | 44.4 | 55.6 | 100.0 |
| 2005 | 66 | 33.0 | 0.0 | 0.8 | 4.3 | 38.1 | 61.9 | 100.0 |
| 2006 | 80 | 22.3 | 0.0 | 8.8 | 3.0 | 34.0 | 66.0 | 100.0 |
| 2007 | 47 | 25.0 | 1.1 | 5.6 | 2.6 | 34.3 | 65.7 | 100.0 |
| 2008 | 105 | 29.9 | 0.0 | 7.8 | 0.9 | 38.6 | 61.4 | 100.0 |
| 2009 | 75 | 30.2 | 0.0 | 7.8 | 1.3 | 39.3 | 60.7 | 100.0 |
| 2010 | 86 | 25.3 | 0.0 | 17.5 | 2.9 | 45.6 | 54.4 | 100.0 |
| Average |  | 29.6 | 1.4 | 5.7 | 3.3 | 40.0 | 60.0 | 100.0 |

Table 18.-Estimated harvest (by gear type) and escapement as a percent of the total Berners River coho salmon run, 1982-2010.

|  | Fishery | Percent of Total Return |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Sample <br> Size | Troll | Seine | Drift | Sport | $\begin{aligned} & \hline \text { B.C. } \\ & \text { Net } \end{aligned}$ | Cost Recovery | Total Catch | Escapement | Total <br> Return |
| 1982 | 48 | 41.6 | 0.0 | 34.1 | 0.0 | 0.0 | 0.0 | 75.8 | 24.2 | 100.0 |
| 1983 | 125 | 50.4 | 0.0 | 20.5 | 0.2 | 0.0 | 0.0 | 71.1 | 28.9 | 100.0 |
| 1984 | - | - | - | - | - | - | - | - | - | - |
| 1985 | 93 | 44.8 | 0.8 | 28.9 | 0.0 | 0.0 | 0.0 | 74.6 | 25.4 | 100.0 |
| 1986 | 157 | 55.0 | 0.0 | 36.2 | 1.6 | 0.0 | 0.0 | 92.9 | 7.1 | 100.0 |
| 1987 | 53 | 53.0 | 0.0 | 23.5 | 0.3 | 0.0 | 0.0 | 76.8 | 23.2 | 100.0 |
| 1988 | 102 | 39.6 | 1.2 | 41.0 | 0.0 | 0.0 | 0.0 | 81.8 | 18.2 | 100.0 |
| 1989 | 58 | 53.4 | 0.0 | 8.5 | 0.0 | 0.0 | 0.0 | 61.9 | 38.1 | 100.0 |
| 1990 | 471 | 44.0 | 0.4 | 21.8 | 1.1 | 0.0 | 0.0 | 67.3 | 32.7 | 100.0 |
| 1991 | 1,025 | 18.2 | 1.6 | 47.0 | 0.3 | 0.0 | 0.0 | 67.2 | 32.8 | 100.0 |
| 1992 | 701 | 33.5 | 0.8 | 32.0 | 0.4 | 0.0 | 0.0 | 66.6 | 33.4 | 100.0 |
| 1993 | 1,496 | 39.0 | 0.4 | 28.7 | 0.3 | 0.0 | 0.0 | 68.4 | 31.6 | 100.0 |
| 1994 | 2,647 | 37.1 | 2.3 | 37.9 | 1.2 | 0.0 | 0.0 | 78.4 | 21.6 | 100.0 |
| 1995 | 1,384 | 30.7 | 0.1 | 51.6 | 0.4 | 0.0 | 0.0 | 82.8 | 17.2 | 100.0 |
| 1996 | 601 | 44.2 | 1.6 | 27.0 | 1.7 | 0.0 | 0.0 | 74.6 | 25.4 | 100.0 |
| 1997 | 312 | 15.9 | 1.8 | 16.0 | 1.2 | 0.0 | 0.0 | 34.9 | 65.1 | 100.0 |
| 1998 | 613 | 43.9 | 1.8 | 24.1 | 1.6 | 0.0 | 0.0 | 71.4 | 28.6 | 100.0 |
| 1999 | 948 | 39.5 | 0.6 | 28.6 | 0.8 | 0.0 | 0.0 | 69.6 | 30.4 | 100.0 |
| 2000 | 693 | 24.8 | 0.7 | 24.5 | 0.9 | 0.0 | 0.0 | 50.8 | 49.2 | 100.0 |
| 2001 | 748 | 27.7 | 0.6 | 10.9 | 0.4 | 0.0 | 0.0 | 39.6 | 60.4 | 100.0 |
| 2002 | 788 | 17.3 | 0.5 | 26.0 | 0.9 | 0.0 | 0.0 | 44.7 | 55.3 | 100.0 |
| 2003 | 1,326 | 23.7 | 0.9 | 39.0 | 1.6 | 0.0 | 0.0 | 65.1 | 34.9 | 100.0 |
| 2004 | 756 | 33.0 | 0.3 | 22.3 | 0.8 | 0.0 | 0.0 | 56.4 | 43.6 | 100.0 |
| 2005 | 400 | 36.7 | 1.3 | 19.9 | 1.4 | 0.0 | 0.0 | 59.2 | 40.8 | 100.0 |
| 2006 | 701 | 25.6 | 0.0 | 39.6 | 0.6 | 0.0 | 0.0 | 65.8 | 34.2 | 100.0 |
| 2007 | 296 | 34.5 | 0.4 | 19.1 | 0.9 | 0.0 | 0.0 | 54.9 | 45.1 | 100.0 |
| 2008 | 421 | 26.9 | 0.0 | 24.0 | 0.3 | 0.0 | 0.0 | 51.2 | 48.8 | 100.0 |
| 2009 | 201 | 30.0 | 0.4 | 21.7 | 2.8 | 0.0 | 0.0 | 54.8 | 45.2 | 100.0 |
| 2010 | 325 | 29.9 | 0.5 | 33.5 | 1.5 | 0.0 | 0.0 | 65.3 | 34.7 | 100.0 |
| Average |  | 35.5 | 0.7 | 28.1 | 0.8 | 0.0 | 0.0 | 65.1 | 34.9 | 100.0 |

Table 19.-Estimated harvest (by gear type) and escapement as a percent of the total Ford Arm Creek coho salmon run, 1982-2010.

| Year | Fishery Sample <br> Size | Percent of Total Return |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Alaska Troll | Seine | Drift Gillnet | Sport | Canadian Troll | Total Catch | Escapement | Total <br> Return |
| 1982 | 38 | 41.1 | 2.3 | 0.0 | 0.0 | 0.0 | 43.4 | 56.6 | 100.0 |
| 1983 | 93 | 54.0 | 14.7 | 0.0 | 0.0 | 0.0 | 68.8 | 31.2 | 100.0 |
| 1984 | - | - | - | - | - | - | - | - | - |
| 1985 | 49 | 51.6 | 0.0 | 0.0 | 0.0 | 0.0 | 51.6 | 48.4 | 100.0 |
| 1986 | 87 | 60.6 | 1.5 | 0.0 | 0.0 | 0.0 | 62.1 | 37.9 | 100.0 |
| 1987 | 71 | 45.1 | 2.5 | 0.0 | 0.0 | 0.0 | 47.6 | 52.4 | 100.0 |
| 1988 | 151 | 46.8 | 0.8 | 0.0 | 0.0 | 0.5 | 48.1 | 51.9 | 100.0 |
| 1989 | 218 | 61.7 | 3.0 | 0.0 | 0.0 | 0.0 | 64.7 | 35.3 | 100.0 |
| 1990 | 174 | 56.5 | 1.9 | 0.0 | 0.0 | 0.0 | 58.4 | 41.6 | 100.0 |
| 1991 | 193 | 53.2 | 0.7 | 0.2 | 0.0 | 0.0 | 54.1 | 45.9 | 100.0 |
| 1992 | 199 | 56.2 | 2.5 | 0.0 | 0.0 | 0.0 | 58.7 | 41.3 | 100.0 |
| 1993 | 349 | 61.7 | 3.5 | 0.0 | 1.4 | 0.0 | 66.5 | 33.5 | 100.0 |
| 1994 | 236 | 59.7 | 8.9 | 0.0 | 3.3 | 0.0 | 71.9 | 28.1 | 100.0 |
| 1995 | 82 | 52.8 | 11.2 | 0.0 | 0.0 | 0.0 | 64.0 | 36.0 | 100.0 |
| 1996 | 64 | 52.6 | 0.0 | 0.0 | 4.8 | 0.0 | 57.4 | 42.6 | 100.0 |
| 1997 | 242 | 48.1 | 0.0 | 0.0 | 3.6 | 0.0 | 51.7 | 48.3 | 100.0 |
| 1998 | 320 | 48.6 | 2.7 | 0.1 | 4.9 | 0.0 | 56.3 | 43.7 | 100.0 |
| 1999 | 146 | 57.8 | 0.7 | 0.0 | 4.3 | 0.0 | 62.7 | 37.3 | 100.0 |
| 2000 | 193 | 57.2 | 11.4 | 0.2 | 2.6 | 0.0 | 71.4 | 28.6 | 100.0 |
| 2001 | 131 | 67.5 | 1.3 | 0.0 | 5.6 | 0.0 | 74.4 | 25.6 | 100.0 |
| 2002 | 246 | 38.0 | 8.3 | 0.0 | 6.6 | 0.0 | 53.0 | 47.0 | 100.0 |
| 2003 | 225 | 31.4 | 3.8 | 0.0 | 13.4 | 0.0 | 48.6 | 51.4 | 100.0 |
| 2004 | 153 | 63.8 | 4.3 | 0.0 | 2.6 | 0.0 | 70.8 | 29.2 | 100.0 |
| 2005 | 81 | 50.7 | 0.6 | 0.0 | 6.6 | 0.0 | 57.9 | 42.1 | 100.0 |
| 2006 | 137 | 39.4 | 3.7 | 0.0 | 8.6 | 0.0 | 51.7 | 48.3 | 100.0 |
| 2007 | 188 | 65.5 | 2.5 | 0.1 | 2.3 | 0.0 | 70.4 | 29.6 | 100.0 |
| 2008 | 231 | 41.3 | 9.5 | 0.0 | 2.5 | 0.0 | 53.2 | 46.8 | 100.0 |
| 2009 | 156 | 64.6 | 3.5 | 0.0 | 1.3 | 0.0 | 69.4 | 30.6 | 100.0 |
| 2010 | 96 | 48.0 | 13.0 | 0.0 | 3.0 | 0.0 | 64.0 | 36.0 | 100.0 |
| Average |  | 52.7 | 4.2 | 0.0 | 2.8 | 0.0 | 59.7 | 40.3 | 100.0 |

Table 20.-Estimated harvest (by gear type) and escapement as a percent of the total Hugh Smith Lake coho salmon run, 1982-2010.

| Year | Fishery Sample Size | Percent of Total Return |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Alaska Troll | Alaska Seine | Alaska <br> Gillnet | Alaska Trap | Alaska <br> Sport | $\begin{aligned} & \hline \text { B.C. } \\ & \text { Troll } \\ & \hline \end{aligned}$ | B.C. <br> Net | $\begin{array}{r} \text { B.C. } \\ \text { Sport } \end{array}$ | Total <br> Catch | Escapement | Total <br> Return |
| 1982 | 91 | 45.0 | 10.2 | 3.3 | 0.0 | 0.0 | 5.2 | 1.4 | 0.0 | 65.0 | 35.0 | 100.0 |
| 1983 | 185 | 35.5 | 10.9 | 7.1 | 1.3 | 0.0 | 5.5 | 1.3 | 0.0 | 61.6 | 38.4 | 100.0 |
| 1984 | 151 | 31.5 | 12.5 | 11.7 | 0.5 | 0.0 | 8.2 | 0.7 | 0.0 | 65.0 | 35.0 | 100.0 |
| 1985 | 213 | 35.6 | 11.8 | 5.6 | 0.2 | 0.0 | 8.2 | 1.6 | 0.0 | 63.0 | 37.0 | 100.0 |
| 1986 | 256 | 36.6 | 11.3 | 4.9 | 0.0 | 0.4 | 5.4 | 0.7 | 0.0 | 59.2 | 40.8 | 100.0 |
| 1987 | 99 | 29.3 | 3.6 | 6.6 | 0.2 | 1.3 | 6.9 | 2.4 | 0.0 | 50.2 | 49.8 | 100.0 |
| 1988 | 41 | 27.6 | 14.0 | 5.3 | 0.0 | 0.0 | 16.4 | 1.8 | 0.0 | 65.2 | 34.8 | 100.0 |
| 1989 | 91 | 50.6 | 13.3 | 10.3 | 0.0 | 2.6 | 4.4 | 0.8 | 0.0 | 82.0 | 18.0 | 100.0 |
| 1990 | 263 | 37.6 | 11.8 | 13.3 | 0.5 | 0.0 | 17.5 | 1.1 | 0.0 | 81.9 | 18.1 | 100.0 |
| 1991 | 399 | 36.5 | 3.3 | 16.3 | 0.0 | 0.7 | 10.6 | 0.8 | 0.0 | 68.2 | 31.8 | 100.0 |
| 1992 | 497 | 37.9 | 13.8 | 12.3 | 0.0 | 0.8 | 5.9 | 0.2 | 0.0 | 70.9 | 29.1 | 100.0 |
| 1993 | 155 | 52.5 | 6.3 | 15.7 | 0.0 | 0.0 | 4.9 | 1.0 | 0.0 | 80.4 | 19.6 | 100.0 |
| 1994 | 838 | 45.8 | 11.9 | 15.3 | 0.0 | 0.5 | 7.3 | 0.6 | 0.1 | 81.5 | 18.5 | 100.0 |
| 1995 | 432 | 30.1 | 14.1 | 23.7 | 0.0 | 1.5 | 3.5 | 0.4 | 0.2 | 73.5 | 26.5 | 100.0 |
| 1996 | 502 | 40.2 | 15.8 | 12.3 | 0.0 | 3.2 | 3.2 | 1.0 | 0.4 | 75.9 | 24.1 | 100.0 |
| 1997 | 480 | 49.0 | 4.0 | 14.7 | 0.0 | 1.7 | 3.4 | 0.0 | 0.0 | 72.8 | 27.2 | 100.0 |
| 1998 | 668 | 40.5 | 10.8 | 22.4 | 0.0 | 3.4 | 0.0 | 0.0 | 0.3 | 77.5 | 22.5 | 100.0 |
| 1999 | 623 | 41.6 | 6.7 | 17.2 | 0.0 | 4.3 | 0.0 | 0.0 | 0.7 | 70.5 | 29.5 | 100.0 |
| 2000 | 161 | 36.3 | 3.4 | 8.6 | 0.0 | 7.2 | 0.0 | 0.0 | 0.0 | 55.4 | 44.6 | 100.0 |
| 2001 | 314 | 22.3 | 14.6 | 10.4 | 0.0 | 1.9 | 0.2 | 0.0 | 0.0 | 49.3 | 50.7 | 100.0 |
| 2002 | 434 | 16.5 | 8.3 | 10.3 | 0.0 | 1.7 | 1.2 | 0.0 | 1.1 | 39.1 | 60.9 | 100.0 |
| 2003 | 335 | 24.3 | 9.6 | 18.8 | 0.0 | 2.9 | 2.5 | 0.8 | 0.0 | 58.9 | 41.1 | 100.0 |
| 2004 | 244 | 40.8 | 7.9 | 9.7 | 0.0 | 2.4 | 1.9 | 0.8 | 2.8 | 66.3 | 33.7 | 100.0 |
| 2005 | 256 | 31.8 | 3.4 | 14.6 | 0.0 | 1.6 | 1.0 | 0.2 | 0.0 | 52.6 | 47.4 | 100.0 |
| 2006 | 169 | 36.5 | 3.3 | 8.8 | 0.0 | 0.4 | 1.8 | 0.0 | 3.0 | 53.7 | 46.3 | 100.0 |
| 2007 | 294 | 38.1 | 5.3 | 9.1 | 0.0 | 2.2 | 1.7 | 0.3 | 5.6 | 62.4 | 37.6 | 100.0 |
| 2008 | 302 | 19.0 | 6.5 | 20.6 | 0.0 | 0.9 | 1.6 | 0.3 | 5.1 | 53.9 | 46.1 | 100.0 |
| 2009 | 253 | 23.9 | 6.1 | 11.0 | 0.0 | 0.4 | 6.0 | 0.0 | 0.4 | 48.0 | 52.0 | 100.0 |
| 2010 | 632 | 22.2 | 5.3 | 12.8 | 0.0 | 0.7 | 4.0 | 0.0 | 1.9 | 46.9 | 53.1 | 100.0 |
| Average |  | 35.0 | 9.0 | 12.2 | 0.1 | 1.5 | 4.8 | 0.6 | 0.7 | 63.8 | 36.2 | 100.0 |

