Genetic Tagging \& Monitoring of Fisheries

Dr. Shawn Narum

Columbia River Inter-Tribal

 Fish Commission

Hagerman, Idaho

Primary Research Areas

1) Genetic tagging and monitoring of fisheries -stock specific abundance, harvest, and run-timing to assist fisheries management
2) Genetic effects of hatchery practices

- better understand how hatchery reform can be implemented to reduce genetic impacts on wild populations

3) Genetic adaptation to local environments - investigate local adaptation and the genetic basis for traits (e.g., thermal adaptation)

1) Genetic tagging and monitoring of fisheries in the Columbia River

Major Decline in Total Chinook catch in the Columbia River system

Anderson (1998) Sustainable Fisheries Conference Proceedings

Genetic program to estimate composition of salmon runs during upstream migration

Goal:

Allow managers to shape fishing seasons to target abundant populations while also protecting the weakest populations

Genetic Monitoring Programs

-Estimate stock composition of salmon fisheries

Commercial

Sport

Tribal

Bonneville Dam

Genetic Tools for Monitoring

1) Genetic Stock Identification (GSI):

- Method in use for 30+ years in fisheries
- Baseline of population genetic data
- Identify the most likely origin of fish

2) Parentage Based Tagging (PBT):

- New technique based on parentage analyses
- Genotype all hatchery broodstock (parents)

- Allows identification of hatchery offspring by DNA
-Data obtained similar to CWT but with greatly improved tagging rate ($-95-100 \%$ vs. $5-10 \%$)
- No juveniles have to be handled or injected with physical tags

GSI - Baseline of Reference Populations

Baselines described in Hess et al. 2011 Mol. Ecol. Res.; Matala et al. 2011 TAFS

Parentage Based Tagging (PBT)

Genetic "tags" based on DNA

- Genetic tagging of hatchery broodstock can identify hatchery offspring produced
- Passive mark (no handling of juveniles)
- Eliminates issues with tag loss, tag detection, handling mortality
- Non-lethal sample to recover tag from offspring
-Nearly 100% tagging rate of hatchery fish -Dramatic increase in the number of tags recovered (improved estimates of stock composition)

Snake River Basin PBT

- Sample all hatchery broodstock
-5,000 steelhead/yr
-9,000 Chinook salmon/yr
- Genetically "tag" ~20 million smolts/yr
- All hatcheries record spawn dates and sex (many provide lengths and spawn cross)

Steele et al. in review, CJFAS

Goal 2012-ongoing: Chinook salmon, PBT hatcheries

Lyons Ferry Nez Percé
Marion Doain Prosse
Earsong

-Potential to include wild stocks in PBT approach if wild parents can be sampled at weirs

Spring/Summer Chinook

	Spawn Year			
	2008	2009	2010	2011
Broodstock sampled	10,836	8,849	8,290	8,466
Genotyped	10,630	8,493	8,235	8,324
"Tagging" Rate of Offspring	96.2%	92.1%	98.7%	98.3%
Smolts Produced *	$\sim 18.96 \mathrm{mil}$	$\sim 15.49 \mathrm{mil}$	$\sim 14.51 \mathrm{mil}$	$\sim 14.82 \mathrm{mil}$
Smolts "Tagged"	$\sim 18.25 \mathrm{mil}$	$\sim 14.26 \mathrm{mil}$	$\sim 14.32 \mathrm{mil}$	~ 14.56

* Assuming 3,500 smolts produced per broodstock pair

Sampling PBT-tagged offspring

Fishery application:

Origin and age of harvest fishery?

Fishery application:

Origin and age of harvest fishery?

Bonneville Dam:

-Weekly sampling April - October
-Stock specific return timing

Example application: Origin and age of harvest fishery?

Lower Granite Dam: -Weekly sampling June - October -Stock specific return timing

Juvenile Monitoring

- Run-of-river Chinook smolts
- Collected at Bonneville and Lower Granite dams
- Both adipose intact and ad-clipped (hatchery) fish
- Small non-lethal tissue clip for SNP markers for PBT \& GSI
- Relate stock survival and abundance to migration patterns from other physical tags (i.e. PIT tags)

Rechiscky et al. in prep

Genetic Tagging \& Monitoring

- Adult return timing by stock (dams)
- What stocks are most abundant in the river over the course of their migration seasons
- Stock specific harvest information
- Highly relevant for allocation agreements between lower and upriver partners
- Juvenile stock monitoring
- Non-lethal sampling, provides stock abundance information for out-migrating juveniles
- Can link stock info to migration data (i.e. PIT tags)

Acknowledgements

- Field sampling: NPT, YN, CTUIR, CTWSIR, IDFG, WDFW, ODFW, NOAA
- Laboratory: Vanessa Morman, Lori Maxwell, Amanda Matala, Stephanie Harmon, Megan Moore, Nick Hoffman, Travis Jacobson, Jeff Stephenson
- CRITFC Project Leader: Dr. Jon Hess
- Funding from Bonneville Power Administration