Table 21.-Estimated harvest (by gear type) and escapement as a percent of the total Taku River coho salmon run above Canyon Island, 1992-2010.

| Year | Fishery Sample <br> Size | Percent of Total Return |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Troll | Seine | Marine Gillnet | Sport | Inriver | Total Catch | Escapement | Total <br> Return |
| 1992 | 128 | 19.5 | 1.2 | 35.6 | 1.6 | 2.6 | 60.5 | 39.5 | 100.0 |
| 1993 | 121 | 28.9 | 1.3 | 14.8 | 1.2 | 2.2 | 48.3 | 51.7 | 100.0 |
| 1994 | 178 | 28.6 | 7.8 | 25.4 | 5.6 | 4.4 | 71.6 | 28.4 | 100.0 |
| 1995 | 201 | 24.9 | 1.0 | 31.4 | 4.3 | 7.6 | 69.2 | 30.8 | 100.0 |
| 1996 | 136 | 26.3 | 0.2 | 18.1 | 2.6 | 5.4 | 52.7 | 47.3 | 100.0 |
| 1997 | 66 | 17.3 | 1.1 | 2.9 | 9.8 | 5.3 | 36.4 | 63.6 | 100.0 |
| 1998 | 231 | 24.0 | 0.6 | 16.2 | 3.7 | 4.3 | 48.8 | 51.2 | 100.0 |
| 1999 | 252 | 30.9 | 2.5 | 6.4 | 3.6 | 4.8 | 48.2 | 51.9 | 100.0 |
| 2000 | 221 | 19.5 | 2.0 | 10.5 | 3.8 | 5.0 | 40.7 | 59.3 | 100.0 |
| 2001 | 344 | 23.5 | 1.3 | 7.2 | 1.9 | 1.9 | 35.9 | 64.1 | 100.0 |
| 2002 | 397 | 12.9 | 1.1 | 10.2 | 2.2 | 1.3 | 27.7 | 72.3 | 100.0 |
| 2003 | 195 | 13.7 | 1.4 | 10.4 | 4.0 | 1.4 | 31.0 | 69.0 | 100.0 |
| 2004 | 223 | 24.6 | 2.1 | 12.3 | 5.6 | 3.9 | 48.6 | 51.4 | 100.0 |
| 2005 | 90 | 20.9 | 1.9 | 10.6 | 2.1 | 3.8 | 39.2 | 60.8 | 100.0 |
| 2006 | 319 | 21.8 | 0.3 | 16.7 | 2.1 | 5.5 | 46.3 | 53.7 | 100.0 |
| 2007 | 150 | 17.6 | 4.9 | 14.1 | 1.6 | 6.0 | 44.3 | 55.8 | 100.0 |
| 2008 | 94 | 27.6 | 0.0 | 14.5 | 0.9 | 2.3 | 45.2 | 54.8 | 100.0 |
| 2009 | 300 | 23.1 | 2.1 | 20.9 | 3.0 | 4.3 | 53.5 | 46.6 | 100.0 |
| 2010 | 117 | 14.0 | 1.6 | 21.3 | 5.8 | 5.9 | 48.6 | 51.4 | 100.0 |
| 1992-2010 |  |  |  |  |  |  |  |  |  |
| Average |  | 22.1 | 1.8 | 15.8 | 3.4 | 4.1 | 47.2 | 52.8 | 100.0 |

Table 22.-Estimated harvest (by gear type) and escapement as a percent of the total Chilkat River coho salmon run, 2000-2010.

| Year | Fishery Sample Size | Percent of Total Return |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Troll | Seine | Drift Gillnet | Marine Sport | $\begin{gathered} \text { FW } \\ \text { Sport } \end{gathered}$ | Subsistence | Total Catch | Escapement | Total Return |
| 2000 | 265 | 17.5 | 0.7 | 12.4 | 1.0 | 0.7 | 0.2 | 32.3 | 67.7 | 100.0 |
| 2001 | 251 | 19.7 | 0.4 | 8.8 | 0.5 | 1.3 | 0.1 | 30.8 | 69.2 | 100.0 |
| 2002 | 329 | 19.8 | 0.3 | 13.6 | 0.9 | 1.1 | 0.2 | 35.8 | 64.2 | 100.0 |
| 2003 | 424 | 23.6 | 0.6 | 12.0 | 1.8 | 1.1 | 0.2 | 39.3 | 60.7 | 100.0 |
| 2004 | 254 | 42.4 | 0.5 | 17.7 | 4.0 | 1.4 | 0.2 | 66.3 | 33.7 | 100.0 |
| 2005 | 141 | 25.4 | 0.5 | 15.2 | 1.3 | 1.7 | 0.5 | 44.5 | 55.5 | 100.0 |
| 2006 | 217 | 28.1 | 0.2 | 17.3 | 0.9 | 1.2 | 0.2 | 47.9 | 52.1 | 100.0 |
| 2007 | 78 | 21.5 | 0.0 | 10.6 | 0.2 | 1.4 | 0.3 | 34.0 | 66.0 | 100.0 |
| 2008 | 358 | 21.6 | 0.0 | 26.0 | 0.2 | 0.7 | 0.4 | 48.9 | 51.1 | 100.0 |
| 2009 | 325 | 18.4 | 0.4 | 18.8 | 0.1 | 2.5 | 0.6 | 40.8 | 59.2 | 100.0 |
| 2010 | 427 | 19.0 | 0.2 | 24.0 | 1.2 | 1.3 | 0.2 | 45.9 | 54.1 | 100.0 |
| Average |  | 23.4 | 0.3 | 16.0 | 1.1 | 1.3 | 0.3 | 42.4 | 57.6 | 100.0 |

Table 23.-Estimated Estimated harvest (by gear type) and escapement as a percent of the total Chuck Creek coho salmon run, 1982, 1983, 1985, and 2003-2010.

| Year | Fishery Sample Size | Percent of Total Return |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Alaska Troll | Seine | Drift Gillnet | Sport | $\begin{gathered} \hline \text { B.C. } \\ \text { Troll } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { B.C. } \\ \text { Net } \end{gathered}$ | $\begin{aligned} & \hline \text { B.C. } \\ & \text { Sport } \end{aligned}$ | Total Catch | Escapement | Total <br> Return |
| 1982 | 28 | 47.9 | 15.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 63.1 | 36.9 | 100.0 |
| 1983 | 11 | 22.9 | 25.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 48.6 | 51.4 | 100.0 |
| 1985 | 29 | 49.7 | 25.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 75.1 | 24.9 | 100.0 |
| 2003 | 192 | 36.2 | 16.9 | 0.0 | 5.6 | 0.0 | 0.0 | 0.0 | 58.7 | 41.3 | 100.0 |
| 2004 | 203 | 45.7 | 11.3 | 0.0 | 4.8 | 0.0 | 0.0 | 0.0 | 61.8 | 38.2 | 100.0 |
| 2005 | 160 | 39.5 | 14.1 | 0.0 | 7.3 | 0.0 | 0.0 | 0.0 | 60.8 | 39.2 | 100.0 |
| 2006 | 84 | 46.8 | 3.7 | 0.0 | 0.9 | 0.8 | 0.0 | 0.0 | 52.3 | 47.7 | 100.0 |
| 2007 | 143 | 47.8 | 9.6 | 0.0 | 2.4 | 0.8 | 0.4 | 3.7 | 64.8 | 35.2 | 100.0 |
| 2008 | 121 | 44.5 | 16.7 | 1.9 | 0.9 | 0.6 | 0.0 | 0.0 | 64.6 | 35.4 | 100.0 |
| 2009 | 311 | 47.8 | 14.0 | 0.1 | 0.8 | 0.0 | 0.0 | 0.0 | 62.7 | 37.3 | 100.0 |
| 2010 | 284 | 40.1 | 6.7 | 0.0 | 3.0 | 0.2 | 0.0 | 0.4 | 50.4 | 49.6 | 100.0 |
| Average |  | 42.6 | 14.5 | 0.2 | 2.3 | 0.2 | 0.0 | 0.4 | 60.3 | 39.7 | 100.0 |

## Length and Weight Trends

Changes in size of returning coho salmon may have an economic effect on the total landed weight of the catch, as well as important reproductive effects. Although Shaul et al. (2007) found no significant trend in the average dressed weight of Southeast Alaska coho salmon, we decided to examine size trends in coho salmon in the region in more detail in light of recent observations and reports by fishermen and sampling personnel of small average size in some years and increasing variability in size. We examined temporal trends in Southeast Alaska of both the dressed weight in kg of troll-caught fish and the mid-eye to fork (MEF) length of males and females sampled in escapements to 4 wild systems.

## Troll Fishery Average Weight

In the troll catch, we examined average dressed weight for fish landed in three periods defined by statistical weeks: weeks 27-28 (early July), weeks 32-33 (early to mid-August), and weeks 37-38 (mid-September). Over the period 1970-2010, average weight increased substantially (average $41 \%$; range $33-51 \%$ ) over the course of the summer troll season between weeks 27-28 and weeks 37-38 (Figure 22; Appendix A1). However, there was substantial variability across the summer season in the inter-annual trend in average weight. Early-season weights have remained most stable, with the exception of a brief period of higher weights during the period 1983-1986. The average for the most recent decade ( 2.57 kg ) is essentially unchanged from the 1970-2000 average ( 2.56 kg ). The same peak in the 0.33 LOESS trend in average weight is also evident in the mid and late-season periods. However, the trend in midseason weights shows a much more marked decline ( $16.2 \%$ ) from a peak in 1985 to a low in 2004, and has remained low during the most recent decade, for a 2001-2010 average of 2.82 kg that was $7.0 \%$ below the previous historical average of 3.03 kg during 1970-2000. The mid-September average weight shows an intermediate pattern with a decline of $4.6 \%$ in mean-average weight in 2001-2010 compared with 1970-2000.
Therefore, average weight during the midseason has shown a disproportionate decrease relative to both the earliest and latest weeks in the summer troll season. There was a shift in the 1990s in the intra-annual pattern of increasing average size of troll-caught coho salmon. In recent years, the dressed weight of troll-caught fish averaged slightly heavier at the beginning of the season, compared with the 1970s through the mid-1990s, but then increased much more slowly before rising to nearly the same mean-average weight of 3.65 kg by the third week of September (Figure 23). During 1997-2010, the mean-average week-to-week increase in dressed weight of landed troll-caught fish from early July to early August fell by more than half to only $2.0 \%$ from $4.3 \%$ in 1970-1996 (Figure 24). Weekly rates of increase in dressed weight were relatively similar between the periods from mid to late August, averaging 4.7\% in 1970-1996 and 4.3\% in 1997-2010, while peaking at $6.0 \%$ on about August 20 during both periods. However, while the weekly rate of increase quickly declined to nil during September in the earlier period, substantial average weekly gains of $2.3-5.3 \%$ continued until the end of the season during 1997-2010. The ratio of the average weekly increase in weight in late weeks compared with earlier weeks indicates that the shift occurred between 1990 and 1998, with the trend being level since 1998 (Figure 25).


Figure 22.-Mean-average dressed weight of troll caught coho salmon landed during early July (weeks 27-28), early to mid-August (weeks 32-33) and mid-September (weeks 37-38), with 0.33 LOESS trends shown by dark solid lines.

With the exception of age-. 0 jacks, coho salmon remain at sea for an average of about 16 months and put on much of their growth during their final summer. Therefore, weekly rates of increase might be presumed to reflect primarily the growth rate of fish foraging on common resources during their final summer at sea. However, this simplistic view has been challenged in recent years as fishermen and samplers have reported increasing variability in size of fish caught and landed, with mostly smaller fish available during the peak of the troll fishery from mid-July to mid-August, but with much larger fish appearing in an increasing proportion in late August and September. The contrast in size and appearance among fish has become so striking in some years, beginning in the late-1990s, that some fishermen and samplers have commented that there appeared to be two different "subspecies" of coho salmon in the catch.


Figure 23.-Mean-Average weekly dressed weight of troll-caught coho salmon by statistical week of landing, 1970-1996 and 1997-2010.


Figure 24.-Mean percent increase in average weekly dressed weight of troll-caught coho salmon by statistical week of landing, 1970-1996 and 1997-2010.


Figure 25.-Ratio of the average weekly increase in mean dressed weight of Southeast Alaska trollcaught coho salmon in statistical weeks 34-38 compared with statistical weeks 28-33.
This led us to speculate that the rapid increase in size late in the season did not reflect an increase in the overall growth rate, but rather divergence in conditions for growth of coho salmon in different areas of the ocean, with the large late-returning fish having spent most of their time in an area of much more productive feeding conditions compared with those that had remained near the coast within range of the troll fishery for most of the season. We suspected that the change reflected differences in the predominant feeding area of fish and/or a major shift in the forage community in coastal waters. It appeared that more migratory fish that gained more of their growth on the high seas were experiencing far better conditions for growth than those that arrived earlier and fed along the coast.

## Adult Coho Salmon Length

We examined trends in MEF length of age-. 1 adult coho salmon from the 4 long-term wild indicator stocks during 1982-2010 (Figures 26 and 27; Appendices A2 and A3).
Overall, we found declines in average size of both males and females after the early to mid1980s (Figure 26). This was not unexpected because collection of MEF length data in most wild systems was initiated within or just prior to the early to mid-1980s peak in average dressed weight in the troll fishery (Figure 22). In comparing the earliest 6 years when data were available for all 4 stocks (1982-1988, excluding 1984), with the most recent 6-year period (2005-2010), mean-average MEF length of age-. 1 adults declined for both sexes in all systems, ranging from a 2.7\% decline for Auke Creek females to 10.3\% for Ford Arm Creek males (Table 24). Females showed a lesser decrease in average length in all 4 stocks, ranging from 2.7-4.6\% compared with $3.8-10.3 \%$ for males. Between the same periods, mean-average dressed weight of coho salmon landed by the troll fishery decreased by $4.8 \%$ for the earliest weeks (27-28), 13.5\% at midseason (weeks $32-33$ ) and $7.1 \%$ in the late-season (weeks $37-38$ ). We found the overall mean-average MEF length for all stocks and both sexes during 1982-2010 to be most closely correlated with the midseason (weeks $32-33$ ) troll dressed weight $\left(R^{2}=0.79\right)$, compared with the early season $\left(R^{2}=0.47\right)$ or the late-season $\left(R^{2}=0.55\right)$.


Figure 26.-Annual average mid-eye to fork length and 0.33 LOESS trend for age- 1 male and female coho salmon sampled in Auke Creek, Berners River, Ford Arm Creek, and Hugh Smith Lake, 1982-2010.


Figure 27.-Coefficient of variation in the mid-eye to fork length and 0.33 LOESS trend for age- 1 male and female coho salmon sampled in Auke Creek, Berners River, Ford Arm Creek, and Hugh Smith Lake, 1982-2010.

On average, we found size of adult males to be substantially more variable in length than females, with the coefficient of variation (CV) of males averaging 1.58 times the CV of females sampled from the same system and year, with averages for individual stocks being 1.32 for Auke Creek, 1.84 for Berners River, 1.66 for Ford Arm Creek, and 1.51 for Hugh Smith Lake.

Auke Creek (least different) and the Berners River (most different) are situated in relatively close proximity and have similar migratory characteristics. However, jacks have comprised an average
of $44 \%$ (range 20-65\%) of the male escapement to Auke Creek by sea-entry year compared with $<0.5 \%$ for the Berners River, based on the composition of beach seine samples from the upper Berners River system. The high percentage of jacks in Auke Creek compared with the Berners River may be related to substantially larger average size of smolts migrating from Auke Creek. Ford Arm Creek and Hugh Smith Lake are likely intermediate in jack percentages, although precise jack counts or estimates are unavailable for those systems because broader picket spacing allows some jacks to escape uncounted. The mean-average MEF length of 0-ocean Auke Creek jacks during 1982-2010 was 317 mm compared with 614 mm for 1-ocean adult males.

Table 24.-A comparison of average mid-eye to fork length (mm) and associated average coefficient of variation of length for 4 wild coho salmon indicator stocks in Southeast Alaska during the periods 19821988 (excluding 1984) and 2005-2010, and the early and late-season mean-average weekly troll coho dressed weight for the same periods.

| Source |  | 1982-1988, excl. 1984 |  | 2005-2010 |  | Change | \% Change |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Avg. Length | CV | Avg. Length | CV | Avg. Length | Avg. Size ${ }^{\text {a }}$ | CV |
| Auke Creek | Males | 630 | 0.0750 | 606 | 0.0884 | -24 | -3.8 | 17.9 |
|  | Females | 633 | 0.0596 | 616 | 0.0665 | -17 | -2.7 | 11.6 |
| Berners River | Males | 631 | 0.1025 | 593 | 0.1124 | -38 | -6.0 | 9.7 |
|  | Females | 657 | 0.0546 | 635 | 0.0624 | -21 | -3.2 | 14.3 |
| Ford Arm Lake | Males | 649 | 0.0855 | 582 | 0.1079 | -67 | -10.3 | 26.3 |
|  | Females | 659 | 0.0653 | 628 | 0.0617 | -31 | -4.6 | -5.5 |
| Hugh Smith Lake | Males | 639 | 0.0944 | 604 | 0.1158 | -36 | -5.6 | 22.7 |
|  | Females | 650 | 0.0693 | 631 | 0.0792 | -20 | -3.0 | 14.3 |
| Avg. Troll Weight (kg) | Weeks 27-28 | 2.66 | - | 2.53 | - | - | -4.8 | - |
|  | Weeks 32-33 | 3.26 | - | 2.82 | - | - | -13.5 | - |
|  | Weeks 37-38 | 3.74 | - | 3.47 | - | - | -7.1 | - |

${ }^{\text {a }}$ Average size is compared based on mid-eye to fork length for the 4 wild indicator stocks and in dressed weight (kg) for troll caught fish.
Auke Creek and Berners River males had nearly the same long-term mean-average length during 1982-2010 (excluding 1984), at 612 mm and 615 mm , respectively. However, Berners River males had a $31 \%$ higher average CV among individuals within a year of 0.1078 , compared with 0.0823 for Auke Creek males, and were also substantially more variable in annual average length across years, with the CV of 0.0412 for Berners River being $55 \%$ higher than the CV of 0.0265 for Auke Creek. Berners River males have responded more to apparent declining growth conditions, going from a mean-average length 3 mm longer than Auke Creek males during 1982-1987 (excluding 1984) to a mean-average length 14 mm shorter than Auke Creek males during 2006-2010.
Over the long term, adult females in the 4 systems have usually been longer than males, by an average of $1.6 \%$ for Auke Creek, $3.4 \%$ for Hugh Smith Lake, 5.2\% for Berners River, and 5.3\% for Ford Arm Creek (mean-average 3.9\%).
There has been substantial variability in the temporal pattern of average MEF length as shown by the 0.33 LOESS trends in Figure 26. However, males and females from the same system tended
to show a similar pattern of change that was more exaggerated in males. The most striking example of the difference between sexes is found at Ford Arm Creek, where males displayed a remarkably steep decline in MEF length through the 1980s and 1990s. Male and female average length was strongly correlated over a 28-year period ( $\mathrm{R}^{2}=0.84$ ), but females averaged within $1 \%$ of the same MEF length when males averaged largest ( 665 mm in 1985), but averaged $10 \%$ longer than males in 2007 and 2009 when the average length of males was small ( 563 mm and 560 mm , respectively).

Coincident with the downward trend in average length, most stocks showed increasing variability in length, with significant ( $\mathrm{p}<0.05$ ) increasing linear trends in the CV of MEF length evident in all groups except Ford Arm Creek females and Berners River males (Figure 27 and Appendix A3). Again, the data suggests that males are much more plastic in their growth and size at maturity. However, it also indicates that conditions for growth have generally deteriorated since the early to mid-1980s, with both males and females from Ford Arm Creek showing the greatest decline in mean-average MEF length between the earliest and most recent 6 years of observations from 1982-1988 (excluding 1984) and 2005-2010 (Table 24). The Ford Arm Creek stock shows by far the greatest decline in mean-average length between the periods, decreasing by $10.3 \%$ for males and $4.6 \%$ for females. In contrast, the Auke Creek stock showed the least change, decreasing by only $3.8 \%$ for males and $2.7 \%$ for females. The Berners River and Hugh Smith Lake stocks were intermediate with decreases of $5.6-6.0 \%$ for males and $3.0-3.2 \%$ for females. Oddly, while average variability in MEF length increased the most between the periods for Ford Arm Creek males (+26.3\%), it actually decreased for females from the same system (5.5\%). Excluding Auke Creek, where males and females both show a lesser decrease in average length (with males decreasing $38 \%$ more than females), adult males in the other 3 systems decreased by an average of double (202\%) as much as females.

## Relationships with Coho Salmon Abundance

We examined linear relationships between estimated total coho salmon abundance (total troll catch divided by troll exploitation rate index) and average adult length for the 4 indicator stocks and average dressed weight of troll-caught fish by regressing average size against abundance for the entire period (1982-2010) and for even years only and odd years only. None of the relationships were significant, with the highest $\mathrm{R}^{2}$ value $(0.24)$ and lowest $p$ value ( 0.072 ) found for Berners River males in odd years.

## Relationships with Pink Salmon Abundance

Beginning in 1999, when average troll-caught coho salmon were very small, concurrently with a record pink salmon catch in Southeast Alaska, we began to suspect that an increasing trend in pink salmon returns was placing greater pressure on food resources used by returning coho salmon. Although their diet in the ocean has limited overlap with coho salmon (Heard 1991; Sandercock 1991), a number of studies have shown highly abundant pink salmon to exhibit competitive dominance over other salmonids in the North Pacific Ocean (Ruggerone and Nielsen 2004). Because the observed decline in average weight was most prominent at midseason, prior to an influx of larger fish that increased average weight, we suspected that competition for forage between the species may have been greatest in coastal waters rather than offshore and high seas waters where large migratory fish appeared to be growing well.
However, regression of early and late troll average weight against the region pink salmon catch suggests somewhat the opposite. Late-August and September troll mean-average coho salmon
weights from fish landed in statistical weeks 35-38 shows a significant negative linear relationship with the commercial catch of pink salmon in Southeast Alaska ( $\mathrm{R}^{2}=0.21, \mathrm{p}=$ 0.003 ) (Figure 28). However, fish landed in earlier statistical weeks (28-32) did not ( $\mathrm{R}^{2}=0.04, \mathrm{p}$ $=0.217$ ). Furthermore, when even and odd years were examined separately, no significant correlation was found between pink salmon catch and coho salmon weight in even years, either early in the season $\left(R^{2}=0.09, p=0.175\right)$ or late in the season $\left(R^{2}=0.00, p=0.949\right)$ (Figures 29 and 30). Although no significant correlation was found between the pink salmon catch in odd years and early coho salmon weight $\left(R^{2}=0.15, p=0.095\right)$, a significant negative correlation was found between the odd year pink salmon catch and late coho salmon weight $\left(\mathrm{R}^{2}=0.35, \mathrm{p}=\right.$ 0.006 ) (Figure 29).

We then examined relationships between the Southeast Alaska pink salmon catch and average MEF length of age-. 1 adult coho salmon from the 4 long-term wild indicator stocks for all years, even years and odd years. Although significant ( $\mathrm{p}<0.05$ ) negative correlations were found in a few cases in which $R^{2}$ values ranged from 0.15 to 0.37 , most relationships were not statistically significant (Table 25).

Interestingly, however, coho salmon measured in escapements and caught in the troll fishery averaged larger in even years compared with odd years. During 1981-2010, troll-caught coho salmon averaged significantly larger by an estimated $12 \%$ in even years in both the early to midseason period (weeks $28-32$; $\mathrm{p}=0.000$ ) and during late August and September (weeks $35-$ 38; $p=0.002$ ). The difference is less significant when the years $1970-1980$ are included, when both pink and coho salmon were less abundant on average ( $p=0.015$ for the early-season period and 0.054 for late-season period).

Measured mean-average MEF length was 11-23 mm larger in even years during 1982-2010, with the difference being statistically significant for the average of all stock and sex combinations, with the exception of males and females returning to Auke Creek (Table 26).


Figure 28.-Linear relationships between the Southeast Alaska pink salmon catch and the dressed weight of troll-caught coho salmon early in the season (early July to early August) and late in the season (late August through mid-September).


Figure 29.-Linear relationship between the commercial catch of pink salmon in Southeast Alaska and the mean-average dressed weight of troll-caught coho landed from late August through mid-September (statistical weeks 35-38).


Figure 30.-Linear relationship between the commercial catch of pink salmon in Southeast Alaska and the mean-average dressed weight of troll-caught coho landed from early July through early August (statistical weeks 28-32).

Table 25.-Linear relationships between the commercial catch of pink salmon in Southeast Alaska in all years, even years only, and odd years only and the MEF length of age-. 1 adult male and female coho salmon sampled from escapements at 4 Southeast Alaska systems.

| Stock (Years) | Sex | Observations | Intercept | Slope | $\mathrm{R}^{2}$ | $p$ Value (Slope) ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Auke Creek (All Years) | Males | 31 | 629 | -0.39 | 0.18 | 0.017 |
|  | Females | 31 | 633 | -0.25 | 0.09 | 0.093 |
| Auke Creek (Even Only) | Males | 16 | 620 | -0.07 | 0.00 | 0.805 |
|  | Females | 16 | 623 | 0.14 | 0.03 | 0.521 |
| Auke Creek (Odd Only) | Males | 15 | 635 | -0.57 | 0.37 | 0.017 |
|  | Females | 15 | 642 | -0.49 | 0.27 | 0.048 |
| Berners River (All Years) | Males | 28 | 638 | -0.56 | 0.16 | 0.034 |
|  | Females | 28 | 659 | -0.31 | 0.14 | 0.051 |
| Berners River (Even Only) | Males | 14 | 638 | -0.43 | 0.15 | 0.172 |
|  | Females | 14 | 662 | -0.26 | 0.20 | 0.107 |
| Berners River (Odd Only) | Males | 14 | 626 | -0.41 | 0.06 | 0.409 |
|  | Females | 14 | 643 | -0.09 | 0.01 | 0.767 |
| Ford Arm Creek (All Years) | Males | 28 | 630 | -0.51 | 0.10 | 0.096 |
|  | Females | 28 | 656 | -0.35 | 0.15 | 0.043 |
| Ford Arm Creek (Even Only) | Males | 14 | 623 | -0.16 | 0.01 | 0.725 |
|  | Females | 14 | 649 | -0.05 | 0.00 | 0.843 |
| Ford Arm Creek (Odd Only) | Males | 14 | 630 | -0.59 | 0.10 | 0.267 |
|  | Females | 14 | 656 | -0.42 | 0.17 | 0.144 |
| Hugh Smith Lake (All Years) | Males | 29 | 638 | -0.44 | 0.09 | 0.110 |
|  | Females | 29 | 657 | -0.38 | 0.16 | 0.029 |
| Hugh Smith Lake (Even Only) | Males | 15 | 629 | 0.09 | 0.00 | 0.838 |
|  | Females | 15 | 651 | -0.06 | 0.00 | 0.826 |
| Hugh Smith Lake (Odd Only) | Males | 14 | 631 | -0.46 | 0.10 | 0.276 |
|  | Females | 14 | 652 | -0.39 | 0.16 | 0.153 |
| Average (All Years) | Males | 29 | 634 | -0.48 | 0.13 | 0.064 |
|  | Females | 29 | 651 | -0.32 | 0.14 | 0.054 |
| Average (Even Only) | Males | 15 | 627 | -0.14 | 0.04 | 0.635 |
|  | Females | 15 | 646 | -0.05 | 0.06 | 0.574 |
| Average (Odd Only) | Males | 14 | 630 | -0.51 | 0.16 | 0.242 |
|  | Females | 14 | 648 | -0.35 | 0.15 | 0.278 |

[^5]Table 26.-A comparison of average MEF length of adult coho salmon from selected Southeast Alaska systems in even and odd years.

| Stock | Period | Sex | Average Length |  | Difference | t Statistic | t Critical | $P(\mathrm{~T}<=\mathrm{t})^{\mathrm{a}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Even Years | Odd Years |  |  |  |  |
| Auke Creek | 1980-2010 | Male | 618 | 609 | -9 | 1.594 | 2.045 | 0.122 |
| Auke Creek | 1980-2010 | Female | 627 | 619 | -8 | 1.459 | 2.056 | 0.156 |
| Auke Creek | 1982-2010 | Male | 624 | 606 | -18 | 1.983 | 2.052 | 0.058 |
| Auke Creek | 1982-2010 | Female | 628 | 617 | -11 | 1.937 | 2.074 | 0.064 |
| Berners River | 1982-2010, excl. 1984 | Male | 622 | 604 | -18 | 2.278 | 2.179 | 0.042 |
| Berners River | 1982-2010, excl. 1984 | Female | 653 | 638 | -15 | 2.964 | 2.179 | 0.012 |
| Ford Arm Creek | 1982-2010, excl. 1984 | Male | 615 | 598 | -17 | 3.133 | 2.179 | 0.009 |
| Ford Arm Creek | 1982-2010, excl. 1984 | Female | 647 | 635 | -12 | 2.930 | 2.179 | 0.013 |
| Hugh Smith Lake | 1982-2010 | Male | 631 | 609 | -23 | 2.539 | 2.052 | 0.017 |
| Hugh Smith Lake | 1982-2010 | Female | 649 | 633 | -16 | 2.778 | 2.056 | 0.010 |
| Average | 1982-2010, excl. 1984 | Male | 622 | 606 | -16 | 2.297 | 2.074 | 0.032 |
| Average | 1982-2010, excl. 1984 | Female | 644 | 631 | -13 | 2.726 | 2.080 | 0.013 |
| Average | 1982-2010, excl. 1984 | Average | 633 | 618 | -15 | 2.488 | 2.080 | 0.021 |

${ }^{a}$ Cases in which average length in even and odd years is significantly different ( $\mathrm{p} \leq 0.05$ ) are shown in shaded bold.


Figure 31.-Linear relationships between the commercial catch of pink salmon by fisheries in Southeast Alaska and the average weight (kg) of the pink salmon catch, 1982-1996 and 1997-2010.

In contrast to coho salmon, pink salmon have returned at historically large size since the mid1990s, with the 1997-2010 mean-average round weight in the commercial catch of 1.60 kg being $9.0 \%$ larger than the 1982-1996 average weight of 1.46 kg (Appendix A1). When adjusted for a negative relationship with commercial catch (highly significant slope, $p=0.006$ for both periods), the predicted average weight of pink salmon from a 1982-2010 average commercial catch of 40.3 million fish is 1.59 kg based on the 1982-1996 linear relationship, or $9.4 \%$ larger than the prediction of 1.46 kg based on the 1997-2010 relationship (Figure 31). In contrast, the mean-average weight of dressed troll-caught coho salmon decreased between these periods by $2.4 \%$ in early July, $10.4 \%$ in early to mid-August and $3.3 \%$ in mid-September.
Also in contrast to troll-caught coho salmon, the mean-average weight of pink salmon caught in even and odd years was not significantly different during 1982-2010 ( $p=0.232$ ), even though average catch was larger in odd years ( 48.6 million fish) than in even years ( 32.6 million fish).

## EsCAPEMENT GOAL DEVELOPMENT

Biological escapement goals were established for the 4 long-term indicator stocks in 1994 using Ricker analysis (Clark et al. 1994). Using the same technique, Clark (1995) developed goals for the 5 surveyed roadside streams in the Juneau area, while Clark and Clark (1994) developed escapement goals for 7 streams in the Yakutat area. These goal ranges were designed to maintain wild stocks at high levels of productivity and to maintain yields near maximum. The goals represent a range of escapements that were estimated to produce $90 \%$ or more of MSY.
Revision of these goals has been delayed by discovery of substantial errors in determining freshwater age. Aging validation studies were initiated for the Berners River and Hugh Smith Lake populations in 1996. The preliminary results have been used to re-age the historical scale collections and updating of goals is underway using more accurate ages and different stockrecruit models that appear more appropriate to the species than the Ricker model.
The Transboundary Technical Committee of the PSC is currently developing a BEG for Taku River coho salmon to replace the current management threshold. In the meantime, goals have been developed for other systems, including the Chilkat River (Ericksen and Fleischman 2006), and aggregates of streams that are surveyed in the Ketchikan and Sitka areas (Shaul and Tydingco 2006). The BEG for Hugh Smith Lake was revised from 770 (range 500-1,100) spawners to 850 (range 500-1,600 spawners) based on an analysis by Shaul et al. (2009). In addition, Clark (2005) revised goals for 2 Juneau roadside streams (Montana and Peterson Creeks) and recommended elimination of goals for the other 3 streams (Steep, Jordan, and Switzer Creeks).
Shaul et al. (in prep) reviewed the BEG of 2,050 (range 1,300-2,900) spawners for Ford Arm Creek based on a variety of conventional spawner-recruit models, including one incorporating pink salmon escapement. Their analyses resulted in estimates similar to the current goal and they concluded that no change is warranted.
Recent spawner-recruit analysis for two of the long-term indicator stocks, Hugh Smith Lake and Ford Arm Creek, indicates a positive relationship between brood year escapement and production over the range of observations, with no evidence of the over-compensation feature prominent in the widely employed Ricker spawner-recruit model. The data series were reasonably well described by the Beverton-Holt Model (Figure 32) which fits both data sets better than alternative models, including the logistic hockey stick and particularly, the Ricker model.


Figure 32.-Beverton-Holt spawner-recruit relationships for Hugh Smith Lake coho salmon (19822004 brood years) and Ford Arm Lake coho salmon (1982, 1983, and 1985-2005 brood years) showing a 0.75 LOESS trend (heavy dashed line) and the escapement range estimated to produce $90 \%$ or more of maximum sustained yield (light dashed lines).
The results indicate that exploitation rates applied to both stocks under fishery management, in effect since the early 1980s, have achieved a large fraction of potential biological yield. Despite the fact that escapement to Hugh Smith Lake during 1982-2005 was variable and averaged $150 \%$ of the Beverton-Holt estimate of $E_{M S Y}$ ( 851 spawners), Shaul et al. (2009) estimated the realized average harvest from the Hugh Smith Lake stock over the period to be $95 \%$ of the theoretical maximum potential had it been possible to hold escapement at exactly 851 spawners and catch all remaining adults. A similar analysis for the Ford Arm Creek stock (Shaul et al. in prep) suggests that $93-94 \%$ of potential yield was achieved from variable escapements during $1982-2005$ that averaged 3,410 spawners, or $142 \%$ of estimated $E_{M S Y}$ of 2,394 spawners. However, an alternative slanted hockey stick spawner-recruit model for Ford Arm Creek incorporating the effects of pink salmon escapement on coho salmon production places estimated $E_{\text {MSY }}$ substantially lower at 1,422 spawners and effectiveness in achieving theoretical maximum MSY at 79\%.

The Beverton-Holt spawner-recruit relationships for the Ford Arm Creek and Hugh Smith Lake stocks (Figure 32) both reflect a positive relationship between escapement and the marine survival-adjusted return over the range of observations, indicating that equilibrium yields within $10 \%$ of MSY can be obtained over a relatively broad range of escapements from about 0.5 to 1.7 or 1.8 times the estimated level of escapement estimated to produce MSY ( $E_{M S Y}$ ). Escapements to these 2 systems during $1982-2010$ averaged 1.4 and 1.7 times estimates of $E_{M S Y}$, respectively, while the median escapement was $1.1-1.7$ times estimated $E_{M S Y}$.
The Beverton-Holt model appears to provide the best fit for these data sets because it is the only one of the 3 conventional spawner-recruit models that allows for an overall positive relationship between escapement and return, without either a saturation effect (hockey stick model) or overcompensation (Ricker model). The hockey stick model and its variation, the logistic hockey stick
(LHS; Barrowman and Myers 2000), is an appealingly simple model that describes the territorial freshwater life history of coho salmon in streams. At very low levels, smolt production and predicted adult return are directly proportionate to spawning escapement up to a saturation point at which available territories are filled and above which "surplus" fry that fail to establish and defend territory are displaced from the stream, presumably without contributing to adult production. Therefore, the hockey stick model predicts no response in the adult return at escapements above $E_{\text {MSY. }}$

## Accounting for Nomads

The displaced fry known as "nomads" (Chapman 1962) enter estuaries and salt water where early observers assumed they perished without contributing to the adult population (Chapman 1966, Crone and Bond 1976). However, a substantial body of evidence, summarized by Koski (2009), indicates that many nomads likely survive and grow in the estuary, returning to overwinter before migrating as smolts the following spring. Documented movement of tagged fish among systems separated by saltwater distances up to 113 km in Lynn Canal and Stephens Passage (Table 27) indicates that presmolts are able to overcome osmoregulatory challenges to achieve much of their growth in marine as well as estuarine waters before returning to fresh water in the fall to overwinter and smolt in the spring.

Table 27.-Inter-system movement of tagged presmolt coho salmon in Lynn Canal and Stephens Passage, Southeast Alaska, showing minimum saltwater distances.

| Number <br> Recovered | Tagging <br> Location | Tagging <br> Date(s) | Recovery <br> Location | Recovery <br> Date(s) | Recovery <br> Length $(\mathrm{mm})$ | Distance <br> $(\mathrm{km})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Berners R. | June 22-30, 1988 | Auke Cr. | October 11, 1988 | 125 | 56 |
| 1 | Chilkat R. | April 7-June 2, 1999 | Berners R. | May 17, 2000 | 126 | 67 |
| 1 | Chilkat R. | June 1-6, 1999 | Berners R. | May 26, 2000 | 127 | 67 |
| 1 | Chilkat R. | May 12-29, 2004 | Auke Cr. | September 10, 2004 | 147 | 109 |
| 1 | Chilkat R. | May 14-22, 2001 | Jordan Cr. | May 13, 2002 | - | 113 |
| 8 | Burro Cr. Hatchery | June 13, 2000 | Berners R. | May 11-29, 2001 | $114-142$ | 90 |

Of a total of 13 recovered tags, 2 were from fish returning upstream in Auke Creek in September-October (Taylor and Munk 1988; Taylor and Lum 2005), while the other tagged fish were captured in downstream migrant smolt traps in the spring, including 10 fish from the Berners River and 1 fish from Jordan Creek (Lum and Glynn 2007). Minimum saltwater distances traveled ranged from 56-113 km.

A fall upstream migration of large, immature silvery returning nomads resembling smolts has been documented on a few occasions, but may be a common feature in many coho salmon streams in Southeast Alaska. These migrations appear to begin as early as mid-summer and usually peak during the return of spawners in September or October. Harding (1993) counted 1,434 juvenile coho salmon migrating through a weir approximately 300 m above the head of the estuary into Kake Bake Creek on Kupreanof Island between August 18 and November 7, with a mean immigration date of September 25 and a daily peak count on October 17. These fish averaged 83 mm (range $38-235 \mathrm{~mm}$ ) and most were "bright silver (resembling smolts) in color." Several of the largest immigrants ( $>200 \mathrm{~mm}$ ) were dissected and it was confirmed that they were not precocious males. A number of the fish had sea lice (Caligus spp.) attached near the anal fin, suggesting recent ( $<6$ days) immigration from marine water. Using baited minnow traps, Shaul et
al. (1986) captured several large (120-165 mm fork length) fish described as silver in coloration with black-tipped fins, typical of migrating smolts, in Ford Arm Lake and an adjacent pond on the outer coast of Chichagof Island during August 15-25.

The weir at Auke Creek was modified to capture small immigrants during 4 years (Taylor and Lum 2003, 2004, 2005; Taylor 2006). Counts of immature migrants and the range (and average) of migration dates by year include: 446 fish during July 18-October 30, 2002 (September 14); 310 fish during July 29-October 30, 2003 (September 26); 90 fish during September 10-October 26, 2004 (September 25); and 307 fish during July 7-October 28, 2005 (September 23). These numbers comprised $12.5 \%, 6.8 \%, 2.1 \%$, and $6.8 \%$ (average $7.0 \%$ ), respectively, of subsequent spring smolt migrations from the system totaling 3,574 smolts in 2003, 4,581 smolts in 2004, 4,318 smolts in 2005, and 4,532 smolts in 2006 (Taylor and Lum 2004, 2005; Taylor 2006, 2007). These percentages may be conservative because nomads were still migrating within a day before the weir was removed near the end of October each year. The low count in 2004 occurred coincident with a very dry summer and early fall period when stream flows dropped to nil in June and the creek dried up from July until the end of August (Lum and Taylor 2006).
Although a fall migration of returning nomads may be common in Southeast Alaska streams, it has seldom been documented because weirs commonly operated to enumerate returning adult spawners have openings too large to detain small fish. Presumably, most returning nomads overwinter in fresh water and join the spring smolt migration. The strategy allows fish that are surplus to the summer carrying capacity of freshwater habitat to attain a high growth rate on estuarine and marine food resources (Murphy et al. 1984; Tshlapinski 1988) before returning in the fall to stable overwintering habitat found in many Southeast Alaska systems.

Otoliths from 11 of the fish listed in Table 27, including all 10 fish recovered from the Berners River and 1 fish from Jordan Creek (Lum and Glynn 2007), were microprobed along a transect from the primordium to the margin to measure the Sr:Ca ratio, an indicator of exposure to saline water. Features evident in the growth history of the otolith were matched with the microprobe transect to pinpoint transitional movement between habitats. All of the samples showed elevated Sr:Ca ratios for a period after tagging, marking their exposure to estuarine and marine waters of Lynn Canal and Stephens Passage. However, 1 of the 2 wild Chilkat-Berners migrants was of particular interest because it displayed evidence of extended exposure to saline water during 2 periods, comprising $36 \%$ and $15 \%$, respectively, of the smolt's total growth history as indicated by the distance from the primordium to the margin of the otolith (Figure 33). A check was evident at emergence, with an apparent winter annulus appearing at the point where the $\mathrm{Sr}: \mathrm{Ca}$ ratio began to decline in fall 1998, indicating a return to fresh water prior to initial capture and tagging in a section of the Chilkat River 5-26 km upstream from its mouth in spring 1999 (Ericksen 2001). A second marine-rearing period marked by an elevated Sr:Ca ratio is evident as the fish moved 67 km across Lynn Canal before swimming 8 km up the Berners River, where it was captured in May 2000 as a 126 mm migrant from a beaver pond. A second marked smolt, also tagged in the Chilkat River in spring 1999, was recovered from the same pond 9 days later.


Figure 33.-Changes in the Sr:Ca ratio measured across an otolith from a coho salmon tagged in the Chilkat River between April 7 and June 2, 1999 (Ericksen 2001) and recaptured from the Berners River at a length of 126 mm on May 17, 2000.

Although this wandering nomad overwintered in both the Chilkat and Berners rivers (Figure 33), its natal system and its probable spawning destination remain unknown. Do nomads that overwinter in distant freshwater systems imprint on the streams from which they smolt, or do they return to spawn in their natal streams? Recoveries of tagged fish from these same systems at later life stages may provide a clue. To date, 4 adults have been recovered from the Chilkat River as "strays", of which 3 were tagged as smolts migrating from the Berners River and 1 from Jordan Creek (Alaska Department of Fish and Game, Mark Tag and Age Laboratory database). The migration of these fish between the smolt and returning adult stages in the reverse direction of "straying" presmolts recaptured as smolts (Table 27) suggests that they may not have been strays in the genetic sense, but may have returned to their natal river (the Chilkat) after growing in marine waters, overwintering in distant freshwater habitat, and migrating to the high seas. Such behavior would help to explain the typically substantial fraction of returning adults that are unmarked in systems where $100 \%$ of observed smolts have been coded-wire tagged after capture in a carefully installed smolt weir operated throughout the spring migration. For example, the adipose clipped rate for adults returning to Hugh Smith Lake has never exceeded 84\% (Shaul et al. 2009), or $89 \%$ at Chuck Creek (McCurdy 2010), while the highest adipose clipped rate reported in the adult return to the Lachman River was 72\% (Lane et al. 1994).

## Slanted Hockey Stick Model

Although estuarine and marine waters present osmoregulatory challenges and increased predation risk, growth, and survival in those environments appears to be far less compensatory
than in fresh water (Tschaplinski 1988). The contribution by nomads to the smolt population above the capacity of freshwater habitat could, therefore, be a relatively constant function of the increase in the number of spawners. Depending on the spatial scale of suitable marine habitat, nomads overflowing into estuarine and marine waters could contribute to smolt and adult production in proportion to the number of spawners, even at escapements far above $E_{m s y}$. Successful contribution by nomads to coho salmon smolt and adult populations provides a plausible explaination for significant positive linear slope observed in the spawner-recruit relationships (parent escapement versus smolts x average marine survival) for Hugh Smith Lake (slope $=0.60, p=0.04$ ) and Ford Arm Creek (slope $=0.68, p=0.02$ ).
In locations where the nomadic life history strategy is common and successful, it may be appropriate to discard or revise the logistic hockey stick (LHS) model (Barrowman and Myers 2000). A conceptual representation of our proposed modification, the slanted hockey stick (SHS) model is depicted in Figure 34 with the initial slope ( $\alpha$ ), smoothness parameter $(\theta)$, and the secondary slope (representing the nomad contribution within and above in the inflection region), based on average parameter estimates for the populations in Hugh Smith Lake and Ford Arm Creek.

Individual model fits for the 2 stocks (Figure 35) indicate substantially broader 90\% of MSY ranges around $E_{m s y}$ for the SHS model compared with the LHS model, but not as broad as indicated by the Beverton-Holt model (Figure 32). Akaike's information criterion (AIC) values were very similar for the SHS and Beverton-Holt models. We initially fitted spawner-recruit data from both stocks to a modification of the LHS model (Barrowman and Myers 2000, equation 8) by adding a simple constant multiplier to the increase in escapement beginning at estimated $E_{m s y}$. However, the smoothness parameter ( $\theta$ ) for Ford Arm Creek reverted to 0, and the best model fit with the lowest AIC value was a modification of the simple Hockey stick model (Barrowman and Myers 2000, equation 3) that begins at 0 with a constant slope ( $\alpha$ ). Instead of fixing production at a constant return above $E_{m s y}$ (independent of spawning escapement), we substituted a second linear relationship with slope and intercept. Estimates of intrinsic productivity ( $\alpha$ ) of 8.78 for Hugh Smith Lake and 5.49 for Ford Arm Creek were likely conservative values because there were no observed escapements substantially below estimated $E_{m s y}$ with which to define the lower end of the relationship. The slope of the recruitment response above estimated $E_{\text {msy }}$ based on the model fits was 0.54 for Hugh Smith Lake and 0.68 for Ford Arm Creek.

For Hugh Smith Lake, the SHS model estimate of $E_{\text {msy }}$ is 600 spawners, with a $90 \%$ of MSY range from 409-1,360 spawners (Figure 35) compared with a Beverton-Holt estimate of $E_{m s y}=851$ spawners, range 417-1,566 spawners (Figure 32) and an LHS estimate of of $E_{\text {msy }}=844$ spawners, range 593-1,279 spawners (Shaul et al. 2009). For Ford Arm Creek, the SHS model indicates $E_{\text {msy }}=1,422$ spawners, with a $90 \%$ of MSY range from 1,280-3,415 spawners (Figure 35) compared with a Beverton-Holt estimate of $E_{m s y}=2,394$ spawners, range 1,242-4,153 spawners (Figure 32), and a LHS estimate of $E_{\text {msy }}=1,885$ spawners, range 1,349-2,857 spawners (Shaul et al. in prep).
If we attribute the slope of the SHS relationship above estimated $E_{m s y}$ (Figure 35) entirely to nomad production, then the contribution by nomads to adult returns from average brood year escapements of 1,305 spawners at Hugh Smith Lake and 3,275 spawners in Ford Arm Creek is predicted at $12 \%$ and $14 \%$, respectively, of combined total production. These theoretical proportionate contributions are similar to the highest minimum count of nomads into Auke Creek as a percent of the smolt migration the following spring (12.5\%), and somewhat above the average for all 4 years (7.0\%).


Figure 34.-Conceptual slanted hockey stick (SHS) model based on average spawner-recruit parameters (including $\alpha, \theta$ and secondary slope) for the Ford Arm Creek stock and the Hugh Smith Lake stock, compared with the logistic hockey stick (LHS) model. Axis scales are shown as a percent of carrying capacity (K) indicated by the LHS model.



Figure 35.-Slanted hockey stock (SHS) spawner-recruit relationships for Hugh Smith Lake coho salmon (1982-2004 brood years) and Ford Arm Lake coho salmon (1982, 1983, and 1985-2005 brood years) showing a 0.75 LOESS trend (heavy dashed line) and the escapement range estimated to produce $90 \%$ or more of maximum sustained yield (light dashed lines).

Clearly, while estuarine and marine-rearing nomads appear to make a substantial contribution to coho salmon production in some systems, and likely have an important effect on the spawnerrecruit relationship, they are secondary in importance to production of smolts reared entirely in fresh water. Although their survival may be low on average and highly variable, nomads' use of a different environment for summer growth provides the overall population with benefits of diversification and a potential numerical buffer.

## DISCUSSION

Southeast Alaska coho salmon stocks appear to be in excellent condition as a whole. We found no stocks of concern from a fishery management perspective. Stocks that have BEGs have been within or above target ranges in the vast majority of cases.

Shaul et al. (2008) raised concerns about a substantial decline in marine survival during 2005-2007 compared with the 1982-2004 average in most indicator systems. This decline raised the possibility of a change in ocean conditions, possibly a "regime shift", toward a period of conditions less favorable for salmon survival in Southeast Alaska than have been experienced since the early 1980s. Furthermore, a poorly-understood decline in smolt production resulted in exceptionally low total returns to some systems, including the Berners and Chilkat rivers, where escapements fell below goal in 2007.

Average survival of all monitored wild stocks during 2008-2010, however, has shown improvement over the prior 3 -year period (2005-2007), with a $40 \%$ average relative increase between the periods, with the overall mean-average survival rate across all stocks increasing from $9.5 \%$ to $12.8 \%$. The relative increase ranged from $3 \%$ for Ford Arm Creek to $111 \%$ for Hugh Smith Lake. The recent improvement in average survival provides some assurance that there has not been another fundamental regime shift toward an extended period of poor survival in Southeast Alaska (coincident with higher survival southward along the coast), similar to the period from 1956-1981 (Shaul et al. 2007). However, within Southeast Alaska there has been a recent shift in survival in favor of wild and hatchery stocks in the southern part of the region compared to the north that has persisted for 4 years so far (2007-2010).

For the Berners River, a decline in average freshwater production, from 202,000 smolts in 19902004 to 115,800 smolts in 2005-2007, was compounded by a decrease in average smolt survival from $17.5 \%$ to $9.7 \%$ between the periods, reaching a record low of $7.5 \%$ in 2007. The combined result was extremely poor total runs of 8,682 adults in 2007 and 9,368 adults in 2009 that were far below the 1990-2004 average of 35,220 fish and barely justified any harvest, given an escapement goal of 4,000-9,200 spawners. Fortunately, freshwater production bottomed at 89,200 smolts for the 2008 return, coinciding with near-average $15.8 \%$ survival, and has partially rebounded to 161,100 smolts for the 2010 return and 130,800 smolts for the 2011 return. Marine survival decreased to $9.2 \%$ in 2009, but rebounded again to $13.5 \%$ in 2010 which, combined with improved freshwater production, resulted in a total 2010 run estimated at 21,680 adults that was the largest return in 6 years (although below the long-term average of 27,600 adults).

The apparent improvement in smolt production from the Berners River is encouraging given a very low, below-goal escapement of 3,915 spawners in a primary contributing brood year to the smolt migrations in both 2009 (age 1+) and 2010 (age 2+). Such high freshwater survival from low brood year escapement demonstrates a strong density-dependent, compensatory response frequently observed in coho salmon that lends resilience to population shocks.

The larger population in the Chilkat River in upper Lynn Canal has tracked closely with the Berners River population for 11 years with a linear regression $\mathrm{R}^{2}$ value of 0.88 for the adult returns to the 2 systems. While the period of very poor smolt production in the Berners River does not appear to be explained by dry summer-fall weather, the very similar abundance history between the Berners and Chilkat rivers suggests that the primary factor(s) responsible for the recent decline in adult abundance were not drainage-specific, but operated over a broad area.

Escapement goals for Southeast Alaska coho salmon stocks can usually be achieved or exceeded under recent average exploitation pressure, except in cases when poor smolt production coincides with poor marine survival. Preseason and inseason methods have been developed to assess both smolt production and marine survival for some indicator stocks. Precise preseason counts or estimates of smolt production have been available for some systems, including Auke Creek and Chuck Creek, while lower quality preseason estimates are available for most other systems using mark-recapture methods based on tagging of smolts and recovery sampling of smolts or jacks. The mark-recapture estimates of smolt abundance are bolstered during the later portion of the fishing season from sampling of adult spawners at weirs and fish wheels.
Inseason estimates of marine survival are also generated for those stocks for which the cumulative troll fishery harvest of tagged coho salmon, as a proportion of tagged smolts released, is strongly correlated with marine survival. For example, the inseason troll tag recovery rate for the Hugh Smith Lake stock becomes a useful predictor of marine survival by early August (Shaul et al. 2009). Preliminary smolt production estimates combined with inseason survival predictions are very useful for forecasting the adult return and total escapement to several indicator systems well in advance of significant escapement counts. These estimates are used in conjunction with fishery performance measures of aggregate abundance, including catch and CPUE, to assess returns during the season.
Despite the fact that some inside stocks are subjected to a more extensive gauntlet of fisheries, exploitation rates have been relatively evenly distributed over geographic stock groupings. During 2006-2010, substantial but moderate, average exploitation rates ranging from 38-64\% (mean-average 52\%) were achieved from 6 stocks that have very different migratory characteristics and are exposed to very different, but overlapping, complexes of fisheries. The Chuck Creek and Ford Arm Creek stocks on the outer coast were exploited at the highest average rates of $59 \%$ and $64 \%$, respectively, distributed primarily over coho-directed troll and marine sport fisheries and as incidental harvest in purse seine fisheries. Meanwhile, the return to Hugh Smith Lake, a southern inside stock that migrates through a gauntlet of mixed-stock troll, seine, gillnet, and marine sport fisheries in 3 management jurisdictions (state-managed waters, Annette Island Reserve, and northern British Columbia) was exploited at an average rate of 53\% (down substantially from an average of $75 \%$ in the 1990s). The Berners River, Chilkat River, and Taku River stocks that were harvested by another gauntlet of troll, seine, and marine sport fisheries, followed by intensive gillnet fisheries, were exploited at average rates estimated at $58 \%$, $43 \%$, and $48 \%$, respectively, for the same recent 5 -year period. The Auke Creek stock, which is less available to gillnet fisheries, had a markedly lower average exploitation rate of $38 \%$ for the period.

There has been a long-term decrease in exploitation rates on southern inside stocks, represented by Hugh Smith Lake, that may justify liberalization of current management strategy in order to better achieve available yield from southern inside stocks. The decline in the all-gear exploitation rate from an average of $75 \%$ in the 1990s to $50 \%$ (range $47-54 \%$ ) during $2008-2010$ has
approximately doubled escapement from a given total run size, resulting in escapements well over the $B E G$ range in the 3 most recent years. The trend toward a lower all-gear exploitation rate has now continued for the past 12 years, during which it averaged $52 \%$. All fisheries have shown a recent decline in exploitation on the stock, except those in northern B.C., where increased marine sport exploitation appears to have offset a decrease in Canadian troll and net fishery exploitation of the stock. In Southeast Alaska, the average drift gillnet exploitation rate, primarily in the Tree Point fishery, has declined only slightly from $16 \%$ in the 1990s to $15 \%$ in 2008-2010, while the average purse seine exploitation rate decreased from $10 \%$ to $6 \%$. However, the greatest factor was a decrease from $41 \%$ to $22 \%$ for the Alaska troll fishery. This decline in exploitation is difficult to explain based simply on decreasing troll effort, especially since average troll exploitation rates did not decrease nearly as much for stocks to the north, where they dropped from $55 \%$ to $51 \%$ for Ford Arm Lake and from 31\% to $28 \%$ for Auke Creek.

It appears likely that changing ocean conditions have had some effect on the availability of the Hugh Smith Lake stock to the troll fishery because the sharpest decline (from $27 \%$ to 12\%) in the average troll exploitation rate occurred in the same northern Southeast waters where the Ford Arm Creek and Auke Creek stocks area caught. The Southeast Quadrant showed the least decline, from $8 \%$ to $6 \%$, while Southwest Quadrant decreased nearly as much as Northern Southeast, from $6 \%$ to $3 \%$. However, the Chuck Creek stock, which is harvested primarily in the Southwest Quadrant, has actually shown a slight increase in average troll exploitation rate from $40 \%$ in the early to mid-1980s to 44\% in 2003-2010.

Irrespective of the cause, the result has been that the upper bound of the $B E G$ of $500-1,600$ spawners will be exceeded by $15-20 \%$ when the run is average ( 4,000 fish) and the exploitation rate equal to the 10 -year average (53\%), whereas even at the lowest run size ever observed (1,346 adults), the lower BEG bound will be exceeded by a healthy margin of about $26 \%$.
The analysis of length and weight data suggests that spatial variability in growth conditions has substantially increased across the range inhabited by Southeast Alaska coho salmon in the North Pacific Ocean. Furthermore, the data support the hypothesis that most of the decline can be attributed to a change in the quantity and/or quality of forage in outer coastal waters along the Southeast Alaska coast. Earlier support for that hypothesis came from a change in the temporal pattern of average weekly troll dressed weight over the past 3 decades, combined with anecdotal observations among fishery participants and samplers of the late-season appearance of larger fish that had apparently experienced more favorable growth rates than those that had been caught by trollers in the midpart of the season. The decline in size is most marked in the Ford Arm Creek stock, which is a less migratory "milling" stock available in high abundance at the July 1 opening of the summer troll fishery and exploited by trollers at a high historical average rate of $53 \%$, compared with $30 \%$ and $35 \%$, respectively, for the more migratory Auke Creek and Hugh Smith Lake stocks. This provides further evidence that the decline in growth has occurred primarily in local outer coastal waters rather than high seas feeding areas.

Interestingly, an increase of about $9 \%$ in the mean-average size of pink salmon between 19821996 and 1997-2010 indicates a concurrent improvement in forage conditions for that species. The trend in size of pink salmon bottomed in the early 1990s, with a record low of annual average weight 1.23 kg in 1991, before rebounding and reaching 1.92 kg in 2010, the largest observed weight since 1981. The timing of these changes suggests a likely shift in the marine food web away from prey species favored by coho salmon toward those favored by pink salmon.

The timing of the changes over a period of years, beginning in the early-1990s, points to the most recent recognized ocean "regime shift" in 1989 (Hare and Mantua 2000) as a possible catalyst for the opposing trends in growth of pink and coho salmon.

In recent discussions, several board members of the Alaska Trollers Association (ATA) indicated verbally to us that they have noticed a large amount of krill in the ocean in recent years and a decrease in fish in the stomachs of troll-caught coho salmon. A substantial amount of diet information from salmon landed in the troll fishery was collected annually during 1976-1991 through a logbook program sponsored by ATA, in partnership with ADF\&G, NMFS, Sea Grant, and University of Alaska (Wing 1985). That data provides a potentially valuable baseline for comparable future data collection that could help identify and quantify changes in the forage community available to adult salmon in the waters of Southeast Alaska.

It is not surprising that adult female coho salmon have averaged 1.6-5.3\% (mean-average 3.9\%) larger, while showing substantially less variation in MEF length, indicating less flexibility in size at return, because larger females may have a substantial reproductive advantage in fecundity and the ability to dig nests (van den Berghe and Gross 1984 and 1989). However, female size may also be influenced by conditions in spawning areas including stream flow, depth, and substrate. The fact that Berners River females averaged significantly longer than Auke Creek females in all years ( $\mathrm{p}<0.001$ ), by an average of 32 mm in 1982-2010 (excluding 1984), may reflect adaptation based on availability of larger stream spawning habitat in the upper Berners River proper compared with the Auke Creek system, where the small inlet streams where spawning occurs are shallow and have comparatively little average flow.

Adult males and females were most similar in both average MEF length and variability in length in Auke Creek, but were most different in both features in the nearby Berners River. Gross (1985) has shown that competition among male coho salmon may result in disruptive selection favoring larger body size for fighting and smaller size for sneaker or satellite roles. A potential explanation for the substantially greater difference in average size between males and females and greater variation in size of males in the Berners River population within and across years is that, with little competition from 0-ocean jacks, small 1-ocean adult males have more opportunity to successfully occupy subdominant roles during spawning. Greater reproductive flexibility in the absence of jacks allows Berners River adult males to remain competitive as spawners at a variety of sizes and may promote greater flexibility in marine growth rates.

There is no compelling evidence that the decrease in average size of coho salmon since the early 1980s resulted primarily from either intra-species competition or inter-species competition with pink salmon. Furthermore, although evidence around the decline in growth points primarily to waters immediately off the Southeast Alaska coastline, any effect on growth from interaction with pink salmon appears more likely in offshore waters of the North Pacific. Although we found Southeast Alaska pink salmon abundance (as indicated by commercial catch) to be unrelated or at best, poorly correlated with measures of adult coho salmon size, we did find nearly all indicators of adult coho salmon size to be significantly larger in even years than in odd years since the early 1980s. One possible explanation is that coho salmon returning to Southeast Alaska interact more intensively on the high seas with pink salmon stocks from other areas, with stronger odd-year dominance, such as those from southern British Columbia and Washington, or are in some way responding to the pattern of greater overall pink salmon abundance in the northeast Pacific in odd years However, this seems unlikely because southern pink salmon populations that are most strongly odd-year dominant are of substantially lesser average
abundance compared with Alaskan stocks (Ruggerone et al. 2010) and show substantial overlap in high-seas feeding areas (Myers et al. 1996). Another possible factor is that coho salmon returning to Southeast Alaska in even years may have greater access to juvenile pink salmon prey from more southern cyclic-dominant systems, because pink salmon entering the northeast Pacific appear to follow the coast for long distances to the northwest (Takagi et al. 1981; Hartt and Dell 1986). Adult coho salmon have been found to be the dominant salmonid predator on juvenile pink salmon during the summer in northern Southeast Alaska, based on data from trawl surveys (Joe Orsi, NMFS, personal communication). It is interesting to note that while Southeast Alaska pink salmon display a negative relationship between size and abundance since the early 1980s, there is no significant difference in average weight between even and odd years as in coho salmon.

Substantial inter-system variability in returns of specific coho salmon stocks (Shaul et al. 2009), combined with the broad distribution of production across many streams, present challenges to management for MSY. However, the disadvantage to fishery management resulting from variability among individual populations is offset, to some extent, by population characteristics of the species that provide resilience and flexibility under mixed-stock management in which fishing effort and patterns tend to be stable. Most coho salmon stocks appear to perform well under a broad range of escapements and have high intrinsic productivity that provides resilience and quick recovery from low escapement events (as recently evidenced in the Berners River 2007 brood year).

To the extent that higher brood year escapements above MSY may produce larger average returns (Figure 32), the fisheries may be slightly more economically efficient (i.e., achieve the same harvest from a larger return) and gain a slight buffer against poor marine survival in the following cycle. The flexible population response characteristic of the species is relatively forgiving of management error in either direction and is compatible with the pattern of primarily mixed-stock fishing in Southeast Alaska.

A critical contributing factor to high management effectiveness under conservative exploitation is the estimated response characteristic of the stocks at escapements above $E_{\text {MSY }}$. An apparent overall positive relationship between spawners and returns results in a broad range of escapements across which predicted yield remains within 10\% of MSY. For both the Hugh Smith Lake and Ford Arm Creek stocks, the estimated yield penalty for allowing escapement to vary and average $42-50 \%$ over $E_{M S Y}$, has been less than $10 \%$ as indicated by the Beverton-Holt model. The larger average run size partially offsets the yield penalty for exploiting at a below-optimum rate, while providing a potential population buffer for the next generation in the event of poor marine survival. Finally, managing at higher average abundance combined with a lower-thanoptimal exploitation rate has the added benefit of improving economic efficiency in harvesting fish. An increase in abundance drives up CPUE, thereby lowering the amount of fishing effort required to achieve a constant level of catch.
One reason recent management has been effective in achieving a large fraction of potential yield lies in the fact that the stocks have been exploited under relatively consistent, substantial rates (averaging 64\% for Hugh Smith Lake and 60\% for Ford Arm Creek) that, while somewhat conservative, have been generally well-matched to the productivity of the stocks. For comparison, the optimum equilibrium exploitation rate at MSY, estimated using the BevertonHolt model, is $76 \%$ for the Hugh Smith Lake stock and $72 \%$ for the Ford Arm Creek stock
(Shaul et al. 2009 and in prep). Estimates based on the SHS model place it at $82 \%$ for both stocks.

Although we identified no stocks of concern from a fishery management perspective, the Joint Northern Boundary Technical Committee (2002) described land-use practices in the region that have likely reduced habitat capability for coho salmon. Most habitat loss is a long-term ongoing process resulting from historical forestry practices that have resulted in loss and reduced recruitment of woody debris in stream channels. Problems have also been identified with improperly installed culverts that block fish passage under logging roads. These effects apply primarily to smaller streams in areas where timber has been harvested. Most wetland habitat that is essential to coho salmon production in larger mainland river systems is in nearly pristine condition. However, the process of isostatic rebound from a period of extensive glaciations is likely affecting some wetland habitat, particularly near Yakutat (Shaul et al. 2010).

Coho salmon growth and smolt production is also strongly affected by nutrient subsidies provided to streams by spawning salmon, in particular pink salmon. The beneficial effect to coho salmon production of an incremental increase in marine-derived nutrients is particularly important at lower salmon densities, but appears to approach a saturation density at roughly 1 pink salmon or more per $\mathrm{m}^{2}$ of habitat (Wipfli et al. 2003; Shaul et al. in prep).
We have introduced a new spawner-recruit model that is consistent with our developing understanding of coho salmon life history in Southeast Alaska. The SHS model combines the well-documented territorial freshwater life history strategy of the species with emerging information on the presumed non-compensatory life-history strategy of nomads rearing in estuaries and the ocean as fry and presmolts. The SHS model tends to point to a broader BEG range compared with the hockey stick model and its variations, including LHS (Barrowman and Myers 2000), although not as broad as indicated by the Beverton-Holt model. Although the Beverton-Holt model also fits our data sets for 2 stocks nearly as well, we find the SHS model to be intuitively more compelling. Like the LHS model, the SHS model also assumes a more conservative linear response at very low escapement levels in the area of the spawner-recruit relationship where the Beverton-Holt and Ricker models often overestimate return-per-spawner (Myers et al. 1994; Barrowman and Myers 2000).
The Ricker model, the most commonly applied spawner-recruit model, provided the poorest statistical fit of all models tested for both the Hugh Smith Lake and Ford Arm Creek populations (Shaul et al. 2009; Shaul et al. in prep). Although we find it to be the model least consistent with coho salmon life history, the Ricker model may actually represent a safer option for more problematic data sets subject to substantial statistical and process error, because it tends to produce conservatively high $E_{\text {msy }}$ estimates that are less sensitive to the shape of the distribution of paired spawner and recruit estimates. Point estimates of $E_{m s y}$ based on the Ricker model were substantially higher for both the Hugh Smith Lake and Ford Arm Creek stocks compared with all the other models tested (Shaul et al. 2009; Shaul et al. in prep).

## REFERENCES CITED

Barrowman, N. J., and R. A. Myers. 2000. Still more spawner-recruit curves: the hockey stick and its generalizations. Canadian Journal of Fisheries and Aquatic Science 57:665-676.

Barrowman, N. J., R. A. Myers, R. Hilborn, D. G. Kehler, and C. A. Field. 2003. The variability among populations of coho salmon in the maximum reproductive rate and depensation. Ecological Applications 13 (3):784-793.

Beamish, R. J., B. L. Thomson, and G. A. McFarlane. 1992. Spiny dogfish predation on chinook and coho salmon and the potential effects on hatchery-produced salmon. Transactions of the American Fisheries Society 121:444-455.

Brown, M. B. 1974. Identification of sources of significance in two-way contingency tables. Applied Statistics 23:405-413.

Chapman, D. W. 1962. Aggressive behavior in juvenile coho salmon as a cause of emigration. Journal of the Fisheries Research Board of Canada 19:1047-1080.

Chapman, D. W. 1966. Food and space as regulators of salmonid populations in streams. American Naturalist 100:345-347.

Clark, J. H. 1995. Escapement goals for coho salmon stocks returning to streams located along the Juneau road system of Southeast Alaska. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J95-02, Douglas.

Clark, R. A. 2005. Stock status and recommended escapement goals for coho salmon in selected waters along the Juneau road system, 1981-2004. Alaska Department of Fish and Game, Special Publication No. 05-21, Anchorage.

Clark, J. H., and J. E. Clark. 1994. Escapement goals for Yakutat area coho salmon stocks. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J94-14, Douglas.

Clark, J. E., J. H. Clark, and L. D. Shaul. 1994. Escapement goals for coho salmon stocks returning to Berners River, Auke Creek, Ford Arm Lake, and Hugh Smith Lake in Southeast Alaska. Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Regional Information Report 1J94-26, Juneau.

Clark, J. H., D. Reed, and M. Tracy. 2005. Abundance of coho salmon in the Lost River System, Yakutat, Alaska, 2004. Alaska Department of Fish and Game, Fishery Data Series No. 05-66, Anchorage.

Clark, J. H., D. Reed, and M. Tracy. 2006. Abundance of coho salmon in the Lost River System, Yakutat, Alaska, 2003. Alaska Department of Fish and Game, Fishery Data Series No. 06-11, Anchorage.

Crone, R. A., and C. E. Bond. 1976. Life history of coho salmon, Oncorhynchus kisutch, in Sashin Creek, southeastern Alaska. Fishery Bulletin 74(4):897-923.

Eggers, D. M., and M. Tracy. 2007. A mark-recapture experiment to estimate the spawning escapement of coho salmon in the Situk River, 2005, 2006. Alaska Department of Fish and Game, Fishery Data Series No. 07-70, Anchorage.
Elliott, S. T., and D. R. Bernard. 1994. Production of Taku River coho salmon, 1991-1992. Alaska Department of Fish and Game, Fishery Data Series No. 94-1, Anchorage.

Ericksen, R. P. 2001. Smolt production and harvest of coho salmon from the Chilkat River, 1999-2000. Alaska Department of Fish and Game, Fishery Data Series No. 01-17, Anchorage.

Ericksen, R. P., and S. J. Fleischman. 2006. Optimal production of coho salmon from the Chilkat River. Alaska Department of Fish and Game, Fishery Manuscript No. 06-06, Anchorage.
Geiger, H. J., and X. Zhang. 2002. A simple procedure to evaluate salmon escapement trends that emphasizes biological meaning over statistical significance. Alaska Fishery Research Bulletin 9(2):128-134.

Gross, M. R. 1985. Disruptive selection for alternative life histories in salmon. Nature 313:47-48.

## REFERENCES CITED (Continued)

Harding, R. D. 1993. Abundance, size, habitat utilization, and intrastream movement of juvenile coho salmon in a small southeast Alaska stream. M. S. Thesis. University of Alaska Fairbanks, Fairbanks.

Hare, S. R., and N. J. Mantua. 2000. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Progress in Oceanography 47: 103-145.

Hartt, A. C., and M. B. Dell. 1986. Early oceanic migrations and growth of juvenile Pacific salmon and steelhead trout. International North Pacific Fisheries Commission Bulletin 46:1-105.

Heard, W.R. 1991. Life history of pink salmon (Oncorhyhnchus gorbuscha). Pages 119-230 [In] C. Groot and L. Margolis, editors. Pacific Salmon Life Histories. UBC Press, Vancouver, B.C.

Joint Northern Boundary Technical Committee. 2002. Status of coho salmon stocks and fisheries in the northern boundary area. Pacific Salmon Commission Report TCNB (02)-3. Vancouver.

Jones III, E. L., S. A. McPherson, D. R. Bernard, and I. M. Boyce. 2006. Production of coho salmon from the Taku River, 1999-2003. Alaska Department of Fish and Game, Fishery Data Series No. 06-02, Anchorage.
Jones III, E. L., D. J. Reed, A. D. Brandenburger, S. A. McPherson and I. M. Boyce. In prep. Production of coho salmon from the Taku River, 2003-2007. Alaska Department of Fish and Game, Fishery Data Series, Anchorage.

Koski, K. V. 2009. The Fate of Coho Salmon Nomads: The story of an estuarine-rearing strategy promoting resilience. Ecology and Society 14(1):4.
Lane, J., J. A. Taylor, and B. O. Finnegan. 1994. 1991 adult coho escapement and summary of the 1988-1990 escapement years to the Lachmach River, British Columbia. Canadian Data Report of Fisheries and Aquatic Sciences 938, Nanaimo.

Lum, J. L., and B. J. Glynn. 2007. Coho salmon smolt production, adult harvest, and escapement from Jordan and Duck Creeks, Southeast Alaska, 2002-2003. Alaska Department of Fish and Game, Fishery Data Series No. 0731, Anchorage.
Lum, J. L., and S. G. Taylor. 2006. Abundance of cutthroat trout in Auke Lake in 2003, and Dolly Varden and cutthroat trout migrations at Auke Creek in 2004. Alaska Department of Fish and Game, Fishery Data Series No. 06-57, Anchorage.

McCurdy, S. J. 2010. Production of coho salmon from the 2008 smolt emigration from Chuck Creek in Southeast Alaska. Alaska Department of Fish and Game, Fishery Data Series No. 10-75, Anchorage.
McPherson, S. A., and D. R. Bernard. 1995. Production of coho salmon from the Taku River, 1993-1994. Alaska Department of Fish and Game, Fishery Data Series No. 95-29, Anchorage.

McPherson, S. A., and D. R. Bernard. 1996. Production of coho salmon from the Taku River, 1994-1995. Alaska Department of Fish and Game, Fishery Data Series No. 96-25, Anchorage.

McPherson, S. A., D. R. Bernard, and S. T. Elliott. 1994. Production of coho salmon from the Taku River, 19921993. Alaska Department of Fish and Game, Fishery Data Series No. 94-38, Anchorage.

McPherson, S. A., D. R. Bernard, and M. S. Kelley. 1997. Production of coho salmon from the Taku River, 19951996. Alaska Department of Fish and Game, Fishery Data Series No. 97-24, Anchorage.

McPherson, S. A., R. J. Yanusz, D. R. Bernard, and M. S. Kelley. 1998. Production of coho salmon from the Taku River, 1996-1997. Alaska Department of Fish and Game, Fishery Data Series No. 98-18, Anchorage.

Murphy, M. L., J. F. Thedinga, and K. V. Koski. 1984. A stream ecosystem in old growth forest in southeast Alaska: Part V: Seasonal changes in habitat utilization by juvenile salmonids. Pages 89-98 [In] W. R. Meehan, T. R. Merrell, Jr., and T. A. Hanley, editors. Proceedings of the Symposium on Fish and Wildlife Relationships in Old-Growth Forests (Juneau, 1982). American Institute of Fisheries Research Biologists, Juneau, Alaska.

## REFERENCES CITED (Continued)

Myers, K. W., K. Y. Aydin, R. V. Walker, S. Fowler, and M. L. Dahlberg. 1996. Known ocean ranges of stocks of Pacific salmon and steelhead as shown by tagging experiments, 1956-1996. North Pacific Anadromous Fish Commission Doc. 192, FRI-UW-9614, University of Washington, Seattle.

Myers, R. A., A. A. Rosenberg, P. M. Mace, N. J. Barrowman, and V. R. Restrepo. 1994. In search of thresholds for recruitment overfishing. ICES Journal of Marine Science 51:191-205.

Nickelson, T. 2003. The influence of hatchery coho salmon (Oncorhynchus kisutch) on the productivity of wild coho salmon populations in Oregon coastal basins. Canadian Journal of Fisheries and Aquatic Sciences 60:10501056.

Ruggerone, G. T., and J. L. Nielsen. 2004. Evidence for competitive dominance of pink salmon (Oncorhynchus gorbuscha) over other salmonids in the North Pacific Ocean. Reviews in Fish Biology and Fisheries 14:371390.

Ruggerone, G. T., R. M. Peterman, B. Dorner and K. W. Myers. 2010. Magnitude and trends in abundance of hatchery and wild pink salmon, chum salmon, and sockeye salmon in the North Pacific Ocean. Marine and Coastal Fisheries: Dynamics, Management and Ecosystem Science 2:306-328.

Sandercock, F. K. 1991. Life history of coho salmon (Oncorhynchus kisutch). Pages 395-445 [In] C. Groot and L. Margolis, editors. Pacific Salmon Life Histories. UBC Press, Vancouver, B.C.

Shaul, L. 1994. A summary of 1982-1991 harvest, escapements, migratory patterns, and marine survival rates of coho salmon stocks in Southeast Alaska. Alaska Fishery Research Bulletin 1(1):10-34, Juneau.
Shaul, L., and K. Crabtree. 1998. Harvests, escapements, migratory patterns, smolt migrations, and survival of coho salmon in Southeast Alaska based on coded wire tagging, 1994-1996. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J98-02, Juneau.

Shaul, L. D., and T. A. Tydingco. 2006. Escapement goals for coho salmon counted in aggregate surveys in the Ketchikan and Sitka areas. Alaska Department of Fish and Game, Special Publication No. 06-11, Anchorage.

Shaul, L. D., P. L. Gray, and J. F. Koerner. 1986. Coded wire tagging of wild coho salmon (Oncorhynchus kisutch) stocks in Southeastern Alaska, 1983-1984. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report No. 162, Juneau.

Shaul, L., P. L. Gray, and J. F. Koerner. 1991. Coded wire tag estimates of abundance, harvest, and survival rates of selected coho salmon stocks in Southeast Alaska, 1981-1986. Alaska Department of Fish and Game, Division of Commercial Fisheries, Fishery Research Bulletin No. 91-05, Juneau.

Shaul, L., S. McPherson, E. Jones, and K. Crabtree. 2003. Stock status and escapement goals for coho salmon stocks in Southeast Alaska. Alaska Department of Fish and Game, Special Publication No. 03-02, Anchorage.
Shaul, L., E. Jones, and K. Crabtree. 2005. Coho salmon stock status and escapement goals in Southeast Alaska [in] J. A. Der Hovanisian and H. J. Geiger, editors. Stock status and escapement goals for salmon stocks in Southeast Alaska 2005. Alaska Department of Fish and Game, Special Publication No. 05-22, Anchorage.
Shaul, L. D., L. Weitkamp, K. Simpson, and J. Sawada. 2007. Trends in abundance and size of coho salmon in the Pacific Rim. North Pacific Anadromous Fish Commission Bulletin No. 4:93-104.
Shaul, L., E. Jones, K. Crabtree, T. Tydingco, S. McCurdy, and B. Elliott. 2008. Coho Salmon Stock Status and Escapement Goals in Southeast Alaska. Alaska Department of Fish and Game, Special Publication No. 08-20, Anchorage.

Shaul, L. D., K. F. Crabtree., M. Kemp, and N. Olmsted. 2009. Coho salmon studies at Hugh Smith Lake, 19822007. Alaska Department of Fish and Game, Fishery Manuscript No. 09-04, Anchorage.

Shaul, L. D., K. F. Crabtree, D. M. Eggers, M. Tracy, and J. H. Clark. 2010. Estimates of harvest, escapement, exploitation rate, smolt production and marine survival of coho salmon stocks in the Situk-Ahrnklin Lagoon, 2004-2006. Alaska Department of Fish and Game, Fishery Data Series No. 10-11, Anchorage.

## REFERENCES CITED (Continued)

Shaul, L. D., K. F. Crabtree, K. C. Koolmo, K. M. Koolmo, H. J. Geiger, and J. V. Nichols. In prep. Studies of coho salmon and other Oncorhynchus species at Ford Arm Creek, 1982-2009. Alaska Department of Fish and Game, Fishery Manuscript Series, Anchorage.

Skannes, P., G. Hagerman, and L. Shaul. 2011. Annual management report for the 2010 Southeast Alaska/Yakutat salmon troll fisheries. Alaska Department of Fish and Game, Fishery Management Report No. 11-10, Anchorage.
Takagi, K., K. V. Aro, A. C. Hartt, and M. B. Dell. 1981. Distributions and origin of pink salmon (Oncorhynchus gorbuscha) in offshore waters of the North Pacific Ocean. International North Pacific Fisheries Commission Bulletin 40:1-95.

Taylor, S. G. 2006. Auke Creek weir 2005 annual report, operations, fish counts, and historical summaries. National Marine Fisheries Service report, 24 p., Auke Bay Laboratory, Juneau, Alaska.
Taylor, S. G. 2007. Auke Creek weir 2006 annual report, operations, fish counts, and historical summaries. National Marine Fisheries Service report, 28 p., Auke Bay Laboratory, Juneau, Alaska.
Taylor, S. G. and J. L. Lum. 2003. Auke Creek weir 2002 annual report, operations, fish Counts, and historical summaries. National Marine Fisheries Service report, 29 p., Auke Bay Laboratory, Juneau, Alaska.

Taylor, S. G. and J. L. Lum. 2004. Auke Creek Weir 2003 annual report, operations, fish counts, and historical summaries. National Marine Fisheries Service report, 26 p., Auke Bay Laboratory, Juneau, Alaska.
Taylor, S. G. and J. L. Lum. 2005. Auke Creek Weir 2004 annual report, operations, fish counts, and historical summaries. National Marine Fisheries Service report, 26 p., Auke Bay Laboratory, Juneau, Alaska.

Taylor, S. G. and K. Munk. 1988. Auke Creek Weir 1988 annual report, operations and fish counts. National Marine Fisheries Service report, 14 p., Auke Bay Laboratory, Juneau, Alaska.

Tschaplinski, P. J. 1988. Use of estuaries as rearing habitats by juvenile coho salmon of Carnation Creek, British Columbia. Pages 123-142 [In] T. W. Chamberlin, editor. Proceedings of the Workshop: applying 15 years of Carnation Creek results. Pacific Biological Station. Nanaimo, B.C.

Van den Berghe, E. P., and M. R. Gross. 1984. Female size and nest depth in coho (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Science 41:204-206.

Van den Berghe, E. P., and M. R. Gross. 1989. Natural selection resulting from female breeding competition in a Pacific salmon (Coho: Oncorhynchus kisutch). Evolution 43(1):125-140.
Waltemyer, D. L., D. Reed, M. Tracy, and J. H. Clark. 2005. A Mark-Recapture Experiment to Estimate the Spawning Escapement of Coho Salmon in the Situk River, 2004. Alaska Department of Fish and Game, Fishery Data Series No. 05-31, Anchorage.

Wing, B. L. 1985. Salmon stomach contents from the Alaska troll logbook program, 1977-1984. U.S. Department of Commerce, NOAA Technical Memo. NMFS F/NWC-91.

Wipfli, M. S., J. P Hudson, J. P. Caouette, and D. T. Chaloner. 2003. Marine subsidies in freshwater ecosystems: salmon carcasses increase the growth rates of stream-resident salmonids. Transactions of the American Fisheries Society 132: 371-381.

Yanusz, R. J., S. A. McPherson, and D. R. Bernard. 1999. Production of coho salmon from the Taku River, 19971998. Alaska Department of Fish and Game, Fishery Data Series No. 99-34, Anchorage.

Yanusz, R. J., S. A. McPherson, D. R. Bernard, and I. M. Boyce. 2000. Production of coho salmon from the Taku River, 1998-1999. Alaska Department of Fish and Game, Fishery Data Series No.00-31, Anchorage.

## APPENDIX A

Appendix A1.-Mean-average dressed weight (kg) of coho salmon during 3 periods of the Southeast Alaska summer troll season and the all-gear commercial catch of coho and pink salmon and round weight of commercially-caught pink salmon (kg), 1970-2010.

| Year | Coho Average Dressed Weight in kg (stat. weeks) |  |  | Number of Coho Salmon (millions) | Pink salmon |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 27-28 | 32-33 | 37-38 |  | Catch (millions) | Avg. Wt. (kg) |
| 1970 | 2.49 | 3.06 | 3.83 | 0.759 | 10.657 | 1.77 |
| 1971 | 2.62 | 3.07 | 3.66 | 0.914 | 9.345 | 1.68 |
| 1972 | 2.23 | 2.75 | 3.33 | 1.509 | 12.400 | 1.42 |
| 1973 | 2.65 | 3.19 | 3.80 | 0.836 | 6.455 | 1.63 |
| 1974 | 2.54 | 3.13 | 3.53 | 1.277 | 4.889 | 1.87 |
| 1975 | 2.26 | 2.74 | 3.36 | 0.425 | 4.027 | 1.73 |
| 1976 | 2.23 | 3.13 | 3.84 | 0.822 | 5.330 | 1.99 |
| 1977 | 2.83 | 3.54 | 4.23 | 0.945 | 13.751 | 2.22 |
| 1978 | 2.33 | 2.99 | 3.43 | 1.713 | 21.242 | 1.45 |
| 1979 | 2.52 | 3.10 | 3.64 | 1.278 | 10.939 | 1.79 |
| 1980 | 2.48 | 3.14 | 3.69 | 1.115 | 14.493 | 1.76 |
| 1981 | 2.57 | 3.19 | 4.01 | 1.353 | 18.900 | 1.93 |
| 1982 | 2.57 | 3.18 | 3.49 | 2.103 | 24.210 | 1.48 |
| 1983 | 2.75 | 3.07 | 3.63 | 1.943 | 37.417 | 1.42 |
| 1984 | 3.02 | 3.76 | 4.07 | 1.881 | 24.529 | 1.62 |
| 1985 | 2.94 | 3.34 | 3.94 | 2.562 | 51.470 | 1.44 |
| 1986 | 2.87 | 3.31 | 3.79 | 3.259 | 46.083 | 1.51 |
| 1987 | 2.41 | 3.10 | 3.49 | 1.487 | 9.216 | 1.68 |
| 1988 | 2.43 | 3.53 | 4.08 | 1.036 | 11.044 | 1.48 |
| 1989 | 2.41 | 3.04 | 3.31 | 2.182 | 59.219 | 1.56 |
| 1990 | 2.53 | 3.08 | 3.43 | 2.740 | 31.432 | 1.45 |
| 1991 | 2.56 | 2.93 | 3.36 | 2.897 | 60.776 | 1.23 |
| 1992 | 2.44 | 3.04 | 3.80 | 3.424 | 32.824 | 1.50 |
| 1993 | 2.37 | 2.54 | 2.79 | 3.556 | 56.937 | 1.35 |
| 1994 | 2.82 | 3.25 | 3.90 | 5.520 | 53.764 | 1.37 |
| 1995 | 2.55 | 3.24 | 3.88 | 3.130 | 47.530 | 1.44 |
| 1996 | 2.67 | 3.07 | 3.65 | 2.986 | 63.977 | 1.36 |
| 1997 | 2.38 | 2.84 | 4.00 | 1.839 | 27.216 | 1.74 |
| 1998 | 3.04 | 3.25 | 4.08 | 2.751 | 41.073 | 1.57 |
| 1999 | 2.12 | 2.46 | 2.96 | 3.277 | 74.703 | 1.33 |
| 2000 | 2.61 | 2.99 | 3.76 | 1.688 | 20.006 | 1.55 |
| 2001 | 2.57 | 2.79 | 3.36 | 2.945 | 65.807 | 1.49 |
| 2002 | 2.76 | 2.99 | 3.56 | 2.487 | 44.405 | 1.51 |
| 2003 | 2.53 | 2.84 | 3.38 | 2.166 | 52.027 | 1.59 |
| 2004 | 2.66 | 2.86 | 3.50 | 2.858 | 44.337 | 1.62 |
| 2005 | 2.37 | 2.46 | 3.07 | 2.767 | 58.045 | 1.56 |
| 2006 | 2.54 | 2.88 | 3.60 | 1.841 | 11.275 | 1.78 |
| 2007 | 2.27 | 2.58 | 3.32 | 1.911 | 44.101 | 1.61 |
| 2008 | 2.90 | 3.16 | 4.10 | 2.040 | 15.878 | 1.64 |
| 2009 | 2.39 | 2.58 | 2.98 | 2.375 | 37.392 | 1.44 |
| 2010 | 2.70 | 3.03 | 3.62 | 2.286 | 23.448 | 1.92 |

Appendix A2.-Average and coefficient of variation of mid-eye to fork length ofmale and female adult age-. 1 coho salmon returning to Auke Creek and the Berners River, 1980-2010.

|  | Auke Creek (Males) |  |  | Auke Creek (Females) |  |  | Berners River (Males) |  |  | Berners River (Females) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Appendix A3.-Average and coefficient of variation of mid-eye to fork length ofmale and female adult age- 1 coho salmon returning to Ford Arm Creek and Hugh Smith Lake, 1982-2010.

| Year | Ford Arm Creek (Males) |  | Ford Arm Creek (Females) |  | Hugh Smith Lake (Males) |  | Hugh Smith Lake (Females) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Average Length (mm) | Coefficient of Variation | Average Length (mm) | Coefficient of Variation | Average Length (mm) | Coefficient of Variation | Average <br> Length (mm) | Coefficient of Variation |
| 1982 | 653 | 0.0814 | 660 | 0.0608 | 648 | 0.0862 | 654 | 0.0533 |
| 1983 | 642 | 0.0901 | 649 | 0.0689 | 595 | 0.1069 | 627 | 0.0759 |
| 1984 | - | - | - | - | 655 | 0.0920 | 670 | 0.0609 |
| 1985 | 665 | 0.0680 | 667 | 0.0678 | 660 | 0.0910 | 662 | 0.0814 |
| 1986 | 649 | 0.0968 | 653 | 0.0771 | 678 | 0.0973 | 675 | 0.0582 |
| 1987 | 630 | 0.0903 | 655 | 0.0547 | 645 | 0.0820 | 658 | 0.0716 |
| 1988 | 656 | 0.0862 | 668 | 0.0624 | 636 | 0.1030 | 653 | 0.0752 |
| 1989 | 597 | 0.1193 | 643 | 0.0707 | 613 | 0.0964 | 623 | 0.0641 |
| 1990 | 641 | 0.1116 | 669 | 0.0674 | 650 | 0.1072 | 661 | 0.0620 |
| 1991 | 617 | 0.0950 | 650 | 0.0516 | 612 | 0.1026 | 632 | 0.0707 |
| 1992 | 620 | 0.0944 | 643 | 0.0586 | 642 | 0.0927 | 651 | 0.0648 |
| 1993 | 605 | 0.1021 | 631 | 0.0565 | 612 | 0.1173 | 641 | 0.0603 |
| 1994 | 623 | 0.1007 | 659 | 0.0576 | 624 | 0.1202 | 645 | 0.0952 |
| 1995 | 616 | 0.0869 | 650 | 0.0454 | 628 | 0.1022 | 651 | 0.0630 |
| 1996 | 607 | 0.1127 | 642 | 0.0580 | 613 | 0.1131 | 630 | 0.0720 |
| 1997 | 606 | 0.1000 | 641 | 0.0503 | 616 | 0.1061 | 644 | 0.0674 |
| 1998 | 622 | 0.0977 | 649 | 0.0492 | 652 | 0.1075 | 663 | 0.0682 |
| 1999 | 575 | 0.1160 | 610 | 0.0800 | 573 | 0.1231 | 611 | 0.0761 |
| 2000 | 597 | 0.0974 | 641 | 0.0518 | 598 | 0.1215 | 634 | 0.0726 |
| 2001 | 573 | 0.1242 | 622 | 0.0739 | 611 | 0.1235 | 631 | 0.0827 |
| 2002 | 584 | 0.1199 | 631 | 0.0719 | 594 | 0.1412 | 635 | 0.0765 |
| 2003 | 596 | 0.1007 | 626 | 0.0552 | 592 | 0.1296 | 631 | 0.0691 |
| 2004 | 596 | 0.1122 | 641 | 0.0521 | 625 | 0.0963 | 638 | 0.0734 |
| 2005 | 571 | 0.1160 | 618 | 0.0597 | 604 | 0.1119 | 630 | 0.0685 |
| 2006 | 597 | 0.0942 | 628 | 0.0593 | 606 | 0.1251 | 631 | 0.0831 |
| 2007 | 563 | 0.1167 | 617 | 0.0657 | 581 | 0.1144 | 616 | 0.0764 |
| 2008 | 615 | 0.1034 | 652 | 0.0538 | 613 | 0.1131 | 641 | 0.0796 |
| 2009 | 560 | 0.1110 | 619 | 0.0720 | 577 | 0.1214 | 609 | 0.0946 |
| 2010 | 588 | 0.1061 | 635 | 0.0599 | 641 | 0.1090 | 657 | 0.0731 |
| Average |  |  |  |  |  |  |  |  |
| 1982-1989 | - 642 | 0.0903 | 656 | 0.0661 | 641 | 0.0943 | 653 | 0.0676 |
| 1990-1999 | - 613 | 0.1017 | 644 | 0.0575 | 622 | 0.1092 | 643 | 0.0700 |
| 2000-2010 | - 585 | 0.1093 | 630 | 0.0614 | 604 | 0.1188 | 632 | 0.0772 |
| All Years | 609 | 0.1018 | 642 | 0.0612 | 620 | 0.1088 | 642 | 0.0721 |


[^0]:    This investigation was partially financed by the Federal Aid in Sport Fish Restoration Act (16 U.S.C. 777-777K).

[^1]:    ${ }^{\text {a }}$ For the Taku River stock of coho salmon, the management intent of the U.S. is to ensure a minimum above border run (i.e., inriver run) of 38,000 fish as detailed in the Pacific Salmon Treaty. The management threshold for escapement is the inriver run minus the allowed Canadian inriver harvest of 3,000 at runs less than 50,000 .
    AS = peak aerial survey, FS = foot survey, BS = boat survey
    IE = index escapement
    MR = mark-recapture

[^2]:    1 Eiler, J. H., M. M. Masuda, and H. R. Carlson. Unpublished. Stock composition, timing, and movement patterns of adult coho salmon in the Taku River drainage, 1992. National Marine Fisheries Service report, Juneau.

[^3]:    ${ }^{\text {a }}$ Total includes interpolations for systems without counts (see Escapement Indicators section for a description of the method used).

[^4]:    a Index of the exploitation rate on available wild coho salmon stocks by the Alaska troll fishery based on the following weightings: Auke Creek (40\%), Hugh Smith Lake (40\%), and Ford Arm Creek (20\%).
    ${ }^{\text {b }}$ Average of estimates of wild coho salmon CPUE by power trollers during statistical weeks 28-38.
    c Total troll effort in boat-days during statistical weeks 28-40, with hand troll effort converted to power troll equivalents.

[^5]:    ${ }^{\mathrm{a}}$ Cases in which slope is significant are shown in shaded bold.

